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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

29,2 (1988) 

MAXIMAL IDEALS IN THE LIE ALGEBRA OF VECTOR FIELDS 

J i f f VANZURA 

Abstract; We describe maximal ideals in the Lie algebra 3£(V) of a l l C0.! 
-vector f ie lds on a C00-manifold V. Further we show that the set Specm X(\J) 
of a l l maximal ideals in X(V) endowed with the Stone topology is homeomorph-
ic with the Stone-tech compactification /JV of V. 

Key words; C*°-manifold, Lie algebra of C*°-vector f ie lds , maximal ide
al , Stone-Cech compactification. 

Classification; 17B65 

1. Maximal ideals in the associative algebra C(V). Let V be a connected 

paracompact real C°°-manifold, dim V=m, and l e t C=C(V) denote the commutative 

and associative algebra of a l l real C°*-functions on V. 

For f * C we define the zero-set Z(f) of f by 

Z ( f )=4 P €V; f (p )=0 l . 

Z(f) is a closed subset of V. We recall the well known fact that every closed 

subset of V is the zero-set of some function from C. We shall now consider an 

ideal ICC. (Ideal in C will always mean proper ideal.) But first we introdu

ce 

Definition 1. A nonempty family J* of closed subsets of V is called 

z-filter on V provided that 

(i) 0+r 
(ii) Z,Z'« £*.-* Z A Z ' C ^ 

(iii) Z £ # , ZcZ , Z' is a closed subset of V - ^ Z ' c S ' -

By a z-ultrafilter on V we shall mean a maximal z-filter, i.e. one not cont

ained in any other z-filter. 

In the same way as in [lj we can prove the following 

Proposition 1: (i) If IcC is an ideal, then the family 

Zm=*Z(f);f*lJ 
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is a z-filter on V. 

(ii) If $ is a z-filter on V, then the family 

Z*-[9r3={f;Z(f)c3rJ 

is an ideal in C. 

It is easy to see that for any z-filter ? , and for any ideal I there 

is 

Z£Z*-13'JJ= f and Z«TZ£l33 a I. 
o 

The last inclusion may be proper. (Take V=R, and let I=(x ) be the principal 
o 

ideal generated by the function x . Then Z**£Zll31 =(x). If an ideal I satis

fies Z*"LZ£I33 =1 we shall call it z-ideal. Obviously every maximal ideal is 

a z-ideal. 

Following again £13 we get the next two propositions. 

Proposition 2: (i) If MCC is a maximal ideal, then Z£M} is a z-ultra-

filter on V. 

(ii) If A is a z-ultrafilter on V, then Z**£A1 is a maximal ideal in 

C. 

(iii) The mapping Z*" is one-one from the set of all z-ultrafilters on 

V onto the set of all maximal ideals in C. 

Proposition 3: (i) Let M c C be a maximal ideal. If Z(f) meets every 

member of Z£M3, then fcM. 

(ii) Let A be a z-ultrafilter on V. If a closed set Z c V meets every 

member of A , then Z 6 A . 

Let I c C be an ideal. We shall call I fixed ideal if AZ£IJ-^0, and 

free ideal if f\Z£l3 =0. We shall now describe fixed maximal ideals in C. 

Let M c C be a fixed maximal ideal. We denote S= AZ£MJ. Obviously McffcC; 

f|S=0i, where the latter set is a (proper) ideal in C. Hence M= itcC;f|S=0$« 
But because for any two closed subsets S, £ S« there is 

U«C;f IS^Ol-fi {fcC;f3S2=0}, 

we can see that S contains just one point, i.e. S=-lp}. Then M= if eC;f(p)=0}. 

Conversely, for any point pcM the set 

Mp={fcC;f(p)=0l 

is an ideal in C. Moreover, it is a maximal ideal, because the factor C/M S» 

&R is a field. We have thus proved the following 
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Theorem 1. The fixed maximal ideals in C are precisely the sets 

M pMf€C;f(p)=0{, P 6 V . 

The ideals M are distinct for distinct p. 

Before proceeding further we shall need 

Proposition 4: If a manifold is compact, then every ideal IcC is fixed. 

Proof: Let us take a finite number of functions f,,...,f. €l. Then 

Qx Z(fi)=Z( 2 ^ f?)-4»0 (otherwise g-Q f? would be an invertible element). 

This shows that the family ZIH of closed subsets has the finite intersecti

on property (i.e. every finite subfamily has a nonempty intersection). But V 

is compact, which implies nztI3-*-0. 

As an immediate consequence of Th. 1 and Prop. 4 we get 

Theorem 2: If a C°°-manifold V is compact, then the correspondence 

pi—>M is one-one from V onto the set of all maximal ideals in C. 

This theorem describes the maximal ideals in C=C(V) for V compact. We 

shall now focus our attention to the case when V is only paracompact. Every 

paracompact topological space is completely regular, so that we may use res

ults from Chapter 6 of £13. Let ft\l denote the Stone-Cech compactification of 

the manifold V (considered as a topological space). Let 5* be a z-filter on V. 

We shall say that & converges to the limit pc/SV if every neighborhood (in 

|3V) of p contains a member of 5T . Let us recall that every z-ultrafilter A 

on V has a unique limit p €/3V, and that p is a unique point such that p m 

2^\ C*AV Z» v^ieTe c\t\i denotes the closure in (%\l. Moreover every point p c 

&|3V is a limit of a unique z-ultrafilter A on V. In this way we get one-one 

mapping from p V onto the set of all z-ultrafilters on V. The unique z-ultra

filter having the limit p a ^ V we shall denote by A^. There is 

•>lp=-fZ;ZcX is closed in X, pccl^Z}. 

/sv 

If p*V there is even a simpler description: 

A P = 4 Z ; Z c X is closed in X, peZf. 

Theorem 3: Let V be a paracompact C°°-manifold. The maximal ideals in C 

are precisely the sets 

Mp=-TfeC, p«c:LvZ(f)}, p</5V. 

The ideals Mp are distinct for distinct p. If p6V f then M^M . 
P 
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Proof: Let McC be a maximal ideal. Then according to Prop. 2 Z£M] is 

a z-ultrafilter on V. Therefore there exists a unique pc fiV such that Z£M3 = 

= A - Now we have 

M = Z ^ C Z £ M 3 3 = Z n . A P i = -tf€C; Z(f) 6 APl = it 4 C; peel yZ(f)J =1^. 

Conversely, i f pc/3V is any point, then 

Mp= {fcC; peel vZ(f)j = tf«C, Z(f)cJLp{ =Zn.AP3, 

which shows that Mp is a maximal ideal in C. The rest of the proof is obvious. 

Furthermore we get easily 

Theoren 4: Let V be a paracompact C00-manifold. Then the correspondence 

p ̂ ^ M"̂  is one-one from fiV onto the set of all maximal ideals in C This 

correspondence maps Vc/lV onto the set of all fixed maximal ideals in C 

As usual we denote by Specm C the set of all maximal ideals in C (It is 

called maximal spectrum of C ) We provide Specm C with the Stone topology. 

Namely, we take the family of all sets tMc Specm C; fcMj, fcC as a base for 

the closed sets. Along the same lines as in £13 we get 

Theoren 5: The correspondence p i—• Nf0 is a homeomorphism from /3 V onto 

Specm C. 

2. Maximal ideals in the Lie algebra £(V). Let us denote by £ =J£(V) 

the Lie algebra of all C*90-vector fields on V. We recall the well known fact 

that X can be naturally identified with the Lie algebra of all derivations 

on the algebra C. 

We shall now consider an ideal Ic C. Following £23 we define for any 

neN*=Nu*0* 

I(n)= -Cfcl; Yk(Yk-1(...(Ylf)...))€l for any Y p...,Y kc X and 

k=0,...,n}. 

Obviously there is 1=1(0) D 1(1) 3 ... . It can be easily checked that for any 

ncN*I(n) is an ideal in C. For any pftV, feC, and ncN^u-Cooi we denote 

by j"(f) the n-jet of the function f at the point p. Further we define the 

n-jet zero-set Z (f) of f by 

lZ n(f)={ PCV; j£(f)=0*. 

Obviously ZQ(f)=Z(f). Z (f) is a closed subset of V. But it can be shown that 

every closed subset of V is the n-jet zero-set of some function from C. (We 

recall that neN*u*too}is arbitrary.) Let J* be a z-filter on V. Then for 

any n i N * u ioo] we define 
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Z ^ m ---tffiC; Zn(f)« y? . 

It can be easily seen that Z** Itf] is an ideal in C. We are now going to 

prove the following proposition. 

Proposition 5: Let f be a z-filter on V. Then for any n * N * there is 

(Z^C^3)(n)=Zn*-£r3 . 

Before starting the proof of Prop. 5 we shall introduce on V certain 

special functions and special vector fields which will be needed several ti

mes in the sequel. Because dim V=m, we can find (see 133) m+1 families U Q , 

XL ,..., U of open subsets in V 

U i = UieC; o c e Z : i » 0*i*m! 

with the following properties 
m 

. <-> iV 0^.
Ui*= V 

(ii) For any 0-ii-sm, and any 06 , ft e -£,, oc- + (I there is U. n U . = 
* x ice if J 

=0. 
( i i i ) Each U. is a domain of a chart (x, , . . . , x m

 A ) . lot i m 

Furthermore we can find open subsets V*^ , 0-ii-fcm, oc.€ 21 . such that 
(iv) c l v V i a C c U i c t 

m 
(v) W * - i - V. =V. K J i=0 oce.2^ ice v* 

Now it can be easily seen that there exist functions f.. c C and vector fi

elds Xi- e £ , Oii^m, l .£j .6m such that 

for any oc e 2.. and any p 6 V. . there is 

>=v(ioc)rn> Y fn^ d 

3x(, 
f i^ i J ( p , -V p , = т ж ) ( p ) -

Proof of Prop. 5; Let f c Zn*-£3"3 , i .e. Zn(f) e f . For any Y p . . . 

. . . , Y k * # , 04k-?n we have 

{peV; (Y k (Y k _ 1 ( . . . (Y 1 f ) . . . ) ) ) (p )=0j . 3 Z n ( f ) , 

and thus 4p*V; (Y|<(Yk__1(.. .(Y^).. .)))(p)=0l e & . From this follows 
Yk(Yk_1(...(Y1f)...))eZ*~m . We have proved that Z ^ C T J c (Z«-£S3)(n). 

Conversely let f 6 (Z*- l?3)(n). We denote by £Q the finite subset of 

X consisting of the vector fields X i . , 0-fri .*m, l*;j-fcm. If pcV and g«C, 
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then jp(g)=0 if and only if 

(Y|<(Yk_1(...(Y1g)...)))(p)=0 

for any Y1,...,Yk« $ n , 04kin. Obviously 

V 8 > - Q , V . Q k . 3 C 0 ^
€ V ' (Vk(Yk.1(...(Y1g)...)))(p)=05. 

Using this formula we find easily that for f c (Z*"£^J)(n) there is ZR(f) e 

4 J . Thus we have proved that (2*"t$l )(n)c Z ^ T ^ J . 

Again following L23* for any ideal IcC, and any neH* we define 

X i= CXc £ ; Xf el(n) for every f«Cf. 

Furthermore we define 

It can be proved (see 12}) that X j for any n « N * , and consequently -Cp 

is an ideal in the Lie algebra 9C . As usual for any p£ V, X « JE , and 

nfeN*u{a>$ we denote by j"(X) the n-jet of the vector field X at the point 

p. Similarly as for functions we define 

£ nOO={p«V; jp(X)=0{. 

Proposition 6: Let S" be a z-filter on V. Then for I=Z*"£lTJ and any 

ncN* there is 

Xj=iX*X ; « n ( X ) 6 ^ i . 

Moreover 

X^=-CXc9C; ZnM*f for every neN* J. 

Proof: Let X 6 X be such that 2L(X) € & . Then for any f eC we have 
Zn(Xf) a -£n(X), which shows that ,ZR(Xf) & & . By virtue of Prop. 5 there is 
Xf *I(n) , and thus X e X j . We have proved that iX e % ; XR(X) e T}cXy 

m m 
Conversely, let Xt^Cp Obviously there is #n(X)= Q , Q z

n<xtij>-

But X * X p which means that Xf^ el(n) for any 04i4m, 14j4m. By virtue 
of Prop. 5 i t follows that ZR(Xfi.) c ? for any 04i*m, 1 4 j i m . Using the 
above formula we can see that 2Sn(X) a T . We have proved that •TjC'CX 6 
ft Oi ; 2? (X) « $*j. The assertion concerning XT is now obvious. 

We are now going to describe maximal ideals in the Lie algebra £ . 
(Ideal in £ will always mean proper ideal.) First we shall state a fundamen
tal result by Grabowski (see £21): 
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(G) Let X c X be an ideal. Then there exists an ideal 
IgC C such that for each prime ideal I containing I« there is X c «f j . 

Keeping the above notation let us assume that X - 1ft c X is a maximal 
ideal. We take I=M, where McC is a maximal ideal containing the ideal IQ. We 

~ v 
'M 

M wc ,,avc "*= °"M 
means that there is 

W = - { X « £ ; £ n(X)e>l for every n c N * j, 

where A is a z-ultrafilter on V. Now it is natural to introduce 

Definition 2: Let & be a z-filter on V. We define 

a E * W ) s f X c £ ; ̂ n(X) € 3* for every n c N * J. 

It is easy to see that Z*~t T l is an ideal in the Lie algebra X . Us
ing this notation we can formulate the above result as 

Theorem 6: Let 771 c X be a maximal ideal. Then there exists a z-ultra
filter A on V such that att = Z ^ L A I . 

Our next goal will be to prove that any ideal of the above form is in 
fact a maximal ideal. But £irst we shall establish the existence of maximal 
ideals in X . Here we have at least two possibilities how to proceed. We ha
ve chosen that one which fits better into our setting. 

Proposition 7: Let X c X be an ideal. Then for any X s«T we have 

£ n(X)*0 for any n * N * . 

Proof: Let I QcC be the ideal described in (G). We take any maximal ide 
al M c C such that Molg. According to (G) there is X c XM • Denoting A = 
=!*" CM] we have by virtue of Prop. 6 X c Z** L A I . Thus for any X €X and 
any n*N* we have ^ ( X ) c A , which implies #n(X) + 0. 

Theorem 7: Let X c X be an ideal. Then there exists a maximal ideal 
7ft c X such that X c 77% . 

Proof: First we shall prove that there exists a vector field Y * & such 
that 2f,(Y)=0. For this purpose let us take a Morse function fiC (i.e. a 
function with nondegenerate critical points), and let us choose an auxiliary 
riemannian metric g on V. We define a vector field Y c X by the equation 

gC,Y)=df. 
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It can be immediately seen that £,(Y)=0. 

By virtue of the previous proposition the vector field Y cannot belong 

to any (proper) ideal. Let us consider now a family {Xj; <f e*£lof (proper) 

ideals in X , each of which contains the ideal X , and let us assume that 

this family is totally ordered with respect to the inclusion. The union 

J^ y«0" -S obviously an ideal in X (possibly improper). But because for 

any o T c Z there is Y 4 X^ , we have Y 4 *~*^*£<? » wbich shows that 

-U Xf is a proper ideal. Thus by virtue of the Zorn s lemma there exists 

a maximal ideal Wt c X such that X c Ifl. 

Let us consider an ideal X c X , and let W c X be a maximal ideal 

such that X <=• VI . Let ̂  be a z-ultraf ilter on V with the property #t = 

= Z*~t Al , which exists by virtue of Th. 6. The family 

4Z n(X); X c X , ncN*J 

of closed sets in V is a subfamily of the z-ultrafilter A , and therefore 

has the finite intersection property. Consequently it generates a z-filter on 

V. 

Definition 3: Let X c X be an ideal. The z-filter on V generated by 

the family {Z R(X), X « X , ncN*J we shall denote by ZtXl . We shall call 

j - fixed ideal if n Z C « C 3 * 0 , and free ioeal if CiZtXl^. 

Let X c X be a fixed ideal. It is easy to see that p e. A2TCXJ if and 

only if jf°(X)=0 for every X « X . 

We recall that any family of closed sets with the finite intersection 

property in a cwpact topological space has a nonempty intersection. From 

this fellews easily 

Proposition 8: If a manifold V is compact, then every ideal X c X is 

fixed. 

Proposition 9: For any z-f ilter ^ on V, and any ideal X c X there 

is 

ZlZ + lfll** and Z^LZtXll *X. 

Proof: The inclusions XcZ*~LZLXll and ZtZ^tJll c f are obvi

ous. I t remains to prove the inclusion & c ZtZ*~ tfll . Let Z c T be a 

closed set. There exists a function f tC such that ZQ(f)=Z00(f)=Z. Obviously 

for any Oiifcm and any n * N * there is ^ ( f X ^ a Z , and thus 2f r |(fX i l)« F* 

This shows that fX., 6 Z*"t Tl for every O i i ^ m . Moreover there is 
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i=0 Z o ( f X i l ) = Z ' w h i c h D r o v e s t h a t ItZtZ^CfU. 

Theorem 8: Let A be a z-ultrafilter on V. Then #t = Z^tAI is a max

imal ideal in 3E • 

Proof: We know already that 9t is a (proper) ideal. According to Th. 

7 there exists a maximal ideal TQfl' c % such that Vt c TBtl'. Furthermore 
by virtue of Th. 6 there is a z-ultrafilter A' such that KfC = Z*"CA'l. We 

have therefore Z*~lAlc Z^LA% which implies ZCZ**CA3.1cZCZ^CA'l 1. 

From this, using Prop. 9, we obtain A c A* . But A is a z-ultrafilter, and 
therefore A = A ' . Now we get #fc= W , which proves that M= Z*~tJL) is 

a maximal ideal. 

We recall that for any p « f t V we have denoted by A p the unique z-ult

rafilter on V having the limit p. 

Theorem 9: Let V be a paracompact C°°-manifold. Then the correspondence 

p i—-* Z**LA pJ is one-one from /3V onto the set of all maximal ideals in X. 
This correspondence maps Vc /3V onto the set of all fixed maximal ideals ir\3C. 
If p«V, then 

2 * £ A P J = * X « X ; j£°(X)-0{. 

Proof: Using Th. 6 we can easily see that the mapping pi— + Z * * C A PJ 

is surjective. Let us consider two points p,q«£V such that 2 * * f A D ) = 

- Z*~CAql- By virtue of the first formula in Prop. 9 we get A p= A q , and 
consequently p=q. This proves that the mapping p *--* Z *"f A PJ is infective. 

The equality 2+tApl = Cx e 3? ; J*(X)--0} for pcV is obvious. (We 

recall that for p«V A p is the family of all closed subsets of V contain

ing the point p.) This shows that the mapping p H ~ > Z ** f A PJ maps V into the 

set of all fixed maximal ideals in £ . Conversely, let #1 = Z*~iA\ be a 

fixed ideal. Then S = n £ f A J is a nonempty set. Obviously 

«tc iX c X ; j^(X)=0 for every q«S|, 

where the latter set is a proper ideal in 3C . Now the maximality of Ht imp

lies 

W « iX « £ ; j?°(X)=0 for every q«Sj. 

But because for any two closed subsets S,,S«cV satisfying S, S S« there is 

* X « S ; j~(X)=0 for every q « S l i $ { X c 3 ; j~(X)=0 for every q*S2l, 

we can see that S contains just one point, i.e. S=-Cp|. Then W = <Xf3C; 

j*(X)=0j, which finishes the proof. 
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We denote now by Specm $ the set of all maximal ideals in the Lie alge

bra X endowed with the Stone topology. Let us recall that this topology has 

the family -Cm # Specm % ; X £ Wti , X % Z as a base for the closed sets. 

Theorem 10: Let V be a paracompact C°°-manifold. Then the corresponden

ce p *~-* 2 *" £ A PJ is a homeomorphism from fl V onto Specm X . 

Proof: If Zc V is a closed subset, we denote Z={p€ # V; Z • A P K We 

recall that the system of all sets of the form Z, where ZcV is an arbitrary 

closed set, represents a base for the closed sets in the Stone-Cech compacti-

fication /JV. 

We denote the mapping p *-* Z # * t A P 3 by w . First we shall prove that 

l is continuous. Let X € 3? be arbitrary, and let us denote Ay= i %tl « 

€ Specm % ; X c W } . Obviously it suffices to prove that w (Aw) is closed 

in /iV. But for pc/iV there is t(p)= 2 * " £ A p . l , and <.(p)eAx if and only 

if X 6 - 3 * * £ . A p . l . This means that Z n ( X ) i A
p for every nc N * . We can now see 

that 

*>~l^X>Qo{**(^> V X > * A P * = S U <«5 

is a closed subset in /3V. 

Next we prove that w is a closed mapping. Here it suffices to prove that 

for any closed set ZcV i (Z) is a closed set in Specm £ . Let f# * 

€ Specm % . We can see that #1 * c (Z) if and only if Z e Ztl&l . Similar

ly as in the proof of Prop. 9 let us take a function f*C such that Zn(f) = 

=Z00(f)=Z. We shall prove that 

ZftZf.attJ4-» f X i l t a n forO-Siim. 

I f Z c 2L3A1 , then Z^fX^ol for every n * N * . This implies ^ ( f X . ^ « 

4 Z l W t ] for every* n t N * , and consequently fX . ,4 &l . (Notice that by v i r 

tue of Th. 6 and P*op. 9 there is Z+tZtVMl = Z+tZtZ+lAm = Z+IM = 

= W t . ) Conversely let f X n ft « t for 0 * i 4 m . Then ^ ( f X ^ * 2 £ W t - ] . We 

can see that Z= O ^ n / f X i P * 2 l ^ H . Now i t is obvious that 

(,(Z)= Q j ' f W . m Specm 3C; fX . ,4 &t\ 

is a closed set in Specm % . This finishes the proof. 

Let us assume now that the manifold V is not compact. We denote by 3C 

the subset of % consisting of a l l vector fields with compact support. 36 is 
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obviously a free ideal in 38 • 

Theorem 11: Let V be a paracompact C°°-manifold which is not compact. 

Then the intersection of all free maximal ideals in X coincides with £ c • 

Before starting the proof of Th. 11 we recall some facts. A z-filter & 

on V is called prime z-filter if it has the following property: if Z',Z" c 

c V are two closed sets such that Z \j 1" 6 $ , then either Z'c $ or 

Z ' g 3T . Every z-ultrafilter is a prime z-filter (see £13). We call a z-

filter free or fixed according as the intersection of its members is empty or 

nonempty. Obviously an ideal X c % is free (fixed) if and only if the z-

filter JE** £ X 3 is free (fixed). A closed set ZcV is compact if and only if 

it belongs to no free z-filter (see 113). 

Proof of Th. 11: Let X t £ , and let 73fL c £ be a free maximal ideal% 

Further let A = £*"* t &2 . For any n 6 N* we denote 

suppnX=clv{P6V; jp(X)*0)r, 

where clv denotes the closure in V. Obviously 

suppnX uZn(X)=V € A. 

A is a z-ultrafilter, and therefore a prime z-filter. Consequently either 

supp X * A or 2S (X) e A . But supp X c supp X, and this implies that 

supp X is compact. Therefore supp X ^ A because A is a free z-filter. Thus 

we have 2L(X) € A for every n * N * , which means that X € 99t . We have pro

ved that 3£ is contained in the intersection of all free maximal ideals. 

Conversely let us assume that X t 3£ belongs to all free maximal ide

als. Then %JX) belongs to all free z-ultrafilters. If 2SQ(X)=V, then X=0 

and X & 3t . Thus let us assume that 2L(X) jL V. It suffices to prove that 

supp X is compact. Let us suppose that this is not the case. Then it is not 

difficult to see that there exists a closed noncompact set ZcV - J?0(X). (To 

see this it suffices for example to embed V into a euclidean space.) Because 

Z is not compact, there exists a free z-ultrafilter A such that Z € A . We 

get therefore 0=Z r\2L(X) t A , which is a contradiction. This contradicti

on shows that supp X is compact. We have proved that the intersection of all 

free maximal ideals is contained in X. 
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