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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

29,3, (1988) 

A CONTRIBUTION TO TOPOLOGY IN AST: 

ALMOST INOISCERNIBILITIES 

K. ČUDA 

Abstract: A natural generalization of equivalences of indiscernibility 
(called here equivalences of almost indiscernibility) is defined and studied. 
A general form of topological product is introduced and investigated. A que­
stion under what conditions an equivalence of almost indiscernibility is a 
restriction of a suitable equivalence of indiscernibility is considered. 

Key words: Equivalences of almost i n d i s c e r n i b i l i t y , equivalences of inr 

discernibility, compact real equivalences, pseudocontinuous functions, qua-
sicontinuous system of equivalences, topological product. 

Classification: 03E70, 54J05 

Introduction. Equivalences of indiscernibility play an important role 

in AST from both philosophical and technical point of view. They are e.g. 

connected with the remarkable notion of a real class. Remember that a class 

X is real iff there is an equivalence of indiscernibility R such that X is a 

figure in R (X is saturated on R). Formally: ( 3 R ) ( R £ V & R is a tf-class&R 

is an equivalence &(Vu)(( u infinite feu £dom(R) )-*-.> (3 t,v € u)(t;-j*v & 
&<t,v>eR)&( Vt,v)(teX^<t,v>cR-=» veX)) (cf. uV ). From the philoso­

phical point of view real classes model those classes, which may be seen 

when doing some observation. From the technical point of view they are inte­

resting as this system of classes contains the class FN (of finite natural 

numbers), every Sdv class and it is closed on Morse's scheme of definitions. 

Hence every class definable (also by a non-normal formula) from a real class 

must be a real one. 

Equivalences of almost indiscernibility are a natural generalization of 

equivalences of indiscernibility. The generalization lies in the requirement 

that we need them to behave as equivalences of indiscernibility only in eve­

ry sharp view, which is modelled by the property that every their restricti­

on on a subset of the domain is an equivalence of indiscernibility. We also 

need them to be real classes. Trivial examples of equivalences of almost in­

discernibility are equivalences of indiscernibility restricted to real sub-
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classes of their domains. A typical example of an equivalence of almost in-

d i s c e r n i b i l i t y is the class of set functions which are continuous in i r r a ­

tional monads with the nearness defined pointwise. Functions continuous on­

ly on a suitable f igure are very natural mathematical objects. The exact 

descr ipt ion may be found l a te r in the paper. The given typical example has 

been the main motivation to the study of the problematics. The investigati­

on of the equivalence of i n d i s c e r n i b i l i t y defined pointwise on the whole 

domain is very limiting and it leads only to the power equivalence on the 

product. 

A remarkable property of equivalences of almost indiscernibi l i ty is a 

form of "he redi ty" , namely: If we consider two equivalences of almost in­

d i s c e r n i b i l i t y A and » on X and Y respectively and functions from X to Y 

continuous on X with nearness defined pointwise, we obtain an equivalence of 

almost indiscernibi l i ty, too. We hold the proof of this property for the main 

assertion of the paper. 

Another important contribution of the paper is (by our opinion) the cre­

ation of a very general notion of a topological product in AST and its inve­

stigation. The importance of equivalences of almost indiscernibi l i ty appears 

here once more, as the product of equivalences of almost i n d i s c e r n i b i l i t y is 

an equivalence of almost i n d i s c e r n i b i l i t y , too. On the other hand, the pro­

duct of equivalences of i nd i sce rn ib i l i t y need not be an equivalence of in­

discernibility. 

§ 1. Pre liminaries. In this section we remind some notions and prove 

some theorems which we shall use la te r . 

Definition 1.1: A real symmetric relation R is called compact iff for 

every infinite subset of its domain m there are two d i f fe rent elements t, 

ucm such that <t,u>€R (cf. it 87J). 

Definition 1.2: A compact equivalence which is a ft-class is called an 

equivalence of indiscernibi l i ty (cf.LV3). 

We d i f f e r here from IV3 as we do not require the equivalence to be de­

fined on the whole universal class. The reader may easily prove that every 

equivalence of i n d i s c e r n i b i l i t y can be extended on V. 

Definition 1.3: x £ y % (Vo>€. FL. , ) ( <P set formula of one free v a r i -

able <j>(x) s 9>(y)) (cf. [CK 82 ] ) . In words: x, y are near in the basic equi­
valence £ iff they satisfy the same set-formulas qf one free var iable 

ic* 
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with the parameter c. 

Note that JL is an equivalence of indiscernibility and dom( » ) = V . 

Let us remember an elegant theorem due to A. Vencovska\ This theorem 

shows an outstanding position of the basic equivalences of indiscernibility. 

Theorem 1.4 (A. Vencovska): If .-& is a compact equivalence which is a 
figure in -=. then -2 n ( d o m ( f t - ) ) 2 £ & . 

Proof: See IC 87X 

The author was told the following topological theorem by A. Vencovska\ 

He does not know, however, the contribution of P. Voperika to the theorem. The 
t 

author is also not able to guarantee the originality of the presented proof. 

Theorem 1.5 (A. Vencovska, P. Vopenka): An equivalence defined on y 

is an equivalence of indiscernibility iff it is a real compact equivalence 

fulfilling the following separation condition: For every x, y which are not 

near (x ̂  y ) , there are set theoretically definable classes X, Y containing 
the monads of x, y respectively and such that #£^(X) n #W(Y)=0. Formal­

ly: ( V x , y ) ( - | x ^ y » ^ ( 3 X , Y 6 S d v ) ((ft "<x})SX&( ft " f yDfi Yfc(* "X) O 

r . (£MY )=0 ) ) . 

Proof: Let us prove, at first, that every equivalence of indiscernibi­

lity fulfils the mentioned separation condition. Let {R :ngFNj be a genera­

ting system of ft (see LV]). If ~i x ft y then there is n such that<x,y>^R . 

If we put X=RJJ+2tx* and Y=R^+2 { y} then ( * )
HX£(R n + 2« R ^ " { x}cR«+1-lx} 

and similarly (ft)"Y£ R^+1 iy}. It follows that R ^ ixWf|+1 "f yl =0 as 

Rn+ l°Rn+ l£Rnand<x^>4Rn-
Let, on the other hand, ft fulfil the separation condition. It suffices 

to prove that it is a nt-class. As ft is a real class, it is a figure in an 

equivalence § (see LC 87j). Now it remains to prove that ft is a closed 

figure in £ °(see [V]). Thus for every x, y such that -jxfty we have to 

find an Sd^class Z such that S"-i<x,y>} £ Z & Z n ft =0. Let X, Y be the 

tc} 

classes from the separation condition. As £ is finer than Is (due to the 
tct 

theorem of .Vencovska) and £ Mt<x,y>} £ ( g » txl)x( S^ty^Ce.g. also by the 
tc} tcl tcl 

theorem of Vencovska, or see [6K 8 2 1 ) we know that for Z-XxY the formula 

S.11 ^ , y > } £ Z holds. Z a ft =0 we obtain by rewriting the assumption 
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(* "x)n(=t"Y)=o. 
The following example proves that the given separation property cannot 

be substituted by the following one: Two disjoint monads can be separated by 

set-theoretically definable classes. 

Example 1.6: Let M be^the equivalence obtained from = by connecting 

every even finite natural number with its successor. I.e. x=£.y==x=?y v 

V (3 n € FN)(x=2n&y=2n+l). 4 is a real compact equivalence such that its 

monads are at-classes and hence the weaker form of the separation condition 

is fulfilled. But & is not revealed, as the countable class 

X= -f < 2n,2n+l> ;n€FN} is included in £ and there is no subset of £. con­

taining X since -i 2oc Si 2oC +1 (one is even, the other is odd). 

The third theorem concerns one generalization of the prolongation axiom 

for real classes. One version of this theorem (for nonstandard models of PA) 

can be found in [£ 83j. As no version of the theorem was published in the 

framework of AST, let us do it now. 

Theorea 1.7: If F is a real function such that (Vx cdom(F))(F/* x eV) 

then there is a function G such that F=G/*dom(F) and G is a % -class. More­

over, if F is a figure in & then G is composed from functions definable 

by set formulas with the parameter c. 

The theorem is an easy consequence of the following technical lemma. 

Lewie 1.8: If F is a function which is a figure in .» and (Vx £ 

cdom(F))(F/* X6.V) then for every tcdom(F) there i s B e S d . . ., such that 

t6dom(G) and (Vu 6dom(G)ndom(F))(F(u)=G(u)). 

. Proof: Let GQ be such S d ^ function that GQ(t)=F(t). 

(The existence of such a function is an easy consequence of the definition of 

,&« , the proof can be found in tCK 83].) Le i .CX n ;n«FN> be a decreasing se­
quence of Sd-C., classes such that.S^«Ct1= n-$Xn;neFNr.If there is an element 

(denote it by u ) in every class X such that F(un)4-G (u ) then this proper­

ty is saved for a prolongation of the sequence-£un;n€FN} (due to the assump­

tion FA x c V ) contradicting the equality F(t)=6 (t) which must hold on the 
whole monad. Hence for some n the equality G (u)=F(u) holds for every u*X . 

We may suppose X cdom(G ) (as tfcdom(G )) and put G=G A X . 

The proof of the theorem 1.7: As there are only countably many functi­

ons definable with parameter c and fulfilling the assertion of L A . 8 
((Vu *dom(G)Adom(F))(F(u)=G(u)), we can enumerate them and suppose that 
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their domains are disjoint (we put G =G /l(dom(G )- U dom(Gm))). Then we de-

m<n 

fine G as the union of this sequence; we know that dom(G) covers dom(F) due 

to the assertion of LA .8. 

Corollary 1.9: If F is a real semiset function with the property 
( Vx £dom(F))(F/* x eV), then there is a set function g such that Fcg. 

Proof: Use T.L7 and the prolongation axiom. 

Next lemma is a version of Robinson's lemma. 

Lenma 1.10 (A. Robinson): Let {a^ ; oc e fih -f b^ ; oo fe/35 for ft e N-FN 
be two infinite sequences. Let ^ be an equivalence of indiscernibi l i ty. If 
(Vn &FN)(an $ bn), then there is -y€ ft -FN such that ( VoC fcyXc^-fc b ), 

Proof: The assertion is an immediate consequence of the revealness of 

the of-class & . 

The following technical lemma appears to be very useful. 

Lenma 1.11: Let {a^ ; oC </3},"Cb ; ac </3f» •fdoC;oc< /3? be set sequ­

ences. If (Vi€FN)(a. £ b.), then there is a 3"e/3-
1fc,diI

 x 

(VoC<T)(a^ -£ b ). 

Proof: Remember that a £ b =<a,t> ~<b,t> (see [EK 82}). Now we 
fc,t% icl 

reformulate qur assertion to (Vi «FN)«ai,di> S ^ d ^ ) =- .>(3^e /3-FN) 
TC3 

SL 
"oC^cC'ill 

lemma. tcJ 

f*-FN such that 

( V o ^ C ^ K a ^ ,d } ~ <b. ,d >), which is a special case of Robinson's 

§ 2. Almost indiscernibilities. In this section we define and inves­

tigate equivalences of almost indiscernibi l i ty. 

Definition 2.1: A real equivalence sl is called an equivalence of 

almost indiscernibi l i ty iff (Vx£dom(«& )) (*£ n x is an equivalence of 

indiscernibility). 

The proof of the first three assertions of the following theorem is 

quite easy and hence we omit it. 

Theorem 2.2: 1) Every equivalence of almost indiscernibi l i ty is comp­
act. 
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2) Every equivalence of indiscernibility is an equivalence of almost 

indiscernibility. 

3) If A , ± are equivalences of almost indiscernibility, then = n *-

is an equivalence of almost indiscernibility, too. Especially, if *- is an 

equivalence of indiscernibility and X is a real class, then =£/ X= -£ r> X 

is an equivalence of almost indiscernibility. 

4) The power equivalence **^ of an equivalence of almost indiscernibi­

lity *=. is an equivalence of almost indiscernibility. 

Proof: 4) Remember that x £^y s (xuycdom( £ ) ) & ( £ )%=( -t )*' y. 

i is a real class as it is defined from the real class * . If z c d o m ^ ; 

then Uzcdom( * ) and we have I ^ n z2=( * n C U z ) 2 ) ^ z2. Now it suffi­

ces to use the fact that the power equivalence of an equivalence of indiscer­

nibility is an equivalence of indiscernibility, too. (SeelVJ.) 

Remark: From this theorem we obtain the trivial examples of equivalen­

ces of almost indiscernibility mentioned in the introduction, namely equiva­

lences of indiscernibility restricted to suitable figures. 

When studying the equivalences of almost indiscernibility it appears 

that real compact equivalences (a more general notion) are highly useful. For 

these relations Theorem 2.2 may be reformulated word by word as it is done in 

the following theorem for the points 3) and 4). 

Theorem 2.3: 1) If j& and -=- are real compact equivalences, then 

? L n * is a real compact equivalence, too. 

2) The power equivalence & of a compact real equivalence = is also 

a real compact equivalence. 

ic* 

ner than both £ and & . Hence £ (being compact) is finer than I A I . 
ic\ 

2) Due to Vencovsk£ s Theorem there is a c such that -£ is finer than 
{cl 

% . The equivalence &p* is then compact (see C.VJ) and finer than £r and 
tcl 

hence &^ is compact, too. 

One way, how the domain of **^ can be extended (and hence &* can be 

generalized), is to drop the assumption x,y£dom(* ) and to ask only 

( tk )"x=( 1 )"y. Unfortunately, this generalization does not preserve the 

structure of almost indiscernibility. We now investigate this generalization 

as it is useful e.g. for compact real equivalences. 
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Definition 2.4: For an equivalence 4 and a class X we define x 4 y g 
X 

2 ( ( * )"x)nX-((4 )My)nX. (Cf. LZG1.) 

Note that for X=V we obtain the equivalence mentioned before the defini­

tion. 

Lame 2.5: 1) If we put 4 =( 4 n X2)u(V-X)2, then x l y i x 4^y. 
X 

2) 4 ^ = £r%($>(dom(4 ) ) ) 2 . 
V 

Proof: Use the definitions. 

Theorea 2.6: If 4 is a real compact equivalence and X is a real class, 

then las is a compact real equivalence, too. 
X 

Proof: Use the previous lemma and T.2.3. 

It seems to be plausible (by the second equality of L.2.5) that the ope­

ration rf does not preserve the structure of almost indiscernibility. A coun­

ter-example follows. 

Example 2.7: Let % =(FN)2. If we put u= {{<**;<*« (3$ (where (1 e N-FN) 
9 9 2. 

then £ rs u =(-Hn};neFN]) vdiec'h ;oC€/3-FNl) which is not an equivalence 
V 

of indiscernibility. 

The following example describes a trivial (having two monads) equivalen­

ce of almost indiscernibility which cannot be a restriction of any equivalen­

ce of indiscernibility. 

Example 2.8: Let R be the relation of satisfaction for finite set for­

mulas of one free variable without parameters. Hence (V^pc FL; $> set formu­

la with one free variable)(R"-C9} = {x;y(x)}). Let "R=Vxdom(R)~R. R and 1 

are Gf-classes which cannot be separated by any set-theoretically definable 

class. If 4 is the equivalence R y R (having exactly two classes of equiva­

lence R and "R respectively), then 4 is obviously an equivalence of almost 

indiscernibility. If 4 is a restriction of an equivalence of indiscernibili­

ty, then R, R* have to be separable by uf-classes (the corresponding monads) 

and hence by Sd classes (see tV3). 

Theorem 2.9: A real equivalence 4 is an equivalence of almost indis­

cernibility iff for every -jf-class X£dom( I ) , l n X is an equivalence of 

indiscernibility. 

Proof: The implication <*-= is obvious (remember that every set is a <rr'-
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class). To prove the opposite implication it suffices to show that 4 n X is 

a 3tf-class. Let sib and X be figures in « . If xcX is a set dense in X 
id 

(with respect to ^ , i.e. X= i§- "x; the existence of such x is proved in 
{c* {ci 

£V3) then * n x is a ttf-class (due to almost indiscernibility of « ). Now 

it is sufficient to prove the equality 4 n X = i o(-£ r\ x )© -= . (Remember 

ic) id 
the equality S © T=dom?((SxV) ̂ (V>cT)), the fact that the intersection of two 

Jf-classes is a ^r-class and that the projection of a if -class is a TT-class .) 

If t £ u and t,u£X, then there are t,,u, QX such that t ~ t, and u ~ u, 
1 1 ic\ l 4c) l 

(the density of x). By Vencovska's Theorem we know that .== is finer than =£. 

and hence t, £ t & u , ^ u, hence t, ̂  u,. If, on the other hand, for <t,u> 

there is <t, ,u,*>€ * n x such that t, .£ t&u, -£ u then we know that 
1 1 l ic\ l ic] 

^t,u>c X (density of x) and using the fact that .§. is finer than =r we 
{c* 

obtain t « u. 

Motivated by the classical development, we define the product of relati­

ons. 

Definition 2.10: Let R be a relation such that dom(R)=X is a semiset 

and Xcm. Let ( V i € X ) (R"-CiI is a relation). We define the relation TT R as 

follows: <f,g> €TTR = dom(f )=dom(g)=m&( \/i « X)«f (i),g(i)> & R"ii\). The 

relation TTR is called the product of the system of relations R. If 

dom(R)«V, we demand the equality dom(R)=m in the definition. In the case 

|dom(R)|=2 we use ordered pairs instead of functions and we use the notation 

R,x R« (not quite correctly) or £r . 

For dom(R) being uncountable the product does not generally preserve 

the compactness (see CZGJ). If on the domain of R an equivalence of almost 

indiscernibility is defined, the system R fulfils a suitable continuity con­

dition and we consider only the class of continuous functions, then the com­

pactness and the structure of almost indiscernibility are preserved. This is 

the direction of our next investigations. Let us- give, at first, some neces­

sary definitions. 

Definition 2.11: Let R be a system of equivalences (i.e. (Viedom(R)) 

(R"-Cil is an equivalence)). Let £ be an equivalence on dom(R). A function F 

is called pseudocontinuous (with respect to -I- and R) iff 
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(Vi,36dom(R))(i.£. j-*4><F(i),F(j)>€R"mnR"i3,). 

It is obvious that if ll is t r i v i a l (the identity restricted on dom(R)) 

then every function is pseudocontinuous. If (V i, j edom(R)) (R"-£i!=R"-fji.), 

then we are consistent with the common definition (see tZGl). 

Remark: If f is pseudocontinuous and <f,g> 6TTR, then, gene ral ly , g 

need not be pseudocontinuous as (R"£U)" 4 g(iM a g(j) has not to hold for 

i &. j. This is the reason fo r defining the following notion. 

Definition 2.12: A system of equivalences R is called quasicontinuous 

with respect to £ (where .£ is an equivalence defined on dom(R)) if it has 

the following two p rope r t ies : 

1) If i £ 3 then X=(dom(R"iit) ndam(RH*jt)) is a f igu re in both R"U* 
and R"i$. ((R"{i*)"X=X=(R"Jj})"X.) 

2) R"ii\ coincides with R"-{j} on the i n te rsec t i on . 

(R"tn/*X=R"-Lj$/*X.) If it is c lea r (from the context) what equivalence £ we 

keep in mind, we shall omit it from the quasicontinuity notion. 

The proof of the following theorem is quite easy and we leave it to the 

reader. 

Theorem 2.13: Let R be a quasicontinuous system of equivalences and let 

dom(R) be a semiset. If f is pseudocontinuous and <f,g> feTTR, then g is pseu­

docontinuous, too. 

The following theorem descr ibes the fact that by going to the system of 

power equivalences the quasicontinuity of the system of equivalences is saved. 

The easy proof of the theorem is left to the reader. 

Theorem 2.14: If R is a quasicontinuous system of equivalences, then 

the corresponding system of powerequivalences is quasicontinuous, too. (We 

define R9 on dom(R) by ( R ^ V f t W R ' W ) * . ) 

Now we prove a n o n t r i v i a l theorem. 

Theorem 2.15: Let R be a quasicontinuous real system of compact equi­

valences and let dom(R) be a semiset. If *. is a compact real equivalence on 

dom(R), then TTR is a compact real equivalence on the subclass of all pseu­

docontinuous functions. 

Proof: Let R and ^ be f igu res in .£. (such c must exist due to the 
ic\ 

assumption that R and % are real classes). For every i£dom(R) we have that 
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R"*(i} is a f i gu re in % and in accordance with the Vencovskd s Theorem 
tc,ft 

== is finer than R"H\ . Let X be a countable class dense in dom(R) (with 

.c,a 
respect to =§* ). Let us enumerate this class as X= -jx.jicFN?. Let a be an in-

{c^ 
finite set of pseudocontinuous functions (with respect to -£ ). We have to 

prove the existence of two different functions f, g such that f,gc a and 

<f,g> cTTR. In the set a there is an infinite subset a, such that 

(V?,g* a,)(f(x,) J* g(x,)). Similarly there is an infinite subset a 0&a, 
1 l te-Xjt L l l 

such that (Vf,g"6a2)(f(x2) -& g(x2)) and we follow by the recursion based 
{c, x̂ ^ 

on FN. Due to the prolongation axiom we obtain an infinite subset a" of a such 

that (Vf,gea")(\/x eX)(f(x) £ g(x)). Let us choose two different functions 

{c,x^ 

f,g©I and prove that <f,g>eTTR. We prolong the sequence -tx.jieFNfc and ap­

ply L.l.ll for a.=f(x.), b.=g(x.) and d.=x,. For every given t there is ft e *y 

( x taken from L.l.ll) such that t & xft , as X is dense in dom(R). We have 
icS 

f(x« ) -v g(x* ) and hence <f(x^ ),g(x>j )> e R"{xy|1 (as 2= is finer than 
*c>xt.J fc,x^ 

R"{x^| ). <f(t),g(t)> € R"4t'^ we obtain from x « & t and pseudocontinuity of 

f, g and quasicontinuity of R. 
The following example proves that the choice of f, g from the previous 

theorem (i.e. (VxeX)(f(x) & g(x))) was substantial. It does not suffice 
tc,x^ 

to require only ( Vx€ X)«f(x),g(x)>6RM-fx1). 

Example 2.16: Let ceN-FN and let us define R as follows: For oc e c A 

r. Deftfc^) we put Rn-ic^=VxV and for oc e c-Def(4c» we put R " i ^ = ^ . Let 

id 
us consider the real compact equivalence -i on dom(R)=c. R is a quasiconti-

tch 
nuous real system of compact equivalences. If we put f(x)=l and g(x)=2 (for 

every x« c) then both f and g are pseudocontinuous functions and for every 

xsOefOCc^) A C we have <f(x),g(x)>e R""[xL On the other hand, we have 

(Vxec-0efttcUX<f(x),g(x)>4R"-£x\) and hence <f,g>4TTR. 

The following theorem shows a nice behavior of equivalences of almost 

indiscernibility to the general product. 

Theorem 2.17: Let R be a real quasicontinuous system of equivalences of 

almost indiscernibility with a semiset domain.If 1 is a real compact equiva-
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lence on dom(R), then TT R restricted on the subclass of pseudocontinuous 

functions is an equivalence of almost i n d i s c e r n i b i l i t y . 

Proof: The reality and compactness of the considered equivalence fol­

lows from the previous theorem. To prove that any restriction on a subset of 

the domain (say a) is an equivalence of i n d i s c e r n i b i l i t y , we use the theorem 

of Vopenka and Vencovsk^ ( T . L 5 ) . We extend the considered equivalence on V-a 
2 

by adding (V-a) (to fulfil the assumption that the considered equivalence is 

defined on V) . Now it suffices to prove that fo r any two functions f,gca 

which are not equivalent there are subsets b, d of a containing the monads of 

f and g, respectively, and having disjoint figures. Let there be t e dom(R) 

such that < f ( t ) , g ( t ) > + R"-fct} and let us fix this t. Put a.= 4 f ( t ) ; f € a?. By 
our assumption, R"-tt} n at is an equivalence of i n d i s c e r n i b i l i t y (as R"it} is 

an equivalence of almost i n d i s c e r n i b i l i t y ) . By the theorem of VopeYika and Ven-
covska there are subsets bt, dt of a. such that (R"-Lt\)"-lf(t)} £ b,, 
( R " W ' { g ( t ) 5 c dt and ( R ' W ) " btr>(R"ft*)" dt=0. Now it suffices to put 

b= { h 4 a ; h ( t ) € b t ^ and d= {h ca ;h( t )c dtl. 

The following example proves that the assumption of the quasicontinuity 
of the system R is substantial. 

Exanple 2.18: Let oG c N-FN. Let us consider the following system R of 

equivalences of i n d i s c e r n i b i l i t y on ec . R"-C/31 = -Kft, A>j v(ot -A.$l ) (i.e. 

on the /5-th component the monads are ifil and at - - 1 / 3 $ ) . For J£ we take 
2 

oc . Constant functions are pseudocontinuous. If we consider the set of all 
constant functions, then we obtain an infinite set of elements such that no 

two d i f f e r e n t elements are near in the product equivalence - the constant 

functions with the values ft , f d i f f e r in R"4,pl and R"-l'yi . 

Remark: The assertions of Theorems 2.15, 2.17 become much more interes-

ting when they are applied on the system of power equivalences R to a given 

system R. Before doing so we recommend the reader to note the following com­

ments. To every set relation r such that dam(r)Sm a corresponding function 

f such that dom(f )=m and (V t €m ) ( f (t)=r"-ltTr) may be assigned (by a one-

one manner). We may then define the pseudocontinuity of set relations relati­
vely to the system R and the equivalence 4 as the pseudocontinuity of the 

corresponding functions with respect to the system of power-equivalences R^ 

and £ . Note that set functions are (in this set t ing ) pseudocontinuous iff 

they are pseudocontinuous as relations; moreover, they are near in the pro­
duct equivalence iff they are near in the product equivalence of the power-
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system as relations. (But in monads of functions there are also other relati­

ons - e.g. relations which are unions of two near functions.) 

The following theorem demonstrates the power of the assumption of the 

quasicontinuity of the system R. 

Theorem 2.19: If F is a pseudocontinuous function with respect to an e-

quivalence £ and a quasicontinuous system of equivalences R, then 

(Vx,y)(x£- y^((RM4x})"4F(x)$ = ( R M W < f F ( y » ). 

Proof: Let z e(RM4x!)H4F(x)i. We have F(x)s (R"{yi)MJF(y)J (pseudoconti-

nuity of F), hence F(y)e dom(R,,4x'.On dom(R"4yr) (quasicontinuity of R), 

zGdom(R"4x»ndom(R"4y$) (the intersection is a figure in both R"4x^ and 

R"4yS), F(y)€dom(R"4xl)ndom(R,,4yl) and thus z € (R,,4y5)"4F(y)l, as R"4xS and 

R'Hyl coincide on the intersection of domains. 

Corollary 2.20: If AJL, is an equivalence class of & , if R is a quasi-

continuous system of equivalences and if x • fHdom(R,,4rt);t 6 p*} then 

(yt,u^tu)((R
,,4tl)"€xl =(R"4iA)"4x}). 

Proof: Use the previous theorem for RAp, and F={x5x.V. 

Corollary 2.21: The generalized product of a quasicontinuous system R 

of equivalences described by the theorem 2.15 (the class of pseudocontinuous 

functions with the pointwise defined nearness) is the same as the generalized 

product of the quasicontinuous system IT S R obtained from R by the following 

description: IP' 4t^ is the equivalence composed from those monads which are 

the same in all R"4u^ where t tfe u. Formally: 

«x,y>,t>€Rs<x,y>^R , ,4ti&(Vu,u l.t)((R,,4t^),,4x5=(R,,4ui),,4xy). Moreover, 

we have u l t - » R ^ u U R ' W . 

Proof: Obvious. 

Due to the Vencovska's Theorem we know that if R is a system of compact 

equivalences which is a figure in -» then every element of this system R"4t$ 
4cJ 

is coarser than .=- . The following theorem describes a circumstance imply-
*c,tl 

ing that R"{t1 is even coarser than =» . 
4c 5 

Theorem 2.22« If R is a system of compact equivalences which is a fi­
gure in Sr and if p* is a monad in £> then (Vt,u 6 p. )(R"it)=R"iu\) ==*> 

4cl 4c} 
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«^(Vt6^)(-&n(dom(R^ti)) 2
SR» t ). 

ici 

Proof: R , ,4t)=rng(R/%^4. ) and hence it is a f igu re in & asR/(U, is. 

The following theorem and its corol lary concern the heredity property 

mentioned in the in t roduct ion. 

Theorem 2.23: If £ is an equivalence of almost i n d i s c e r n i b i l i t y and 

if -a is a compact real equivalence which is a semiset, then pseudocontinu-

ous functions from dom( J? ) to dom( i ) with the pointwise defined nearness 

form an equivalence of almost i n d i s c e r n i b i l i t y . 

Proof: Use the theorem on product (T.2.17) for the system R= ̂ *dom(* ). 

Corollary 2.24: If i , 3fc are equivalences of almost i n d i s c e r n i b i l i t y 

and if % is a semiset then pseudocontinuous functions with the nearness de­

fined pointwise form an equivalence of almost i n d i s c e r n i b i l i t y . 

The following example describes an equivalence of almost i n d i s c e r n i b i l i ­

ty which we have called in the introduct ion as a typical one. 

Example 2.25: Let us consider for oc € N-FN an equivalence of indiscer­

nibility on «c representing the segment [0,1] of real numbers. We use e.g. 

fi ~ X— (Vn€FN)(| p»-j-\/oo< 1/n) (where |/3 -y| fenotes the absolute va­

lue. We restrict this equivalence on the f igure of i r ra t i ona l monads (hence 

we obtain an equivalence of almost i n d i s c e r n i b i l i t y ) . If we consider the se­

miset of pseudocontinuous functions to the segment £0,1.] (i.e. <£ with the 

same nearness m ) with the nearness defined pointwise, we obtain (due to our 

theorems) an example of an equivalence of almost i n d i s c e r n i b i l i t y . 

§ 3. Restrictions of indiscemibilities. We devote the th i rd section to 
an investigation of the problem under what conditions an equivalence of almost 
i n d i s c e r n i b i l i t y is a restriction of an equivalence of i n d i s c e r n i b i l i t y . 

Remember that in the example 2.8 we have described an equivalence of al­

most i nd i sce rn ib i l i t y which is no restriction of any equivalence of indiscer­

nibility. The following theorem proves that in the case of semisets the si­

tuation is rather different. 

Theorem 3.1: If 4 is a semiset equivalence of almost i nd i s ce rn i b i l i t y 

having only a finite number of monads, then there is a set equivalence of in-

± .£ JL 9 

and a real semiset p such that w = w A p , 
Proof: Let us number the monads of « by 0,1,...,k-1. Let us define a 
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function F (being a real semiset) with dom(F)=dom( £ ) by the description 

F(x)= the number of the monad containing x. Then ( V u S d o m ( F ) ) ( F r u « V ) as 
£ A u is an equivalence of indiscernibility having only a finite number of 

monads and hence a set (see [Vj). By C.1.9 there is a set function f such 

that F=f/*dom(F). We may assume (without loss of gene ra l i t y ) that rng(f)=k 
and define t £. v s f ( t ) = f ( v ) . 

The following example proves that the usage of a parameter (obtained by 

applying the axiom of p ro longa t ion ) in the last theorem is substantial. 

Example 3.2: Let -fa jneFNj be a sequence of definable sets having a 

nontrivial monad (U, in & as its limit (i.e. if ia^joc e/35 and (2 € N-FN 

is a prolongation of the sequence, then there is a «g€ ft such that 
(VoC,o2 Cgr-FN)(aetf •» a—) .On this countable class, let us define an equiva­
lence of almost indiscernibility in such a way that to one monad we put all 

sets with the even indices and in the second one those sets with the odd 

ones. This equivalence of almost indiscernibility is a figure in & , but no 
equivalence of indiscernibility extending it is a figure in =S- . If it is a 

figure in m , then it has to be coarser than .£• (due to Vencovska's Theorem). 

Hence a^ , a^ , would be in the same monad foroc e N-FN and thus the same is 

valid for some ncFN contradicting the definition of the equivalence. 

The following theorem is useful for deciding whether a product equiva­

lence of almost indiscernibility is a restriction of an equivalence of indis­

cernibility. 

Theorem 3.3: Let & be a compact real equivalence and *fe an equivalen­

ce of almost indiscernibility. Let F, G be two Sd pseudocontinuous (w.r.t.lfe 

and £ ) functions such that dom(F)2dom( 4 ) and dom(G)2p"om(ail). Let sa be 

an equivalence of indiscernibility which is finer (on dom(.3t)) than &• (e.g. 

fir for a suitable c). If X is a countable class dense in dom( A ) with res-
Jo* 
pect to.CS ,then ( Vt Cdom( * ))(F(t)& G(t)) m (V t «X)(F(t) £ G(t)). 

Proof: •**& obvious. ̂ ss : Let tcdom( % ). From the density of X it 

follows that there is an infinite sequence -C x^ » 9C e ft} where/^e N-FN such 
that (VncFN)(x neX)gc(V*e/3 -FNXx^fiS t). -tF(x^),G(xo6); oc c/3J is a 

subset of dom(A ) (denote it a) as F, G are defined for every xe<;( &"{tl c 

C d o m ( » ) ) . *»Aa is an equivalence of indiscernibility and 

( V n « F N ) ( F ( x ) i G(x )). Hence by Robinson's Lemma there is a 3^6 ft -FN such 

that F(x v.)~ G(x ) . F ( t ) l » G ( t ) follows now from the pseudocontinuity of F, G. 
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Remark: The previous theorem should be compared with the example 2.16. 

Corollary 3.4: If an equivalence of almost ind i sce rn i b i l i t y is obtain­
ed as a product of the system •» *. dom( & ), where « is a restriction of an 

ind i sce rn i b i l i t y equivalence (say «- ) and m is a real compact equivalence 

which is a semiset, then this equivalence is a restriction of a suitable e-

quivalence of indisce rnibi l i ty . 

Proof: Let madom(ife ) be the set from the definition of TTR. Let X = 
= -fx.jifcFNjbe the countable class from T.3.3. On the class Y= {f;dom(f)=m &. 

8vrng(f)Sdom( ~» )}define equivalences i (i€FN) by the formula f i g s 

S f(x.) ac g(x.). Equivalences i are obviously equivalences o*f indiscernibi­

lity and we obtain the required equivalence as the inte rsec t ion of the count­

able systemti ;i&FNrdue to the previous theorem. This inte rsec t ion is an 

equivalence of ind i sce rn i b i l i t y due to tVj. 

Remark: Note that the "typical" equivalence of almost ind i sce rn i b i l i t y 

given in the example 2.25 is a restriction of a suitable equivalence of indis­

cernibility. 
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