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A CONTRIBUTION TO TOPOLOGY IN AST:
ALMOST INDISCERNIBILITIES

K. CubA

Abstract: A natural generalization of equivalences of indiscernibility
(called here equivalences of almost indiscernibility) is defined and studied.
A general form of topological product is introduced and investigated. A que-
stion under what conditions an equivalence of almost indiscernibility is a
restriction of a suitable equivalence of indiscernibility is considered.

words: Equivalences of almost indiscernibility, equivalences of in-
discernibility, compact real equivalences, pseudocontinuous functions, qua-
sicontinuous system of equivalences, topological product.

Classification: 03E70, 54305

Introduction. Equivalences of indiscernibility play an important role
in AST from both philosophical and technical point of view. They are e.g.
connected with the remarkable notion of a real class. Remember that a class
X is real iff there is an equivalence of indiscernibility R such that X is a
figure in R (X is saturated on R). Formally: (3R)(R S.VZ& R is a 9r-class&R
is an equivalence &(Vu)(( u infinite&u cdom(R)) => (3 t,ve u)(t4v &
&<{t,v>eR) X (Vt,v)(te X&<t,v>eR=> ve X)) (cf. €V ). From the philoso-
phical point of view real classes model those classes, which may be seen
when doing some observation. From the technical point of view they are inte-
resting as this system of classes contains the class FN (of finite natural
numbers), every de class and it is closed on Morse’s scheme of definitions.
Hence every class definable (also by a non-normal formula) from a real class
must be a real one.

Equivalences of almost indiscernibility are a natural generalization of
equivalences of indiscernibility. The generalization lies in the requirement
that we need them to behave as equivalences of indiscernibility only in eve-
ry sharp view, which is modelled ﬁy the property that every their restricti-
on on a subset of the domain is an equivalence of indiscernibility. We also
need them to be real classes. Trivial examples of equivalences of almost in-
discernibility are equivalences of indiscernibility restricted to real sub-
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classes of their domains. A typical example of an equivalence of almost in-
discernibility is the class of set functions which are continuous in irra-
tional monads with the nearness defined pointwise. Functions continuous on-
ly on a suitable figure are very natural mathematical objects. The exact
description may be found later in the paper. The given typical example has
been the main motivation to the study of the problematics. The investigati-
on of the equivalence of indiscernibility defined pointwise on the whole
domain is very limiting and it leads only to the power equivalence on the
product.

A remarkable property of equivalences of almost indiscernibility is a
form of "heredity", namely: If we consider two equivalences of almost in-
discernibility % and £ on X and Y respectively and functions from X to Y
continuous on X with nearness defined pointwise, we obtain an equivalence of
almost indiscernibility, too. We hold the proof of this property for the main
assertion of the paper.

Another important contribution of the paper is (by our opinion) the cre-
ation of a very general notion of a topological product in AST and its inve-
stigation. The importance of equivalences of almost indiscernibility appears
here once more, as the product of equivalences of almost indiscernibility is
an equivalence of almost indiscernibility, too. On the other hand, the pro-
duct of equivalences of indiscernibility need not be an equivalence of in-
discernibility.

§ 1. Preliminaries. In this section we remind some notions and prove
some theorems which we shall use later.

Definition 1.1: A real symmetric relation R is called compact iff for
every infinite subset of its domain m there are two different elements t,
uem such that {t,udeR (cf. LC 87)).

Definition 1.2: A ccmpeict equivalence which is a Jr-class is called an
equivalence of indiscernibility (cf.LV3J).

We differ here from LV] as we do not require the equivalence to be de-
fined on the whole universal class. The reader may easily prove that every
equivalence of indiscernibility can be extended on V.

Definition 1.3: x2 y= (¥ge FL, ,)( ¢ set formula of one free vari-
. {C} y ('9 {C} y

able ¢(x) = @ (y)) (cf. {CK 82]). In words: x, y are near in the basic equi-

valence £ iff they satisfy the same set-formulas qf one free variable

icy
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with the parameter c.

Note that _%} is an equivalence of indiscernibility and dom( {g )=V.
{c

Let us remember an elegant theorem due to A. Vencovskd. This theorem
shows an outstanding position of the basic equivalences of indiscernibility.

Theorem 1.4 (A. Vencovskd): If & is a compact equivalence which is a

figure in 2 then 2 A (dom( i))2 c %
{c} {ct

Proof: See [T 871.

The author was told the following topological theorem by A. Vencovské.
He does not know, however, the contribution gf P. Vopénka to the theorem. The
author is also not able to guarantee the originality of the presented proof.

Theorem 1.5 (A. Vencovskd, P. Vop®nka): An eguivalence defined on V
is an equivalence of indiscernibility iff it is a real compact equivalence
~ fulfilling the follpwing separation condition: For every x, y which are not
near (x ;: y), there are set theoretically definable classes X, Y containing
the monads of x, y respectively and such that 3’4'.9_()() n @AQ,(Y)=0. Formal-
ly: (Vx,y)(axEy=p(3X,Ye5d) (E"ExDexa(E"fyDeva(E ) n
(2 "Y)=0)).

Proof: Let us prove, at first, that every equivalence of indiscernibi-
lity fulfils the mentioned separation condition. Let {Rn:ne FN} be a genera-
ting system of £ (see [V]). If mx Zy then there is n such that{x,y>& R

—Rp" —R" x J " "
If we put X-Rmz{x} and Y=R' . {y} then (E)"XsR_,° Rn+% {x}e Ry ix3

P Hyn " " -
and similarly (Z)"Y& R;+1 iy}. It follows that R}, {x}anl{ y} =0 as

R_.oR CRn and (x,y)¢Rn.

n+l” Tn+l=

Let, on the other hand, % fulfil the separation condition. It suffices
to prove that it is a 9r-class. As &% is a real class, it is a figure in an
equivalence 2 (see L€ 87]). Now it remains to prove that £ s a closed
figure in 2 %Lee [V)). Thus for every X, y such that <x £y we have to

find an Scivc lass Z such that {-f’-.-{'{(x,y)} & I%In X -0. Let X, Y be the
c

classes from the separation condition. As ._%‘ is finer than & (due to the
{c

theorem of Vencovskd) and £ "{<x,y¥} & (2 " {x})=( £"{y})(e.g. also by the
{ic} {c¥ {ct

theorem of Vencovskd, or see [CK 82]) we know that for Z=X>Y the formula
{g{' x,yd} & Z holds. Z ~ % =0 we obtain by rewriting the assumption
c

- 487 -



(£ ") A(Z"Y)=0.

The following example proves that the given separation property cannot
be substituted by the following one: Two disjoint monads can be separated by
set-theoretically definable classes.

Example 1.6: Let X% be_the equivalence obtained from 2 by connecting

every even finite natural number with its successor. I.e. x £y =x L2y

v (AneFN)(x=2nXy=2n+1). # is a real compact equivalence such that its
monads are ov-classes and hence the weaker form of the separation condition
is fulfilled. But & is not revealed, as the countable class

X= §< 2n,2n+1) ;n €FN} is included in & and there is no subset of % con-
taining X since 1 2cc & 2c¢ +1 (one is even, the other is odd).

The third theorem concerns one generalization of the prolongation axiom
for real classes. One version of this theorem (for nonstandard models of PA)
can be found in [ B83]. As no version of the theorem was published in the
framework of AST, let us do it now.

Theorem 1.7: If F is a real function such that (V x cdom(F))(FAxeV)
then there is a function G such that F=GAdom(F) and G is a &-class. More-
over, if F is a figure in 2 then G is composed from functions definable
by set formulas with the parameter c.

The theorem is an easy consequence of the following technical lemma.

Lemma 1.8: If F is a function which is a figure in %; and (¥x ¢
edom(F))(FAxeV) then for every tegdom(F) there is .GeSd{c} such that
tedom(G) and (¥ u edom(G)e dom(F))(F(u)=6G(u)).

Proof: Let G, be such Sdg 3 function that G, ()=F(1).

(The existence of such a function is an easy consequence of the definition of
2, , the proof can be found in [{K 83].) Let §X ;neFN% be a decreasing se-
{cy’ ° " .
quence of Sdg o Classes such that{m{t‘i: ﬂ{xn;ne FN}.If there is an element
(denote it by u ) in every class X such that Flu)# G,(u ) then this proper-
ty is saved for a prolongation of the sequence{un;neFN} (due to the assump-
tion FA x €V) contradicting the equality F(t)=Bo(t) which must hold on the
whole monad. Hence for some n the equality Go(u)=F(u) holds for every ueX.
We may suppose X, dom(Go) (as te dom(Go)) and put G=G¢/' X,

The proof of the theorem 1.7: As there are only countably many functi-
ons definable with parameter c and fulfilling the assertion of L.1.8
((Vu adom(G)n dom(F))(F(u)=6{(u)), we can enumerate them and suppose that
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their domains are disjoint (we put E‘—n=Gn/‘(d0m(G )- U dom(Gm))). Then we de-

n
m<n

fine G as the union of this sequence; we know that dom(G) covers dom(F) due

to the assertion of L.1.8.

Corollary 1.9: If F is a real semiset function with the property
(V¥x cdom(F))(FAxeV), then there is a set function g such that Feg.
Proof: Use T.1.7 and the prolongation axiom.
Next lemma is a version of Robinson’s lemma.
Lemma 1.10 (A. Robinson): Let fa, ; < e f33, -(bx ;¢ e3% for 3 & N-FN
be two infinite sequences. Let % be an equivalence of indiscernibility. If
(¥nefN)(a, & b ), then there is € 3 -FN such that (¥ ep)a Eb ).

Proof: The assertion is an immediate consequence of the revealness of
the ar-class %

The following technical lemma appears to be very useful.

Lemma 1.11: Let{a_;oc <P}, fb ;0c <} {0, 50c< (33 be set sequ-
ences. If (VieFN)(a; £ b;), then there is a € 3-FN such that

1{c,=di§
(Vocep)(@a, 2 b ).
2‘ 4 iC,daci oC
Proof: Remember that a 2 b =<(a,t> 2<b,t) (see [K 82]). Now we
c,ty {c3

reformulate qur assertion to (¥ie&FN)(Ka;,d> {gi(bidi” = (3ye B-FN)
c

[ : 3 : : 4
;Voc € 7)((3‘* ,dx) {i;«)"‘ ,d“)), which is a special case of Robinson.’s
emma.

§ 2. Almost indiscernibilities. In this section we define and inves-
tigate equivalences of almost indiscernibility.

Definition 2.1: A real equivalence X is called an equivalence of
almost indiscernibility ift (¥ x cdom( & )) (& A x? is an equivalence of
indiscernibility).

The proof of the first three assertions of the following theorem is
quite easy and hence we omit it.

Theorem 2.2: 1) Every equivalence of almost indiscernibility is comp-
act.
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2) Every equivalence of indiscernibility is an equivalence of almost
indiscernibility.
3) If 2 , % are equivalences of almost indiscernibility, then 2nZ

is an equivalence of almost indiscernibility, too. Especially, if % js an

equivalence of indiscernibility and X is a real class, then Z A X= X A Xz
is an equivalence of almost indiscernibility.
4) The power equivalence 2P of an equivalence of almost indiscernibi-

lity % 1is an equivalence of almost indiscernibility.

Proof: 4) Remember that x éfﬁy = (xuycdon( 2 ) &(Z )'x=( Z2)"y.
.1_@ is a real class as it is defined from the real class % . If zgdom(?.%
then Uzecdom( £ ) and we have £%n 22:( % A(UDDPA 22, Now it suffi-
ces to use the fact that the power equivalence of an equivalence of indiscer-

nibility is an equivalence of indiscernibility, too. (See [V].)

Remark: From this theorem we obtain the trivial examples of equivalen-
ces of almost indiscernibility mentioned in the introduction, namely equiva-
lences of indiscernibility restricted to suitable figures.

When studying the equivalences of almost indiscernibility it appears
that real compact equivalences (a more general notion) are highly useful. For
these relations Theorem 2.2 may be reformulated word by word as it is done in
the following theorem for the points 3) and 4).

Theorem 2.3: 1) If ¥ and £ are real compact equivalences, then
% A= is a real compact equivalence, too.
2) The power equivalence xP of a compact real equivalence % js also

a real compact equivalence.

Proof: 1) Using Vencovsksd's Theorem, we obtain ¢ such that & is fi-

{c}

ner than both £ and . Henee 2 (being compact) is finer than k. PN 4

c
2) Due to Vencovsksd's Theorem there is a c such that {%1 is finer than
c
»

% . The equivalence {&? is then compact (see {V]) and finer than %
c

and

hence 2% is compact, too.

One way, how the domain of §7° can be extended (and hence q’!? can be
generalized), is to drop the assumption x,ys dom( % ) and to ask only
( # )"x=( 2 )"y. Unfortunately, this generalization does not preserve the
structure of almost indiscernibility. We now investigate this generalization
as it is useful e.g. for compact real equivalences.
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Definition 2.4: For an equivalence £ and a class X we define x £y =
X
= ((E)"™)Ax=(( & )"y)nX. (Cf. [761.)

Note that for X=V we obtain the equivalence mentioned before the defini-
tion.

Lemma 2.5: 1) If we put & =( ZaxD)u(v-x)2, then x 2y = x &7y,
X
2) A% X A(Pom(Z )2
v

Proof: Use the definitions.

Theorem 2.6: If ¥ is a real compact equivalence and X is a real class,
then & is a compact real equivalence, too.
X

Proof: Use the previous lemma and T.2.3.

It seems to be plausible (by the second equality of L.2.5) that the ope-
ration % does not preserve the structure of almost indiscernibility. A coun-

ter-example follows.

Example 2.7: Let ¥ =(FN)2. If we put u={{x ¥;0c € 3% (where f3 ¢ N-FN)
then £ A u?=({f n};neFN})zu({{m§ ;oceﬂ-Fanwhich is not an equivalence
v

of indiscernibility.

The following example describes a trivial (having two monads) equivalen-
ce of almost indiscernibility which cannot be a restriction of any equivalen-
ce of indiscernibility.

Example 2.8: Let R be the relation of satisfaction for finite set for-
mulas of one free variable without parameters. Hence (Vyt FL; ¢ set formu-
la with one free variable)(R"{g3 = {x; (x)}). Let R=V=dom(R)-R. R and R
are ©-classes which cannot be separated by any set-theoretically definable
class. If % is the equivalence Rzu ’ﬁz (having exactly two classes of equiva-
lence R and R respectively), then Z is obviously an equivalence of almost
indiscernibility. If # is a restriction of an equivalence of indiscernibili-
ty, then R, R have to be separable by ar-classes (the corresponding monads)
and hence by Sd classes (see [V]).

Theorem 2.9: A real equivalence % is an equivalence of almost indis-
cernibility iff for every gy-class Xgdom( 2 ), £n X2 is an equivalence of
indiscernibility.

Proof: The implication ¢= is obvious (remember that every set is a ar-
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class). To prove the opposite implication it suffices to show that % an is

a gv-class. Let £ and X be figures in {&} . If xeX is a set dense in X
c .
(with respect to £ , i.e. X= £ "x; the existence of such x is proved in
c {c}
2

[V]) then % A x

it is sufficient to prove the equality % x2= {g;(é A x2) o{—%s. (Remember
c c

the equality SoT=dom2((S><V)r\(V xT)), the fact that the intersection of two
Jr-classes is a gr-class and that the projection of a #¥-class is a 7r-class.

If t%u and t,ueX, then there are t,,u,ex such that t £ t, and u £ u
. L {cy ! ct L

is a gr-class (due to almost indiscernibility of Z ). Now

(the density of x). By Vencovské's Theorem we know that 2 is finer than X
c

and hence tll t&uli“: u, hence tlé u;. If, on the other hand, for (t,u®

there is (tl,u1>e % A x2 such that ty 2 t&u; 2 u then we know that
ic} {c}
{t,ude >(2 (density of x) and using the fact that -_9.9 is finer than % we
c

obtain t & u.

Motivated by the classical development, we define the product of relati-
ans.

Definition 2.10: Let R be a relation such that dom(R)=X is a semiset
and Xem. Let (Wie X) (R"{i} is a relation). We define the relation TTR as
follows: {f,g>» € TTR = dom(f)=dom(g)=m& (¥ i e X)({£(1),g(i)¥ & R"{i}). The
relation TTR is called the product of the system of relations R. If
dom(R) ¢ V, we demand the equality dom(R)=m in the definition. In the case
|dom(R)|=2 we use ordered pairs instead of functions and we use the notation

R1>< R2 (not quite correctly) or 1;‘2 .

For dom(R) being uncountable the product does not generally preserve
the compactness (see [ZG)). If on the domain of R an equivalence of almost
indiscernibility is defined, the system R fulfils a suitable continuity con-
dition and we consider only the class of continuous functions, then the com-
pactness and the structure of almost indiscernibility are preserved. This is
the direction of our next investigations. Let us. give, at first, some neces-
sary definitions.

Definition 2.11: Let R be a system of equivalences (i.e. (¥ iedom(R))
(R"§it is an equivalence)). Let % be an equivalence on dom(R). A function F

is called pseudocontinuous (with respect to X and R) iff
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(Vi,jedom(R))(iZE j=p {F(i),F(3)Y € R"{i} N R"{3}).

It is obvious that if 2 is trivial (the identity restricted on dom(R))
then every function is pseudocontinuous. If (Vi,jedom(R)) (R"{it=R"{3}3),
then we are consistent with the common definition (see 1ZG)).

Remark: If f is pseudocontinuous and {f,g» € TFR, then, generally, g
need not be pseudocontinuous as (R"{i})" §g(i)$ = g(j) has not to hold for
i % j. This is the reason for defining the following notion.

Definition 2.12: A system of equivalences R is called quasicontinuous
with respect to 2 (where Z is an equivalence defined on dom(R)) if it has
the following two properties:

1) If i ¥ j then X=(dom(R"{i}) ndom(R"{j%})) is a figure in both R"{i}
and R"{33. ((R"{£i})"X=X=(R"{3})"X.)

2) R"{i% coincides with R"{j} on the intersection.

(R"{i} AX=R"{3}{AX.) If it is clear (from the context) what equivalence % we
keep in mind, we shall omit it from the quasicontinuity notion.

The proof of the following theorem is quite easy and we leave it to the
reader.

Theorem 2.13: Let R be a quasicontinuous system of equivalences and let
dom(R) be a semiset. If f is pseudocontinuous and {1,g > e TIR, then g is pseu-
docontinuous, too.

The following theorem describes the fact that by going to the system of
power equivalences the quasicontinuity of the system of equivalences is saved.
The easy proof of the theorem is left to the reader.

Theorem 2.14: If R is a quasicontinuous system of equivalences, then
the corresponding system of powerequivalences is quasicontinuous, too. (We
define R¥ on dom(R) by (RP)"{t3=(R"§t1)%.)

Now we prove a nontrivial theorem.

Theorem 2.15: Let R be a quasicontinuous real system of compact equi-
valences and let dom(R) be a semiset. If % is a compact real equivalence on
dom(R), then TTR is a compact real equivalence on the subclass of all pseu-
docontinuous functions.

Proof: Let R and 2 be figures in 2 (such c must exist due to the
{c}

assumption that R and % are real classes). For every ie dom(R) we have that
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R"{i} is a figure in & and in accordance with the Vencovskd's Theorem

c,i
{'3_1 is finer than R"{i¥ . Let X be a countable class dense in dom(R) (with
c,il
respect to 2 ). Let us enuferate this class as X= -ixi;ieFNf. Let a be an in-

c
finite set of pseudocontinuous functions (with respect to Z ). We have to

prove the existence of two different functions f, g such that f,ge a and
{f,g% €TTR. In the set a there is an infinite subset a, such that

(V'f,ﬁaal)(-f(xl) 2 §(x)). Similarly there is an infinite subset a,s.a;

Cy Xy

such that (Vf,ﬁeaz)(F(xz) 2 §(x2)) and we follow by the recursion based
{c,xz
on FN. Due to the prolongation axiom we obtain an infinite subset @ of a such

that (VY f,563)(Vx eX)(f(x){ 2 G(x)). Let us choose two different functions
c,X

f,ged and prove that {f,g? e TTR. We prolong the sequence {xi;i €FN} and ap-

ply L.1.11 for ai=f(xi), bi=g(xi) and di=xi. For every given t there is (3 € ¥~

(- taken from L.1.11) such that t =—°.} Xp » @5 X is dense in dom(R). We have

f(xﬁ) 2 g(x,,) and hence (f(xnc):,g(xﬂ )> e R"xgl (as 2 _is finer than
c,%p} C,Xp

R"{Xﬁ§ ). {f(t),a(t)> € R"4tY we obtain from xﬂi t and pseudocontinuity of

f, g and quasicontinuity of R.

The following example proves that the choice of f, g from the previous

theorem (i.e. (V¥ x GX)(f(x){& ‘g(x))) was substantial. It does not suffice
c,X

to require only ( ¥xe X)({f(x),g(x)>&R"{x}).

Example 2.16: Let c eN-FN and let us define R as follows: For < &€ ¢ N

N Def({cl) we put R"4occt=VxV and for o¢c € c-Def({c}) we put R"{ech.%&. Let
tc

us consider the real compact equivalence {,q_.’, on dom(R)=c. R is a quasiconti-
c

nuous real system of compact equivalences. If we put f(x)=1 and g(x)=2 (for
every x & c) then both f and g are pseudocontinuous functions and for every
x 6 Def(£cy) nc we have (f(x),g(x)}e R"{x3. On the other hand, we have
(¥xec-Def({ck 1I(KE(x),g(x) ) ¢ R"{x3) and hence {f,g>&TIR.

The following theorem shows a nice behavior of equivalences of almost
indiscernibility to the general product.

Theorem 2.17: Let R be a real quasicontinuous system of equivalences of
almost indiscernibility with a semiset domain.If X is a real compact equiva-
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lence on dom(R), then TT¥R restricted on the subclass of pseudocontinuous
functions is an equivalence of almost indiscernibility.

Proof: The reality and compactness of the considered equivalence fol-
lows from the previous theorem. To prove that any restriction on a subset of
the domain (say a) is an equivalence of indiscernibility, we use the theorem
of Vopénka and Vencovskd (T.1.5). We extend the considered equivalence on V-a
by adding (V-a)2 (to fulfil the assumption that the considered equivalence is
defined on V). Now it suffices to prove that for any two functions f,ge a
which are not equivalent there are subsets b, d of a containing the monads of
f and g, respectively, and having disjoint figures. Let there be t €& dom(R)
such that {f(t),g(t)> & R"{t} and let us fix this t. Put a,={f(t);fe at. By
our assumption, R"{t} n a% is an equivalence of indiscernibility (as R"{t} is
an equivalence of almost indiscernibility). By the theorem of Vopénka and Ven-
covské there are subsets by, d, of a, such that (R"$t¥)"{f(t)} & by .
(R"{t1)"{g(t)} < d, and (R"{t3)" by~ (R"$EY" d,=0. Now it suffices to put
b= {h&a;h(t)e b} and d={hea;h(t)ed,i.

The following example proves that the assumption of the quasicontipuity
of the system R is substantial.

Example 2.18: Let o¢ € N-FN. Let us consider the following system R of
equivalences of indiscernibility on e¢ . R"{B% = i<R, A2 u(x-4p} )2 (i.e.
on the (3-th component the monads are {3 and o -433%). For £ we take
ocz. Constant functions are pseudocontinuous. If we consider the set of all
constant functions, then we obtain an infinite set of elements such that no
two different elements are near in the product equivalence - the constant
functions with the values (3,9 differ in R"{(3} and R"{y}

Remark: The assertions of Theorems 2.15, 2.17 become much more interes-
ting when they are applied on the system of power equivalences Ra° to a given
system R. Before doing so we recommend the reader to note the following com-
ments. To every set relation r such that dom(r)e€ m a corresponding function
fr such that dom(fr)=m and (Vtem)(fr(t)=r“{t'}) may be assigned (by a one-
one manner). We may then define the pseudocontinuity of set relations relati-
vely to the system R and the equivalence £ as the pseudocontinuity of the
corresponding functions with respect to the system of power-equivalences R‘p
and £ . Note that set functions are (in this setting) pseudocontinuous iff
they are pseudocontinuous as relations; moreover, they are near in the pro-
duct equivalence iff they are near in the product equivalence of the power-
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system as relations. (But in monads of functions there are also other relati-
ons - e.g. relations which are unions of two near functions.)

The following theorem demonstrates the power of the assumption of the
quasicontinuity of the system R.

Theorem 2.19: If F is a pseudocontinuous function with respect to an e-
quivalence % and a quasicontinuous system of equivalences R, then

(9%, y)(xE y =5 (R"EXD"FOOF =Ry F(y)}).

Proof: Let ze(R"{x})"fF(x)}. We have F(x) e (R"{y})"{F(y)} (pseudoconti-
nuity of F), hence F(y)e dom(R"{x})n dom(R"{y}) (quasicontinuity of R),
© ze dom(R"{x}¥) ndom(R"{y}) (the intersection is a figure in both R"{x} and
R"{y}), F(y)e dom(R"§x})n dom(R"§y}) and thus z & (R"{¥D"{F(y)}, as R"{x} and
R"{y} coincide on the intersection of domains.

Corollary 2.20: 1If @ is an equivalence class of 2 , if R is a quasi-
continuous system of eguivalences and if x & Nidom(R"§t});te @} then
(Vt,uep) (R"{13)"Ex Y =(R"{ud)"{x}).

Proof: Use the previous theorem for R/‘<u, and F={x}=xV.

Corollary 2.21: The generalized product of a quasicontinuous system R
of equivalences described by the theorem 2.15 (the class of pseudocontinuous
functions with the pointwise defined nearness) is the same as the generalized
product of the quasicontinuous system R € R obtained from R by the following
description: R" {t} is the equivalence composed from those monads which are
the same in all R"§u} where t % u. Formally:

{x,y?,t2eR=<x,y> 6 R"{t3&(Vu,u L £)(R"{1})"Ex}=(R"{u})"{x}). Moreover,
we have u % t = R"{ul=R"{t3.

Proof: Obvious.

Due to the Vencovska's Theorem we know that if R is a system of compact
equivalences which is a figure in {%—} then every element of this system R"{t}

is coarser than 2 ) . The following theorem describes a circumstance imply-
ic,t
ing that R"{t} is even coarser than 2
{c}
Theorem 2.22: If R is a system of compact equivalences which is a fi-
gure in {&} and if w is a monad in {&} then (¥t,u 6 w)R"{t3=R"{u}) =
c c
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=» (Yte @>(5.3n(dm(ﬂ"{t§)>zs R" ).
C

Proof: R"{t}=rng(R/ @ ) and hence it is a tigure in & as RAw is.
c
The following theorem and its corollary concern the heredity property

mentioned in the introduction.

Theorem 2.23: If £ is an equivalence of almost indiscernibility and
it % isa compact real equivalence which is a semiset, then pseudocontinu-
ous functions from dom( £ ) to dom( £ ) with the pointwise defined nearness
form an equivalence of almost indiscernibility.

Proof: Use the theorem on product (T.2.17) for the system R= T <dom(Z).

Corollary 2.24: If % ,’é are equivalences of almost indiscernibility
and if % is a semiset then pseudocontinuous functions with the nearness de-
fined pointwise form an equivalence of almost indiscernibility.

The following example describes an equivalence of almost indiscernibili-
ty which we have called in the introduction as a typical one.

Example 2.25: Let us consider for o¢ € N-FN an equivalence of indiscer-
nibility on & representing the segment [0,1] of real numbers. We use e.g.
B =y=(YneFN)(|B-yl/oc<1/n) (where |B-y| fenotes the absolute va-
lue. We restrict this equivalence on the figure of irrational monads (hence
we obtain an equivalence of almost indiscernibility). If we consider the se-
miset of pseudocontinuous functions to the segment [0,1] (i.e. o¢ with the
same nearness == ) with the nearness defined pointwise, we obtain (due to our
theorems) an example of an equivalence of almost indiscernibility.

§ 3. Restrictions of indiscernibilities. We devote the third section to
an investigation of the problem under what conditions an equivalence of almost
indiscernibility is a restriction of an equivalence of indiscernibility.

Remember that in the example 2.8 we have described an equivalence of al-
most indiscernibility which is no restriction of any equivalence of indiscer-
nibility. The following theorem proves that in the case of semisets the si-
tuation is rather different.

Theorem 3.1: If ¥ is a semiset eguivalence of almost indiscernibility
having only a finite number of monads, then there is a set equivalence of in-

discernibility & and a real semiset @ such that & = £ np2

Proof: Let us number the monads of 3 by 0,1,...,k-1. Let us define a
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function F (being a real semiset) with dom(F)=dom( £ ) by the description
F(x)= the number of the monad containing x. Then (Y uZdom(F)) (FAueV) as
- N u2 is an equivalence of indiscernibility having only a finite number of
monads and hence a set (see [V]). By C.1.9 there is a set function f such
that F=fAdom(F). We may assume (without loss of generality) that rng(f)=k
and define t & v = £(t)=f(v).

The following example proves that the usage of a parameter (obtained by
applying the axiom of prolongation) in the last theorem is substantial.

Example 3.2: Let -fan;n e¢FN} be a sequence of definable sets having a
nontrivial monad @ in & as its limit (i.e. if {a_;oc & 3} and P € N-FN
is a prolongation of the sequence, then there is a '€ 3 such that
(Yot , o0 ey -FN)(ay = a._a).Dn this countable class, let us define an equiva-
lence of almost indiscernibility in such a way that to one monad we put all
sets with the even indices and in the second one those sets with the odd
ones. This equivalence of almost indiscernibility is a figure in £ , but no
equivalence of indiscernibility extending it is a figure in & . If it is a
figure in & , then it has to be coarser than & (due to Vencovskd's Theorem).
Hence a,, , CIRY would be in the same monad forec € N-FN and thus the same is
valid for some n¢FN contradicting the definition of the equivalence.

The following theorem is useful for deciding whether a product equiva-
lence of almost indiscernibility is a restriction of an equivalence of indis-
cernibility.

Theorem 3.3: Let £ be a compact real equivalence and x an equivalen-
ce of almost indiscernibility. Let F, G be two Sd pseudocontinuous (w.r.t. %
and £ ) functions such that dom(F)2dom( % ) and dom(G) 2don(E). Let = be
an equivalence of indiscernibility which is finer (on dom(%)) than & (e.g.

{% for a suitable c). If X is a countable class dense in dom( 2 ) with res-
p .

pect to & ,then (Y tedom( &))(F(t)& 6(1)) = (Y teX)(F(t) & 6(1)).

Proof: «=p obvious. &= : Let te dom( % ). From the density of X it
follows that there is an infinite sequence (x.‘ ;00 & ﬁ; where 3 &€ N-FN such
that (V n&FN)(x € X)& (Vs € B -FN)(x o & 1). {Flxpg),B(xg);¢ € B} is a
subset of dom(& ) (denote it a) as F, G are defined for every x,( & "{t} &
< dom( £)). :nqz is an equivalence of indiscernibility and

(VnGFN)(F(xn); 6(x.))). Hence by Robinson’s Lemma there is a g € f3 -FN such
that F(xr)é G(x_r)- F(t)% G(t) follows now from the pseudocontinuity of F, G.
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Remark: The previous theorem should be compared with the example 2.16.

Corollary 3.4: If an equivalence of almost'indiscernibility is obtain-
ed as a product of the system £ 5 dom( ¥ ), where % is a restriction of an
indiscernibility equivalence (say a ) and % is a real compact equivalence
which is a semiset, then this equivalence is a restriction of a suitable e-
quivalence of indiscernibility.

Proof: Let m2dom(Z ) be the set from the definition of TTR. Let X =
={xi;is FN}be the countable class from T.3.3. On the class Y= {f;dom(f)=m &
$.rng(f) g dom( & define equivalences = (ieFN) by the formula f4 g =
= f(xi)ﬁé g(xi). Equivalences =£ are obviously equivalences of indiscernibi-
lity and we obtain the required equivalence as the intersection of the count-
able system {ai- ;ieFN?due to the previous theorem. This intersection is an

equivalence of indiscernibility due to [VJ].

Remark: Note that the "typical" equivalence of almost indiscernibility
given in the example 2.25 is a restriction of a suitable equivalence of indis-
cernibility.
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