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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

29,3 (1988) 

ARITHMETIC OF CUTS AND CUTS OF CLASSES 

Martin KALINA, Pavol ZLATOS 

Abstract; The arithmetical operations on natural numbers are extended 
to arbitrary cuts and their basic properties are studied. Then to every 
class its lower and upper cut apprehending the size of its subsets and super­
sets, respectively, is assigned. The cut arithmetic is applied to derive es­
timations for lower and upper cuts of classes obtained by various clas-theo-
retical constructions. 

Key words: Alternative set theory, cut, lower cut, upper cut, arithme­
tic, sum, product, additive, nearly equal, real class. 

Classification; 03E70, 03H13, 03H20 

The idea of apprehension of a class by means of the size of its subsets 

and supersets leading to the notions of its lower and upper cut originated 

from P. Vopenka some years ago. Some "cut-theoretical" considerations have 

already appeared implicitly in £u-V 1979} andjS-Ve 1981}. Both the cuts of a 

given class can serve as certain "measures" of its size, as well as the gap 

between them "measures" its vagueness or fuzzyness. The notions of lower (or 

i n t e r n a l ) and upper (or e x t e rna l ) cut of a class appeared for the first time 

in a paper of A. Tzouvaras tfz 1987], where he used them to develop a kind of 

measure theory for some classes in the alternative set theory (AST). Some of 

the results concerning the calculus of cuts which will be stated below are at 

least partly contained already in his paper, as well. 

The present paper begins with the study of cuts on the ordered class N 

of all natural numbers themselves. The linear order and the arithmetical ope­

rations as well as the equivalence of near equality are extended from N to 

the system of all cuts and some of their basic properties are listed. The e-

quivalence of near equality enables us to refine the arithmetical classifica­

tion of cuts by topological methods, and, as it is a congruence with respect 

to some of the operations, it leads to a factorization of the system of all 

cuts with considerably simplified arithmetic. 
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Only the reafte r the notions of lower and upper cut of a class are i n t r o ­

duced. The cut a r i thmet ic is then applied to der ive estimations fo r lower and 

upper cuts of classes obtained by var ious c lass - theo ret i ca l const ruct ions. 

This purpose still requires the introduction of certain infinitary generali­

zations of sums of cuts, even leading to a new type of cut product. Some of 

the h i the r to stated technical results are utilized in our subsequent paper, 

devoted to a more detailed study of cuts of real classes. But most of them 

will be used in our a r t i c l e s (in preparation) investigating Borel classes and 

developing a d i f f e ren t kind (from that of Tzouvaras) of measure theory in the 

AST by means of cuts. 

The authors express t he i r g rat i tude to K. Cuda, 3. Gur if ian, A. Sochor 

and P. Voperika fo r valuable discussions and helpful comments. 

1. Preliminaries. The reader is assumed to be f am i l i a r with the basic 

book [V3 on the AST. The notions, results and even conventions from it will 

be used f reely without any referring. Some modifications and supplements con­

cerning mainly the notation are stated below. 

1.1. The l e t t e rs a, b, c, d, e (possibly indexed) always denote natural 

numbers, i.e. the elements of the class N; k, m, n are reserved fo r finite 

natu rals , i.e. fo r the elements of the class FN. 

The equivalence of infinitesimal nearness on the class Q of all rational 

numbers is defined by 

p a ^ q * ( V n > 0 ) ( | p - q | < l / n ) 

fo r p ,q4Q. Further we put 

p<.q * ( p < q & p 4 » q ) , 
and 

p at q * (p=0=q v ( p * 0 * q & p / q ~ 1 ) , 

Obviously, both .•» and ~ are tf-equivalences on Q. The formula p — q is read 

"p is near ly equal to q". 

For q*Q we denote by LqJ the lower and by fql the upper integer part of 

q. 

The sum operator 2L is defined fo r each set function f such that 

rng(f) & Q by induction: 

Z0-O 
and • 

^(fv>4<q,x>l)=2f+q 

whenever x $ dom(f) and q*Q. 
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1.2. To avoid possible confusions, let us fix the following notation 

for the class-theoretical difference: 

X\Y={x*X;x 4 Y|. 

A class X will be called sharp if for each set u also u n X is a set. It 

can be easily seen that the system of all sharp classes is closed with resp­

ect to (finite) unions, intersections and class-theoretical differences. All 

set-theoretically defineable classes (Sd-classes, to be short) are sharp. 

Finally, we repeat some notions and results from £V 1979land £C-V 19792 

introducing some minor notational changes. 

For each set w the basic equivalence E is defined as follows: 

< u , v > i E iff for every set-theoretical formula y(x,y) of the language 

FL it holds o 

<y (u,w) m cy (v,w). 

1.2.1. Learna. (a) E is an indiscernibility equivalence for each w. 

(b) Let Y be a figure in the indiscernibility equivalence E and«y(x,X) 

be a normal formula of the language FL . Then «fx; ̂ (x,Y)} is a figure in E -

too. 

(c) For every indiscernibility equivalence R there is a w such that 

E W S R -

A class X is called real if there is an indiscernibility equivalence R 

such that X is a figure in R, i.e. X=R"X. From 1.2.1 (c) it follows that X is 

a real class iff X is a figure in E for some w. 

One fact which has to be kept in mind is that the system of all real 

classes is closed with respect to countable unions and intersections as well 

as with respect to definitions by normal formulas of the language FL.,. In 

particular, every Sd-class is real. 

2. Cuts and their arithmetic 

2.1. Order and operations on cuts. A class A will be called a cut if 

A S N and 

(Va,b)(a*bg.bcA«-*a«A). 

Thus cuts are exactly the transitive subclasses of N. 

In particular, all the natural numbers and the class N are cuts. An ex­

ample of a cut which neither belongs nor is equal to N is the class FN. 

Throughout the whole paper the characters A, B, C, D (possibly indexed) 

always denote cuts. 
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Obviously, cuts are linearly ordered by inclusion in a way that extends 
the usual order of the class N. That is why we will write sometimes A -s B in­
stead of A S B and A < B instead of A c B. 

The following lemma is a trivial consequence of the linear order of cuts 
by inclusion. 

2.1.1. Lemta. Let 171 be a (not necessarily codable) system of cuts. 

Then Wtfl and f \ W are cuts, too. 

Similarly, the arithmetical operations, namely the successor, the addi­
tion, subtraction, multiplication and division, can be extended from the na­
turals to all cuts, and, except for the successor, even in two different ways: 

A'= «£a;a-*A$ =(A v/IAjViN (the successor of A); 

A t B= 4 c;(3aft A',b*B')(c< a+b)} (the internal sum of A, B); 

A + B= «(c;(Va 4 A,b # B)(c<a+b)j (the external sum of A, B); 

A • B= <Cc;(Vb4B')(c+beA)} (the internal difference of A, B); 

A - B={c;(.3 b 4B)(c+beA)$ (the external difference of A, B); 

A t B={c;(Ja e A',b6 B')(c< ab)f (the internal product of A, B); 

A i B=4c;(Va + A,b ̂ B)(c<ab)i (the external product of A, B); 

AJ-*B= -ic;(Vb€B')(cb6A)$ (the internal quotient of A, B); 

r <c;(3b4 BXcbCA)} if B * N, 
A^B=i 0 if B=N, A=0, 

I I if B=N, A 4*0 
(the external quotient of A, B). 

Obviously, both types of sum and product satisfy the commutative and as­
sociative law, 1 is distributive with respect to + and so is J with resp­
ect to 4 . Sums and products are isotone; differences and quotients are iso-
tone in the first and antitone in the second variable. 

Note that all natural numbers a, b satisfy 

a'=a+l, 

a + b=a + b=a+b, 

a T b=a «*- b=max {0,a-b$, 

a 1 b=a i b=ab, 

r ra/bl if b 4-0, 

a*/b=a/b= 4 N if b=0-4»a, 
I 0 if b=0=a. 
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Also, if a*N, then fo r each A the following identities can be easily 

ver i f ied: 

a + A=a + A, 

a • A=a - A , A T a=A -*• a, 

a T A=a . A, 

ai-#A=a/*A, A/a=A/*a. 

Thus we can denote a+A, a-A,A-a, a.A, a/A, A/a, respectively, the common 

value of the corresponding operations . The possible ambiguity is excluded by 

the agreement that a/b always denotes the rational number a/b, and will be 

not used fo r its upper integer part fa/b] =a/b=a/*b. 

More generally, we will write A+B, A-B, A.B, A/B, respectively, whenever 

it is assured (with the mentioned exception) that the i n te rna l and external 

version of the corresponding operation coincide. * 

A cut A will be called successive (additive, multiplicative), if A=A 

(A+A=A, A.A=A, respectively). (Note that A + A=A + A, AtA=AAA, and also 

A=A +1 hold fo r each A.) 

The only nonsuccessive cuts are the natu rals ; they will be also called 

p r i nc ipa l cuts, i.e. the successive cuts are exactly the nonpr incipal ones. 

According to the axiom of induction, the only se t - t heo re t i ca l l y definable 

successive cut is the class N. This has a t r i v i a l but rather important conse­

quence . 

2.1.2. Proposition. Let A be a cut and X fi N be an Sd-class. 

(a) I f A +N and A ' s X, then X \ A + 0 . 

(b) I f N\ A fi X, then X n A ' + 0 . 

Proof. If A ^ N, then it is t r i v i a l . Otherwise just note that 

a' n(N\a)=4.a\ f o r each a. 

0 is an additive cut; any other additive cut is successive. S im i l a r l y , 
0 and 1 are multiplicative cuts; any other multiplicative cut is successive 
and any multiplicative cut except fo r 1 is additive. 

2.1.3. Exaaple. Every cut A satisfies A ---•A=0. On the other hand, if A 
is additive, then A -r A=A. Thus A -r A +A •** A fo r every additive cut A =+ 0. 

S im i l a r l y , fo r each A 4- 0 it holds A/*A=1. On the other hand, if A is 
multiplicative, then A./A--A. Thus A / A -^Ay*A fo r every multiplicative cut 
A 4* 0,1. More gene ral ly , fo r every successive cut A it holds 1*A*/A, hence 
A/A -*-A/*A. 
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Further, if A is an additive cut and 0<A<a, then (a-A) * A=a-A -f a+A= 
=(a-A"i+ A. 

Simi la r l y , if A is multiplicative and K A < a , then (a/A)1A=a/A+a.A= 

=(a/A)i A. 

We record without proof the following inequalities holding fo r any A, B: 

A + B£A + B, A-*- B--A T B , 

A1B4AJB, A^BAA-^B, 

(A T B) + B*A.*(A + B ) T B, 

(A +# B) -s-B^A^(A^B) + B, 

(((.-WB)-1)1 B)+HrA£(At B) /B, 

(AJ B)/»B£A.i(A^B)i B. 

The following theorem and its co ro l la ry form just a s l i gh t extension of 
a result from [C-V 19791; that is why we state them without proo f . 

2.1.4. Theorem. Let A be a cut. Then A is e i the r a €-class or a reve­
aled class. 

2.1.5. Corollary. Let A be a cut. 

(a) If A is a real class, then A is e i the r a «f-class o r a jf-class. 

(b) If A is not real, then both A, N\A are revealed classes. 

2.1.4 and 2.1.5 indicate that all the cuts are in some sense "well beha­
ved" classes. Also the following theorem becomes of more in te rest in view of 
the results just stated. 

2.1.6. Theorem. Let A, B be cuts. 

(a) Assume that e i the r A is a revealed class and B is a it -class, or 

N\A is a revealed class and B is a fT-class (or vice versa). Then 

A + B=A + B and At B=AJB. 

(b) Assume that e i the r A is a revealed class and B is a 6*-class, or 

N \ A is a revealed class and B is a .rf-class (or vice ve rsa). Then, except 

fo r the case A=B=N, 

A T B=A -*>B and A/'B=A/IB. 

Proof. Since the proofs of all par t icu la r cases follow essentially the 

same pat te rn , we will present only one of them. So assume that A is revealed 

and B is a jf-class. We are going to show that A + B4A t B. If B=-N, then it 
is t r i v i a l . Otherwise B can be represented in the form B= O-C b ;n 6 FN$ for 
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some sequence -\bn;a^ FN J such that b ,«• bn for each n . Let cfeA + B. Then 

( V n X V a 4 A)(c<a+bn). By 2.1.2 (a) there is a sequence -ian;nfiFN J such 

that a £ A and c< a +b for each n. Obviously, the class A' is revealed, as 

well. Hence prolonging the sequences {a ;ncFN}, ib ;nfiFN} we can find an 

a t A' and a b such that bisb for each n, i.e. btB', satisfying c«ca+b. 

Consequently, cCA + B. 

2.2. The congruence of near equality. Restricting the equivalence of 

near equality s£ from Q to N, a ^-equivalence on the class N is obtained. In 
particular, m & n iff m=n for m, n*FN. 

Unles otherwise stated, the notion of monad of a point a«N, as well as 

those of figure, interior and closure of a class X & N are related to the or -

equivalence £S on N. To fix the notation we put 

mon(a)= {b;b---a}, 

fig(X)=4b;(3c*X)(b-*c)}, 

int(X)=-tb;(3Y)(Sd(Y)8c mon(b)s Y«X)J, 

cl(X)= <b;(VY)(Sd(Y) A mon(b)&Y«* YaX4-0)J. 

Clearly, the operators int and cl share all the formal properties of in­

terior and closure operators in classical topological spaces. Thus they can 

be used to define the notions of open, closed and clopen class in the common 

way. They always will refer to the <# -equivalence 

2.2.1. Lemma. For every cut A the classes fig(A), int(A), cl(A) are al­

so cuts, and it holds 

(a) int(A)£AAfig(A)*cl(A), 

(b) int(cl(A))=int(A), 

(c) cl(int(A))=cl(A). 

Proof. Since the first assertion and (a) are trivial, we will deal only 

with (b) and (c). It is routine to check that 

int(A)=4b;(3n>0)(fb(l+l/n)I& A)J, 

cl(A)= tb;(Vn>0)(rb(l-l/n)l < A)*. 

Now, using the inequality (l+l/n)(l-l/n) < 1 holding for each n > 0 , one can 

immediately verify that 

int(cl(A)).fcA*cl(int(A)). 
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Applying int to the first and cl to the second inequality, the required con­

clusions follow. 

As it can be easily seen now, for each a ^ FN it holds 

mon(a)=cl(a) \ int(a), 

fig(a)=cl(a). 

2.2.2. Theorem. Let A, B be cuts. Then 

int(A)=int(B) iff cl(A)=cl(B). 

Proof. If int(A)=int(B), then, by 2.2.1 (c), cl(A)=cl(int(A))= 

=cl(int(B))=cl(B), and vice versa by 2.2.1 (b). 

The cuts A, B will be called nearly equal, notation A — B , if int(A)= 

=int(B) (and, of course, cl(a)=cl(B)). Obviously, a,bftN are nearly equal as 

cuts iff they are nearly equal as natural numbers. 

Further we put 

A 6 B iff A<B or A-*B 

(A is less or nearly equal to B). 

As one can easily verify, s& is an equivalence and ̂ 6 is a preorder on 

cuts, and A at B is equivalent to A 6 B & B ^ A. Thus k& B & C and A--* C imp­

ly A fit B «-* C. Finally, either A £s B or B £ A always holds. In other words, 

denoting byj^ the (not codable) system of all cuts and factorizing it with 

respect to the equivalence OL , i.e. regarding --S as the equality, the fac­

tor system X /*-* becomes linearly ordered by & . 

A trivial consequence is the following: 

2.2.3. Lemma. Let W , 71 be two (not necessarily codable) systems of 

cuts such that * 

(yA «m)( JB* JtXA*B) 
and 

(yB %1tl X3A * W)(B£ A). 
Then 

uwfit ua t . 

2.2.*. Theorem. Let A, B, C, D be cuts. If A--* C and B -=- D, then 

A + Br<C t 0, A + B -*C I D, 
A1 B - - C 1 0 , A i B«-Ci D. 
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Proof. We leave to the reader the straightforward verification of the 

following equalities, from which the conclusions of the theorem immediately 

follow: 

int(A) + int(B)=.int(A + B)„ 

cl(A) + cl(B)=cl(A I B), 

int(A) 1 int(B)=int(A 1 B), 

cKA) J cl(B)=cl(Aj B). 

In other words, &• is a congruence of the algebra (X » + » + » ̂  » i > * 

Hence also the factor system <£ I CL can be endowed with the corresponding 

operations in the obvious and natural way (cf. e.g. £Gt 19681). 

2.2.5. Remark. Analogous results can be established for both the divi­

sions / and A , as well. However, we will not utilize them. On the contra-* 

ry, neither the internal nor the external difference preserves the near equa­

lity of cuts. Indeed, for a 1 FN it holds 

int(a)=a-a/FN, 

cl(a)=a+a/FN 

and 

int(a)=cl(a). 

But, as one can easily verify, 

int(a) v cl(a)=int(a) -*• cl(a)=0, 

cKa) -r int(a)=cl(a) •*- int(a)=a/FN. 

2.3. Classification of cuts. The dichotomic partition of all cuts into 

the additive and nonadditive ones will become of substantial significance 

from the measure-theoretic point of view. Now, we are going to refine this 

classification using topological methods based on the .Jf-equivalence -* on N. 

Some of the results stated below could be also proved by another way 

round , using the fact that the sf -equivalence s& is compact on the class 
a.FN\.a/FN for each a « N and referring to some results concerning indiscer-

nibility equivalences from tVl. However, we prefer to give more direct and 

elementary proofs. 

For each cut A we can form the class of rational numbers 

Q(A)={a/b;aCA'8c 0 i-bcNN.A*. 
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Since for each q«Q(A) it holds 0-& q 6 1 , the class Q(A) determines a single 
real number 

«A=sup Q(A) 

for A % N. For A=N, in which case Q(N)=0, we put 

v°-
Obviously, Q(0)= \Q\, hence 8Q=0. But for any a % 0 there is a / a = l « Q ( a ) , 

hence 8 =1. Conversely, if lc Q(A)> then A is a natural number. 

Now, we turn our attention to nonprincipal cuts. 

2.3.1. Theorem. For every nonprincipal cut A the following conditions 

are equivalent: 

(a) A is additive; 

(b) «A=0; 

(c) A is clopen. 

Proof, (a ) - - f r ( b ) : If A=N, then 8.=0 by the definition. Otherwise, for 

a€ A=A', b + A it holds na< b for each n. Consequently a/b -£. 0 and fl.=0. 

(b) «-• ( c ) : N obviously is clopen. Otherwise, &.=0 means that a/b-a 0 

for a«A, b^A. Hence in t (A )=A=cl (A ) , so that A is clopen. 
(c) sa^ ( a ) : Assume that A is not additive, i.e. there is an a« A such 

that 2a «(. A. We will proceed by induction using the well known idea of Can­

tor. We put bQ=a, cQ=2a, dR= r ( b n + c n ) / 2 l and bn+1=dn, cn+1=cn if d ^ A , or 
Dn+l=Dn* cn+l=0n ** °n ̂  *' Tnen i D

n»
n € FN}, {c ;n« FN are two sequences of 

natural numbers such that for each n it holds b * b ,-*A<c . &, c and , n n+1 n+1 n 
( c n - b n ) / a A 2 . Then B= U*b n;n«FN|, C=fUc n;n«FNi are cuts such that 

B £ A -ft C and B =t- C. But from the construction it follows that i n t (A ) £ B and 
C £ c l ( A ) , therefore A is not clopen. 

However, note that also each nc FN is clopen, though, except for n=0, 
not additive and 8 =1. 

2.3.2. Theorem. A cut A is not additive iff 8.=1. 

Proof. It is enough to show that for each nonprincipal, nonadditive, 
proper cut A it holds 8Q=1. Assume that 8 A * 1 , i.e. there is an m >0 such 
that a/b <l-l/m for all ac A, b ̂  A. Then c l ( A ) n c l ( N \ A)=0, consequently A 
is clopen and, by the preceding theorem, additive - a contradiction. 
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Thus #. takes only two values - 0 and 1. 

We proceed by classifying the nonadditive cuts. 

2.3.3. Theorem. For each cut A the following conditions are equival­

ent: 

(a) A=int(a) for some a^cFN; 

(b) A is a nonadditive tf-cut and 

(VqcQ(A))(q<H); 

(c) A is open but not closed. 

Proof. The implications (a) •-«• (b) «--• (c) are trivial. In order to show 

(c) -a^ (a) it suffices to realize that each accl(A)\int(A) works. 

The next theorem follows by a dual argument. 

2.3.4. Theorem. For each cut A the following conditions are equivalent: 

(a) A=cl(a) for some a + N; 

(b) A is a nonadditive #-cut and 

(VqCQ(A))(q<-31); 

(c) A is closed but not open. 

2.3.5. Theorem. For each cut A the following conditions are equivalent: 

(a) int(a)< A4cl(a) for some a { N; 

(b) A is nonadditive and not a figure in s£ ; 

(c) A £ FN and Gq€Q(A))(q -il); 

(d) A is neither open nor closed. 

Proof is trivial. 

Theorems 2.3.1 - 5 yield some immediate corollaries. 

2.3.6. Corollary. Each cut A is either additive or nearly equal to a 

natural number, but, with the exception of A=0, not both. 

2.3.7. Corollary. The only nonadditive cuts which are figures in ££ 

are the positive finite naturals and cuts of form int(a) or cl(a) for a 4 FN. 

Hence, they all are €- or Jf -classes. 
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2.3.8. Corollary. Let A be a nonreal cut. Then A is a f igu re in d, iff 

A is additive. 

For the completeness' sake we state without proof a result due to A. So-

chortS 1988 J. 

2.3.9, Theore*. Every real cut A satisfies exactly one of the following 

four conditions: 

(a) A«N; 

(b) ^is additive and A 4-0: 

(c) A=a-B for some a 4 FN and some additive cut B such that 0< B<a; 

(d) A=a+B for some a <$. FN and some additive cut B such that 0<B-ca. 

Besides, by t r a n s f i n i t e induction over the class IL , Sochor has const­

ructed a nonreal cut omitting each of the conditions (a) - ( d ) . 

We close this section, as well as the whole paragraph, with an applica­

tion of its results to the addition of cuts. 

2.3.10. Theorem. Let A, B be cuts. Then A + B a A + B. 

Proof. If both A, B are additive, then, as easily seen, A + B=AuB= 

=A +1 B. If one of the cuts, say A, is additive and the other, i.e. B, is not, 

then there are two possibilities. If B & A, then obviously A + B=A +" B=A. If 

A < B, let us choose a b such that B --* b. Then A -» b/FN and 

int(b) 6 B 6 A + B A A + B 6 b/FN + B=cl(b), hence A + B s-- A + B. Finally, if 

both A, B are nonadditive, and A et a, B -3* b, then A + B — a+b — A + B obvious­

ly holds. 

As we have just proved, both the operations induced by + and +" in the 

facto r system J/'at coincide. This justifies the use of the common symbol 

+ when computing the sum of two cuts up the near equality £& . In order to 

find a representation of the result, any of the operations + , + can be used. 

Contrar iwise, an analogous result fo r the multiplication does not hold. Name­

ly, fo r each a ̂  FN it holds 

(a/FN) t FN=a/FN and (a/FN) 1 FN=a.FN. 

The results are even different additive cuts, hence they are very far from 

being near ly equal. 
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3. Cuts of classes 

3.1. Basic estimations. Each class X determines in a natural way two 

cuts - the lower cut of X, 

X=<a;Ou)(u S X f c a A u ) } , 

and the upper cut of X, 

7= ia;(Yu)(X S u t ^ a 3 u)}. 

Clearly, for any X both X. and T are cuts, and X. 4 T. The meaning of the 

lower and upper cut of a class X becomes perhaps more transparent from the 

successor of the former 

X' = <a;(Ju ) (u SXfcadu)}. 

and the complement of the latter 

N\7= *a ; ( lu ) (X * u * a & u ) J . 

The class X is said to have a cut if jjfc-7: we denote by |x| the common 

value of X and T i n this . Thus the expression |x| is defined and will be u-

sed only for classes X having a cut. 

Some simple properties of cuts can be verified immediately; we list 

them consecutively without formulating them as theorems. 

For all X, Y from X fi Y it follows X &± and T & Y . 

If X is a real class, then owing to 1.2.1 (b ) both X, T a r e real clas­

ses, hence by 2.1.5 (a ) each of them is a tf-class or a tf-class. 

Obviously, every set u has a cut and |u| is the number of elements of u, 

i.e. the unique natural number a satisfying a £ u. Conversely, if for a class 

X either XcN or 7*N holds, then X is a set. 

X is a semiset iff T<N. 

Every Sd-class X has a cut, and it is a proper class iff |x|=N. 

Finally, let us note that each cut A has a cut and |A|=A. 

The classes X, Y are said to have the same cuts if tt=I and T=T. 

The following lemma is trivial. 

3.1.1. Lome. If F is a one-one set-theoretically definable function, 

then for each X & dom(F) the classes X, F"X have the same cuts. 

In particular, for every relation R the classes R, R~ have the same 

cuts. 

3.1.2. Proposition. Let F be an Sd-function and X be a class. Then 

(a) rx.&7, 
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(b) if moreover X c dom(F) and F is one-one on X, then also X £ £"X. 

Proof, (a) Let ac^X. Then for each u 2 X it holds F"X S F"u and 

a $ F"u -̂  u. Hence a cX*. 

(b) Let acX and ufiX be such that a -<]u. Then a $ u »F"u £ F"X, hen­

ce a€F"X. 

3.1.3. Corollary, (a) Let R be a relation. Then dom(Rl -$• F. 

(b) Let G be a function. Then G £ dom(G). 

Proof. Oust put F(x,y)=y and apply 3.1.2 to the classes F"R and F"G. 

Given a class X, the cut 7 V X will be called the gap of X. 

3.1.4. Lenta. For each class X it holds 

7 T X={c;(Vu,v)(u fi X fi v-^ c ->cv\u)t. 

Proof. Obviously, ccT-r X iff for each u fi X it holds c+|u|*"x, i.e. 

iff for any u, v the inclusions u S X g v imply c+|u|<|v|. 

3.1.5. Proposition. Let F be an Sd-function and X be a class. Then 

F̂ X r F " X | X r X , 

Proof. Let c*F"X y F"X. Then for any u, v such that u £ X Sr v i t 

holds F"u Sk F"X £ F"v, hence c ^ F"v\F"u S F"(v\u) % v \ u . 

Consequently, C 1 T 7 X . 

3.1.6. Proposition. For a l l classes X, Y the following assertions hold: 

(a) X ft Y=0«» X + Y * X uY ; 

(b) X~uY £ 7 + Y; 

(c) if there is a sharp class S such that XSS, Y n S=0, then 

X u Y=X + Y and F U " Y = X + 7. 

Proof, (a) is completely trivial. 

(b) Let c*X u i. Then for any u 2 X, v 2 Y it holds c-< u u vstj |u| + 

+ |v|. Hence c c X * T. 

(c) Owing to (a), (b), each equality requires the proof only for one 

inclusion. Instead of X u Y A X + Y, we will show (X u Y) '*(X + Y)', which, 

obviously, is equivalent to it. So let c*(X u Y)'. Then there is « w S X u 

u Y such that c A w. It is enough to put u=w n S & Y, v=w\S fi Y, in order 
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to see that c= |u | +1 v j e (X. + _Y)'. 
The proof of >f + 7 £ X o V is quite analogous. 

3.1.7. Proposition. Let X, Y be classes such that X £ Y. Then 

(a) Y-a-7.6 Y\X 6 7 \ T £ 7 T & 

(b) if X is a set, then Y\X=Y-]x| and 7\X=Y-|x|; 

(c) if Y is a set, then Y\X=|YlT and 7 \ X = | Y V X . 

Proof, (a ) Let c*Y-s-T, Then there are u, v such that X £ u, v £ Y 
and c+|u|< |v|. Then c<|v|-|u| £ |v\u| and v\ u £ Y\ X. Hence ccY\X. Now, 
assume that c 4 Y r X. Then there are u, v such that u £ X, Y £ v and c+|u| = 
= |v|. Hence Y \ X £ v \ u & c , therefore c ^ Y \ T . 

Owing to ( a ) , it suffices to prove only one inclusion in each of the 
remaining particular cases. Since the proofs of ( b ) , (c ) are very similar, we* 
will show only ( c ) , which is more important and a bit less easy. 

(c ) Let cc Y\ X and u £ Y \X be such that c-^ u. Then X £ Y\u and c+ 
+ |Y\u|< c+|Y|-c=|Y4. Hence cs|Y|-X. NOW, let cc|Y|-X. Then for each 
v 2 Y\X it holds Y\ v £ X, therefore c+|Y\v| < |Y| and c - ? Y n V S V. Hence 
ccTvx, 

The assertion ( c ) is a kind of duality enabling us to transform some 
questions concerning upper cuts of semisets to analogous ones concerning 
their lower, and conversely. 

3.1.8. Proposition. For all classes X, Y the following assertions hold: 

(a) X*Y=X t Y; 

(b) X x Y c X l Y . 

Proof, (a) For cc Xx Y there is a set w fi X xY such that c-V w. Then 

rng(w) S X, dom(w) £ Y and c 3f w £ rng(w)xdom(w) £ XxY. Hence ccX f I -

Conversely, i f ccX. t Y, then c< |u| . |v| for some u £ X, v £ Y, hence c 3f u x 

x v £ XxY and ccXxY. 

(b) Let ccXxY. Then for a l l U2 X, v2 Y i t holds XxYfi uxv, hence 

c< |u*v| = |u| . |v|. Consequently, cclT 1 Y. 

However, as we shall see later, the external product Y i 7 can be very 

far from both the cuts 5T t 7 and XxY, even i f X, Y are cuts themselves. Thus 

just in the opposite to the situation with the union of disjoint classes X, Y, 

where 

-1 t I ^ X gY 6 TTTY £ T + 7, 
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so that jjC-sTand £ss T imply the near equality 

* t Y--&X u Y a TTTYa-X** ?, 

the estimation given in (b) is rather loose. 

3.2. Infinitary sums of cuts and the subexternal product. In order to be 

able to grasp also the cuts of unions of some codable infinite systems of 

classes in terms of cuts of their members, we generalize the internal and ex­

ternal sum of two cuts to certain infinitary operations. 

From 3.1.6 (c) it follows that 

A + B=(A *(Ql) o (B Kill) 

and *_.., 

A * B=(AKiO|)u (BxflJ) 

for any A, B. A straightforward generalization leads to the following defini­

tions of the internal and external sum, respectively, of a codable system 

{A ;ycY} of cuts: 

21{Ay;ycY}= U i A y x i y } ; y c Y i , 

i { A y ; y € Y } = U{Ay>ciyi;ycY}. 

Obviously, £ i A 0 , A 1 i =AQ + \ and Z iA Q ,A 1 } =AQ -f ^ for any AQ, A r 

The meaning of our definitions can be visualized by the following: 

3.2.1. Proposition. LetiA ;ycY} be a system of cuts and aeN. Put YQ= 

= fy€Y;A y + 0|. Then 

(a) a c Z i A ;y€Y| i f f there is a function f such that dom(f) & Y, 
(Vy€dom(f))(f(y)cAy ) and a < - £ f . 

(b) a c Z i A .ycY$ i f f for each function f from YQ & dom(f), rng(f )s 

£N and (Vy cYQ)(f(y) f Ay) i t follows a< 2s f. 

Proof. Let us denote K= UiA * iy};yc Yj. Then 2 i A ;yc Y} =K and 

±{Ay;ycY^=T. 

(a) Let acK. Then a.$f u for some u fi K. Then the function f, such that 
dom(f)=dom(u) e Y and f(y)=|u"iy}| cAy for ycdom(f), satisfies a< | u | = ^ f . 
Conversely, let a < 2 f for some function f satisfying the conditions reuir-
ed. Then for the set 

u= tfif(y)*iyi;ycdom(f)} £ K 

also a<2Tf=|u| holds, i .e. acK. 
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(b) Let acTT. Take an f satisfying the stated conditions. Then u= 

= Uif(y)x iyl;yedom(f)i2K, hence a<|u|=-Sf. Conversely, let a 4 $ f for 

every such an f. Take a u2K. Again, putting dom(f)=dom(u)3Y and f(y)= 

= |u'*iyi| for ycdom(f), we obtain f(y) ̂  A for ycY Q. Hence a<2Ef=|u|, i.e. 

a£K. 

3.2.2. Theorew. Let R be a relation, Y=dom(R). Then 

(a) R £ £ i j T i y i ; y 6 Y j , 

(b) Z C F f y f ; y « Y U ^ . 

Proof. Let us denote Ay=R"jyt, B -^FlyJ, K= U iA y * iy$ ;ycYj , 
M= UiB y xiy} ;ycY} . 

(a) Let acR. Then aJ;u for some ufiR. Vte put v= Ui |u"iy} | * l y } ; 
ycdom(u)|SK. Then a^Cu^v , hence acK. 

(b) Let a*M. Take a u2R and put v= tJ t |u" iy |U iy t ;y * dom(u)} 2 M, 
then a-̂ C v & u , hence a elf. 

For relations with countable domain even more can be proved. 

3.2.3. Theorem. Let R be a relation and Y=dom(R) be a countable class. 

Then 

(a) R = - f i £ i y j ; y * Y | , 

(b) l f = ± i F i y | ; y * Y * . 

3.2.3 is in fact a special case of the following generalization of 3.1.6. 

3.2.4. Theorea. Let iX ;n*FN$be a sequence of classes, and X= 
= UiXn;nCFNj. 

(a) I f XmoXn=0 for m * n, then X i Xn;nc FN \ .4£. 

(b) Y-SSiX^ncFN*. ~~ 

(c) If there is a sequence iSn;n«FN| of sharp classes such that S A S R = 

=0 and X nSS n for all m4»n, then 

and 

X=S.ІX
n
;П4FNÎ 

5Г=ŻiX^;ncFNÎ. 

Proof. Let us denote K= UiX *in};nc FN}, M= UiX n*ini;n*FN*. 

(a) Let acK. Then a-^ u for some uSK. Then dom(u)-t FN is finite so 
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that we can find a set v £ X such that v &u"fnl for each ncdom(u). Since 

v r> v =0 for m, nc dom(u), m + n, the set v= U{ v :n*dom(u)$ c x satisfies 

a ̂  u A v. Hence a&X. 

(b) Let ac7. Take a u 2 M. Since those n for which X =0 do not mat­

ter, we can assume without loss of generality that FN£ dom(u). Then for each 

n c FN there is a v 2 X such that v A u"{n$. By the axiom of prolongation 

there is a function g such that FN £ dom(g) £ dom(u), g(n)=v for each n«FN 

and g(x)Au"{x$ for each xcdom(g). We put v= U{g(x)x*xlr;x Cdom(g)} 2 X. 

Then a Of v % u, hence a c M*. 

(c) According to (a), (b), we have to prove only one inclusion in each 

case. So let acX. Then a ^ u for some u £ X. We put u =unS s X for each 
— r n n n 

n. Then u n u =0 for m4-n, and u= Uiu ;ncFN|. There has to be an m such 
that u=uQv...uum. Then a<|u|= |u Q |+ . . .+ |u j , hence a*K. Now, le t ae M. Ta­
ke a u 2 X and put u =u n S 2 X . By the axiom of prolongation there is a 
function g such that FN S dom(g), g(n)=u for each n, g(x) n g(y)=0 for a l l 

x,ycdom(g), x-f y, and U-tg(x) ;xc dom(g)} fi u. We put v= U{ |g(x) |x{x$; 
xcdom(g)$2 M. Then a^Cvs.Ju, hence ac>T. 

Let A be a cut and iA jyeYj be the constant system of cuts such that 
A =A for each yCY. We put 

AT Y= £ i A y ; y c Y } 

(the internal.product of A, Y), 

and 

A © Y=iiA y;yC Yj 

(the subexternal product of A, Y). 

By the definition A 1 Y=Ax,Y. Therefore our notation is justified by 

3.1.8. Summarizing: 

3.2.5. Theorem. For arbitrary classes X, Y it holds 

XxY=X t I=X1Y. 

Proof. X 1 Y=X*Y=X 1 Y=X 1 Y=XxY. 

However, the subexternal product still does not behave so smoothly. Let 

us start with some trivial observstions. 

For any cuts A, B it follows directly from the definition A*B=A©B. 

Now, 3.L8 yields l 

A 1 B.6A0B-&A I B, 
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Hence 2.1.6 (a), (b) give also some sufficient conditions for the coincidence 

of the subexternal product 0 both with 1 and 1 . In such a case A . B de­

notes any of A 1 B, A 0 B or A i B. 

3.LI implies the commutativity and associativity of the operation 0 on 

cuts. Then 3.1.1 and 3.1.6 (c) suffice to establish its distributivity with 

respect to the external sum + . 

3.2.6. Example. If a $ FN, then int(a)x cl(a) -» int(a)*cl(a). Indeed, 

a simple computation gives 

int(a)*cl(a)=(a-a/FN) 1 (a+a/FN)= 

=(a-a/FN)l a + (a-a/FN) 1 (a/FN)=(a2-a2/FN) + a2/FN=int(a2), 

int(a)xcl(a)=(a-a/FN)0 (a+a/FN)= 

=(a-a/FN)0a + (a-a/FN) <5>(a/FN)=(a2-a2/FN) + a2/FN=cl(a2). 

3.2.7. Theorea. Let A, B, C, D be cuts such that A-=--C and B ̂ 0 . Then 

A0B-*C0D. 

Proof. According to the commutativity of © , it is enough to consider 

the case B=D. If A=C, there is nothing to prove, so we can exclude the case 

of additivity of A and/or C. Let a satisfy A a - a ^ C . If B is additive, then 

obviously A <2> B=a • B=C <5>B. Otherwise, B -=* b for some b. Then A © B ̂ a • b --* 

-*C0B. 

Thus the equivalence ---is a congruence with respect to the operation 0 

on Jj , as well. 

3.2.8. Theorea. If A, B are cuts and not both of them are additive and 

nonreal, then 

A 0 B ^ A 1 B. 

Proof. It suffices to consider the following particular cases: 

(a) A, B are not additive, A -* a, B -=- b. Then A 0 B -* a-b -*A 1 B. 

(b) A is additive and B & b is not. Then A 0 B=A. b=A 1 B. 

(c) A, B are additive and either exactly one of them is not real, or 

both are € -classes, or both are ff -classes. Then A 1 B=AO B=A i B fol­

lows from 2.1.5 (b) and 2.L6 (a). 

(d) A, B are additive cuts, A is a of-class and B is a € -class. Then 

the conclusion follows from the following more general result. 
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3.2.9. Lome. Let A be an additive cut and B a 6f-cut. Then 

A©B=A t B. 

Proof. Excluding the trivial case BCN or B=N, B can be written in the 

form B= U-ib ;n*FN$ for some sequence of naturals such that b =0 and b<b , 

for each n. It suffices to show A ® B4A 1 B. Let c $ A T B. Then 

( Va i A ' ) ( V n ) ( a • b n + 1 - « c ) . By 2.L2 ( a ) , for each n there is a dR + A such 

that d • b i-»c. As A is additive, for each n even Ld /2 J 4 A- By the ax­

iom of prolongation there are functions g, h and an e c N \ FN such that 

dom(g)=e+l, dom(h)=e, g(n)=bn, h(n)= Ldn/2n+1J for each n, and 2^+1* h(j) • 

• g(j+l)-Sc for each j<e. A function f with domain g(e) will be defined by 

f(i)=h(i), where i denotes the unique natural number j<e such that g ( j ) . £ i < 

*9(j+D« Obviously, B k dom(f) and f(i) ̂  A for iCB. A simple computation 

gives 

2f= Z h(j)(g(-j+l)-g(j)) £ Z h(j) g(j+l) k £ c/2j+1< c. 
j<e j<e j<e 

Owing to 3.2.1 (b), c ^ A O B . 

The question whether there are two additive nonreal cuts A, B such that 

A O B 4 A 1 B, i.e. A © B 4* A 1 B, remains open. 

Nevertheless, restricting our attention to the (codable) system Jf of 

all real cuts (i.e. to €- and uf-cuts only), 

<s£0> t » + » * » * > * »i»®»*^»^> becomes a subalgebra of 

<«C* t » * » • » * , 1 , i , <S> , /, r1 ̂  and si is still a congruence of 

(j£Qi i , * »1 ,i » © } . Excluding the operation i , which will play only 

an auxiliar role in what follows, not only + and + , but also 1 , ® coin­

cide on X Q / — . In other words, the factor algebra (£', + , + , 1 , ® ? /-̂  

can be regarded as endowed solely with two basic operations + (corresponding 

to + and + ) and • (corresponding to 1 and 0 ), i.e. as KXJ^i + ,•/''• 

3.2.10. Example. As We have already seen, 

(a/FN) 1 FN=a/FN 4» (a/FN) i FN 

for a 4 FN. But from 3.2.9 it follows that 

(a/FN)0 FN=(a/FN) 1 FN=a/FN. 

Hence the class (a/FN)x FN has a cut, namely a/FN, not coinciding with the 

estimation a • FN arising from 3.LB (b). 

3.2.11. Theorem. Let {A ;nc FNl, ib ;n«FNf be two sequences of cuts 

such that A„--* B„ for each n. Then n n 
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(a) X 4An;n*FNS<-s_f *B_;n*FNi, 

(b) ± i A ^ n c F N i ^ - S 4Bn;n4FN}. 

Proof, (a) Obviously, 

S U n ; n 4 F N i = U-1A.+ . . . + An;n€FNi, 

and analogously for the other sequence. By 2.2.4 

Art + ... + A_=* B_ + ... + B„ o • • n o * • n 

for each n. The conclusion follows from 2.2.3. 

(b) is a consequence of (a) and of the following result. 

3.2.12. Theorea. Let iA ;n€ FN| be a sequence of cuts. Then 

2 tA ïП€FNÍ«-t ÍAn;ncFN}. 

Proof. Let us denote B= 2 iAn;nc FN}, C= 2 -Un;n€FN|. If B is addi­

tive, then, as for each n obviously A «-» B holds, using 3.2.9 we obtain B.£C£ 
£ B 0 F N = B . If B-*b is not additive, we put X={ncFN; AR is additive>. Then, 

obviously, 

B= £ { An;n€Xi + 2 iAn;n€ FN\ Xf, 

C= ̂ -^An ;n6Xl + £ iAn;nCFN^X|. 

As both the first summands are additive, it suffices to prove the theorem un­

der the assumption that A -* a is not additive for each n. It is just enough 

to show that C -4cl(b). Let c^tcl(b). Then there is a kc FN, k>0, such that 

b(l+l/k)<c. Without loss of generality we can assume that a +...+an -* b for 

each n (cl(b) is revealed!). We put c = La (1+1/k • 2 ))J. Then A .4 c and 

c +...+C -*b» (1+1/k)4c for each n. By the axiom of prolongation there is a 
function g such that dom(g)*N\FN, rng(g)AN, g(n)=c for each ncFN, and 

2 g £ c . Hence c^fC. 

We have proved that not only finite but also countable internal and ex­

ternal sums of cuts preserve the equivalence -=£ and coincide with respect to 

it. Hence the "FN-aryH operation 2 can be introduced on the factor system 

£ /^t , as well as on « C / ^ , and both 2 , 2 can be used to compute 

its value. For reasons that will come out later the (infinitary) algebra 

<J? / - ;+, • , 2 7 will be called the algebra of Borel cardinals. As a 

trivial consequence of 3.1.1, the distributivity of the product, even with 

respect to the countable sum 2 is obtained. 
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