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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

29 ,3 ( 1988 ) 

ADDITION OF I N I T I A L SEGMENTS I 

Antonfn SOCHOR 

Abstract: In the a l te rna t i ve set theory, fo r every real i n i t i a l seg
ment RfiN there i s e i the r £ c R wi th R= i<fr:(3oCG R,)n#£ f + o c i o r 
J « N~R wi th R=-taW $ ;(V^oc fcR ) # + o C < £$ where R = { £ * R ; ( V<* 6 R)# + 

+0C+16R}. This result can be used i n measure theory. More gene ral ly , we ex
tend addi t ion and subt ract ion to the system of a l l i n i t i a l segments of N and 
we invest igate proper t ies of these operations. In pa r t i cu la r , we descr ibe 
the behaviour of these operations on a l l i n i t i a l segments which are real 
c lasses. Further proper t ies of these operations can be found i n the fo l low ing 
paper [ S ] . 

Key words: A l te rna t i ve set theory, natu ral number, f i n i t e natu ral num
ber, i n i t i a l segment, real c lass, tf-semiset, S-semiset. 

Classif ication: Primary 03E70 

Secondary 03H15 

We use the not ions usual i n the a l t e rna t i ve set theory (AST; see f .V]) , 

i n pa r t i cu la r the symbols N and FN denote the class of a l l natu ral numbers 

and the class of a l l f i n i t e ( i n another terminology standard) natu ral numbers 

respectively. A class X i s ca l led a ST-semiset ( 6* -semiset resp.) i f there 

i s a sequence 4x ;n<*FNl w i th 

X= f K x n ; n f F N j (X= U t x ;nfcFNl resp.). 

Complete subclasses of N are called initial segments and cuts are initial seg

ments closed under the successor operation . 

The most important axiom of AST is the prolongation axiom i.e. the sta

tement 

(VF)((Fnc(F)&dom(F)=FN)-^(Jf)(Fnc(f)8cF9f)). 

Let us recall that every initial segment which is simultaneously sf-semiset 

and 6*-semiset is a set (cf. § 5 ch. II [Vl; this statement is a consequence 

of the prolongation axiom) and that the sole cut which is a set is the empty 

set 0 (this assertion is implied by induction accepted f o r sets). 

The system of real classes defined in [C-V3 plays an important role in 
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AST. In this paper we need only one property of real classes (proved in the 

cited a r t i c l e ) , namely that every initial segment which is simultaneously a 

subclass of a set and real, is either a Tf-semiset or a 6T-semiset. However, 

let us remind at least that all sets, & -semisets and 6 -semisets are real 
classes and that for every property $(z,Z,,...,Z ) in which only real clas

ses are quantified and for all real classes X,,...,X , the class 

U; #(x,X1,...,Xn)} 

is real, too. 

We use letters R, S, T and U to denote initial segments; the letters<s£ , 

($ ... denote natural numbers and the letters k, n and m are reserved for 
variables running through finite natural numbers. 

Following a Zlato§' s idea, we define for every initial segment R 

R'=Ru{R> 

i.e. we put R =R for every nonempty cut and <*/= oc +1 for each oC« N. Evid

ently R' is a nonempty initial segment and we have 

«*,€Re<sO+l6R'&R=«(#;(3oC6 R')#<cC$&(R=SsrR'=S')& 
&(R£S5 iR 'SS ' ) . 

We are going to define addition and subtraction on the system of all 

initial segments; to avoid misunderstanding, we use for the operation of sub

traction the symbol -r because our operation extends subtraction defined on 

natural numbers, however, it does not extend subtraction defined on the class 

of integers (see ( 2 ) ) which operation is denoted by the symbol - . (Let us 

mention that the symbol - is used in AST also to denote the difference of 

classes X-Y=-{ x eX;x t Y}. ) 

For every two initial segments R, S, we define their sum by 

R+S= C^;(Joe 6 R ' ) ( j p € S ' ) < # < « + / $ ? 

and their difference by 

R -S=-{^ ;( V ft € S ' ) # + / 3 s R? = 
= {* ; ( V / 5 6 S ' ) ( l o 0 6 R ) / J ^ o o & ^ & o c - / 3 } -

The class R T R plays an important role in our investigation and we are 

going to denote it by the symbol R+, i.e. we define (cf. ( 1 ) and ( 3c ) ) 

R+= •(•eR;(yoC£ R)oC +#+leR T. 

We say that an initial segment R is closed under the operation + iff 

(y<x,!36 R)oc +/36R. 

If a cut R is closed under the operation + , then R' is also closed under the 
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operation + , (because 0'= { O T is closed under + ).Let us mention thatiOi is 

closed under the operation + , however, it is no cut (and ioY= {0,U is not 

closed under + ). 

In the following we summarize some useful statements concerning the abo

ve defined operations s t a r t i ng with the t r i v i a l ones: 

(1) a) R5R+S and R-rSSR 

because O&S' for every S and since 

oc e R —*-(©O<ac+l+0&oo+lcR'). D 

b) R C S ~ * R T S = 0 

because for f i e S with ft £ R and every ^ € N we have 

* + ftz 0 * R&/Ses ' . O 

(2) The operations + and T defined above extend the arithmetical addi

t ion and subtraction and, moreover, for £ £ J e N we have 

In fact for every £ , p s N we have 

f i » ; # < £ + ? } -4<fr;(3<* * f ) ( 3 t f .6 J ) * < * + ? ? = 

={ * ;C3*e §' )(3'? s J ' ) * < % + v} = § +$, 
for every £ ^ 6 € N we have 

§-$=<*;*<§-$» =-t+;*+S<?J = *(*<*£$)<# + 
+ ir<§i=-C# ;(Vt «$')*+*<£» = §"*-? 

and the last statement is a t r i v i a l consequence of (lb). D 

(3) a) R+0=R=RxO and OT*R=0=0+. • 

b) (R+S)'=-V^;(3oC6 R')(3/3€ S')^.£oC+/3} 

(RrS)'-{^ ;(V/5 6 S')<#+/U R'? (assuming SfcR) 

(R+)'=-(/£;( VoCC. R')^+<tf€R'}. 

The statements are t r i v i a l consequences of the definitions, however, one has 

to distinguish whether the initial segments in question are sets or proper 

classes. D 

c) If S4=0, then 

R+S=-C#;(3oC€ R ' ) ( 3 / $ € S ) # £ < * + / $ J 

(R+S)'=-C.-^;(3oC6R')(3/3sS)^.4oC+/3+l} 

R-rS=-E<#»;(V/.ie S )^+ /J+16R} 

(R- rS) '= - \^ ; (V /?6 S ) ^ + (3eR} 

s+={^ ;(V/ie s)^+^+ieSl =s-rS n 
d) I f R 4=0 4= S, then 

R+s=-C^ ;(3oce R ) ( 3 p e s ) ^ ^ a c + / 3 + i K a 
(4) The operation + defined on the system of all initial segments is 

associative and commutative because of the associativity and commutativity 
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of the a r i thmet ica l add i t ion (and because of (3b ) ) . D 

(5) a) S&R+—> R+S=R=RvS 

because SSR impl ies by (3b) 

(V/3 6 S')(\feCeR') fi + <*,eR' 

and thus we get 

R + S S - C ^ J G O C 6 R ' ) i ^ ^ o c } = R 

and furthermore (3b) impl ies also the formula 

(Voce R X V t s ( R + ) ' ) o c + r e R . O 

b) R + c S - * * R c R + S . 

We have (R+)'c S' and thus there is £ e S' with tl ̂  (R+)' and by (3b) 

we get 

(Jote R')/3 + O C $ R'; 

this shows R'c (R+S)'. O 

c) (R+C S & R + 0 ) ~ * R-rSCR. 

For A e S with j5^ R+ there is << € R <see (3c)) so that aC+jJ+l ̂  R 

and *& being an element of R is no element of RTTS because /3+leS'. O 

d) If both R and S are cuts closed under the operation + , then 

R+S=RUS. 

According to (3b) we have 

(R+S)'=Ru S=(RuS)' because both R' and S' are closed under the opera

tion + . D 

(6) ( R T S ) T T = R T ( S + T ) . 

The formulae 

* 6 ( R - r S ) T T 

(Vr « V ) # + f e(RrS) 

(VesV ) (V(3e s ' ) # + t?+/UR 

(VcTe(T+s)')^+cT€R 

- 3 » 6 ( R T ( T + S ) ) . 

are equivalent by (3b) . D 

(7) I f RCT abd S c U , then 

R+S ST+U 

and 

R T U cT-rS. a 

(8) a) If SSR, then R-rS is the greatest T with T+SSR. 

The formulae , 

(RTS)+S5R 

(V^€(R-rS)')(V^3€S')^+/JeR' 

(V^t(V(?6S')(^+peR')^->(V^cS')^+^eR')l 
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are equivalent; assuming 
* eTsR&r^R-r-s, 

we are able to find A c S' with *t + B ^ R and i t is ir + /.?€ T+S because 

t + l 6 T ' ^ t + | 3 < ( r + l ) + l 3 . 

b) I f R s^O, then R+S is the smallest U with U-rS2R. 

The formulae 

(R+S)-.S£R 

and 

(Voce R)(V(5 € S')(3oC6R')oC +/3<oC+/S 

are equivalent and the second one is valid (put So =oO+l); supposing 

<£^ U ^ 6 R + S & R * 0 

we can f ind oCe R' and 13 6 S' with 

#<oG + /* &o£4-0 

and then 

0C-I6R&0C-I ^ U v S - D 

(9) a) The formulae 

R is a cut 

R+FN=R 

R-rFN=R 

are equivalent. To prove this assertion it is sufficient to realize that FN 

is the smallest nonempty cut. D 

b) For every 2 , £ +FN is the smallest cut containing £ and £ -r FN is 
the maximal cut not containing £ . 

These statemen ts are t r i v i a l consequences of a) and (la),(2),(5d), (6) 

and (8). O 

At the end of this paper we are going to give some examples of cuts R, S 

such that (RTTS)+SCR, however, for every R, S if there is T with T+S=R, then 
(RvS)+S=R; similar ly there are R, S with (R+S)*-SDR, however, for every R, 

S , if there is U with UvS=R, then (R+S)-rS=R. 
The statement (10) which is an immediate consequence of (8)) gives us a 

description of couples R, S for which the equalities (RTS)+S=R and (R+S)-rS= 

=R are true; the question whether there is a better description of such coup

les is left as an open problem in this paper. 

(10) a) If R T S + 0 , then (R-rS)+S=R iff R is the smallest T with 

T r S 2 R T S . 

b) I f R 4i0, then (R+S)xS=R i f f R is the greatest U with U+SSR+S. d 
(11) R-rS=$<$*;(Vr4 R)(-#K/fcf "•"if s*-

If S=0, then the assertion is t r i v ia l ; supposing S 4= 0 we can use (3c). 

If ^ S R T S and gf ̂  R» tnen $*< Y because R £<y and the assumption 
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*f-&-!%$ would imply ̂ - ^ e S ' and thus it would imply 

X =^+(ar-^)«.R 
according to the definition of R T S . If # ̂  RvS, then there is {3 e S with 

^+/*+l4 R. Evidently 

((-£+p+l)-#)-l=|»*S 
and therefore 

-i(Vy # R)(^<r&r-*-1# s>- D 

As a trivial consequence we get 

(12) R + = ^ e R ; ( V y * R)(*<ar*2r - *-l + R). O 
(13) a) If S4»0, then 

f+S4^ ;(3(3e S)#»-*f + /3* 
and 

and 

(f +S)'=<4;(3(3es')^f + /3J . D 
b) If S c | , then 

| TT S=Jf | T < f ; 0 < < T 8 u f - l $ s j 

(f-r S)'«^f T-«r;cf4sK 
If ^ e 9 T S , then 

(V/5eS')#+/3< f 
which implies £ -tJ*^S' and thence 

§-#;>o&|-#-i4s. 
On the other hand if 0 < < f & c f - l 4 s» t h e n (V/5e S' ) /3<cf and hence 

( £ T v T ) * / » £ n . a x ( £ , £ - (<?-£)) .< J 

for every f& C S'. D 

(.14) a) R S R and R i s a cut closed under the operation + . 

Really, if ^ , t f f i R + and i f cC € R, then 

oC +(#+ tT)+K ( « + ^ + D + f + l e R 

because oC+^+ltR- If R+=0, then i t i s a cut tr iv ia l ly ; otherwise OeR+ i . e . 

(VeOC R) 0+oc+lcR 

which implies 

(Vo£6R)(oc+l)+l€R 

i . e . l e R and hence R i s a cut. Q 

b) R+=0 i f f R i s a se t . 

If R+=0, then either R=0 or there is o6 e R with oc +1 4 R and in the 

second case it is R= o& +1. D 

c) If a cut R itself is closed under the operation + , then R=R+. 0 

(15) <& +tfeR+S—»(^eR v^feS). 

If & 4 R and Z 4 s» *hen for every oC 6 R' and every p * S' we have 

eC .6 <&& (l^^rand thus 
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oc + (i £ fr+ <r 
which implies *!h+t ^R+S. Q 

Let us note that the implication ^ ^ R + s - * ^ y 4 R)Gcf • S)l5*> 

>2f+cf does not hold (e.g. let us choose | + FN and put R= £*T FN,S=FN). 

However, the following result is available. 

(16) If R is a nonempty cut, then 

• + R+R—* <3t % R)*f +t?<i?'. 

To prove our implication let us choose if such that 

2%<<d>& 2te+1). 

Supposing t 6 R we would get t +1 € R which would imply 
&4 2(^+1)6 R+R 

and this asse r t ion cont radic ts the assumption ^ 4 . R+R. D 

In pa r t i cu la r , if R is a cut closed under the operat ion + , then the im

plication 

<#4 R-*Qr £ R) 2t S^ 
is t rue . 

Before we continue our list of proper t ies of the operations + and 

we are going to state the main theorem of the paper. 

Theorem. If R is a real class, then there is £ « N so that 

R= f +R+ or R= £ -r R+. 

Proof. We are going to assume R 4s 0, otherwise there is (by (14)) 06 

with R=oC =oc+R . At f i r s t let us suppose that there is a sequence 

*-#» jneFNiwith 

Put 

R= O í <*r-n;n6FN?. 

* = ì* ~г#
 t
 . 

n n n+1 
We have R+R+S R f i i > 0 (see ( 5 ) ) and thus R £ ^ -* R+ according to ( 8 ) . I f 

t J n e R+ f o r a l l nGFN, then fo r every n we have ( c f . (14)) 

n 
2 1 t . € R + . 
k=0 K 

For every f 4 R there is n € FN with ^ n + 1 -S T and consequently f o r this n 
the equality 

*>tr-&"" 
holds. We have proved the implication 
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(VnfcFN) <* nCR
+~* R= ̂ T R + 

and therefore we are done under the assumption (V n) % ft R . Hence suppo

sing R is a jff-semiset we can also assume without loss of genera l i ty that 
Xn i R

+ fo r all n€FN. 

If v« f.-Crn:neFNf, then 

(VnCFN ) * n + 1 < * n - V 

and thus 

CVr4 R)y -v-14 R+ 
and thence by (12) we get V e R . We have proved 

R+= Oi* n;n*FH} 
because we assume 

(VnfiFN) t R 4 R
+ . 

Using the last mentioned assumption, fo r every ne FN we can choose 

<sC»n6R' with 

cC + V 4 R . 
n n » 

R is supposed to be a $f-semiset and it is no set because R 4s 0, hence R=R' 

is no Gf-semiset, which proves 
LKc6 ;n€FN}cR. 

Therefore we are able to choose % e R with 

(VneFN) < * n < $ . 

Evidently £ +R Se R (we can use (5 ) and ( 7 ) ) . Let us suppose that there is 
tc € R with o& ̂ f +R . In this case we have 

oC- § + R+= fMirn;n6FN? 

and hence there is nCFN with 
eC- £ £ t * 

» n 

and furthermore we get 

eCn+*n< I +(<*-£ )=tx;$ R 

which contradicts the assumption c£ + X k R. We have proved our statement 

f o r all 3f-semisets. 

Now, let us assume that there is a sequence •?*#• ;n6FNj with 

R= U-C*n,neFN?. 

If there is n* FN with R= ^ + R , then we are done and thus we can suppose 
without loss of genera l i ty that fo r every n 6FN, 

For every ve ГK 
<# ,-

п+1 
*n,nв 

* П * 
FN}we 

R+. 

have 

* n + v + l .s * n + * n = n+1 

and therefore V € R according to the definition of R (because R= 

= C K ^ neFN$) . We have proved again 

R+= rU«Cn>n-.FNj. _ 5 0 8_ 



Since we are assuming t n 4 R+» f o r e v e r v n c F N we can choose oCn«R 

wi th 

R i s supposed to be a 6T-semiset and i t i s no set because 

(VnCFN) ^ n < ^ n + 1 

and therefore R i s no j f - sem ise t , which proves 

R 4 = 0 •CoC n +^ n ,n6FN} 

and thence we are able to choose Q 4 R wi th 

(*n£FN)f * * „ + * , . 

Evidently R=RT*R S S T R according to (5) and (7). Supposing the exi

stence of y ^ R with 

(VcC6R+)^+o^ < § 
we would get 9 - <y* ̂  R an(- hence there would be n £ FN wi th 

"„*f-r. 
however, the relation 

*n+*n*r+(F--')=-8 

would give us a cont rad ic t ion (we have aC < y because °^n*R and ̂  ^ R)« 

We have shown our statement for all 6*-semisets. 

If a segment R is a real class, then there are only three possibilities: 
ei the r R is a tjp-semiset or R is a Cf-semiset or R=N. Previously we dealt 

with two possibilities only, however, the remaining one is t r i v i a l : we have 
N+=N and N=0+N+. O 

Let us note that the assumption of the reality of the cut R in the just 

proved theorem is essential. To show it we are going to construct a (non-re

al) cut R with R+=FN such that there is no ̂  N with ei the r R= £ +FN or R= 

= £ T FN. 

Let { ^ j V c I L l b e a decreasing sequence with 
FN= A « C ^ ; V € J X i 

and let ̂  be a wel l -o rde r ing of the universal class V. We shall construct by 

t r a n s f i n i t e induction an increasing sequence {oC *; >> e XL! and an increasing 

function V — * T > defined on SL in such a way that for every >>,^cjQLwe have 

(*.) i>< (L^^<<*^<oO^+fr~*oC^ + '9%~ -

We put oc=0. If ec^ is constructed (treil), then we choose oc^, as 
the smallest natu ral number 06 (in the sense of the we l l -o rde r ing d. ) such 
that there is 5* € JO. with 
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such a choice is possible because the sequence $*&,; V e .0.1 is supposed to 

be decreasing! we define if+1 as the smallest 6 f > ^ with the above property. 

Let 4? 6-0. be a limit and let the sequence -CoĈ ; V€JL$ be constructed 

so that (j|c) holds for each V , fju 6 *enJl. The class if nil is at most 
countable and therefore there is an increasing sequence -in ;n«FN|f with 

lKi;n;neFN*- L K r n i l ) . 

2 By the prolongation axiom there are functions f,gSN with 

(Vn£FN)(f(n)-oC/ & g(n)= <&-). 
v n %n 

We choose *€&- U *Tn;ncFN* and using (*) there is cT$ FN so that 

(V<a,«cf)(Vye^)(g(^)2'^o\ f(y)<f(ft)<f(^)+g((*)*f(v)+g(v)). 

For every i> 6 C A JI there is ne FN with •>> < t and thus 

CL -* oC -cf(d*)<f(d*)+A A f(cT)+g(<f)tf oC + # - *oC +'&-
V *n ^ ^n "n ^ *̂  n 

i.e. we have shown 

<3«* XV? e (Vr%&))(oCv«*<t*+'Ûfc<é:*Cf + &p) 

and we choose oc^ as the smallest *C (in the wel l-order ing ^ ) with the pro

perty in question. 

Evidently 

R=foC;(Jye Jl)a6 £ ooy? 
is a cut because 

( W e i l ) ( « * < « ^ + 1 ) - * (Voce R)<*+ieR 

and furthermore the formula 
(VV€il) ^y#R + 

is implied by the condition (afc) and therefore the equality 

R+=FN 

is true. 

The sequences 

4 * ^ ;y ellwand -Coê + ̂ ; y e SL} 

are monotonous and the equality 
R=-Coo;(Vyeil)oc-<oc^+^J 

is a consequence of the condition (#.), suitable choices and of the assumption 

F N = f l - C ^ ; V e i l 5 

Thus R£of +<#» is neither a ar-semiset nor a Gf-semiset and therefore it is 
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no real class, hence it can be expressed neither in the form f +FN nor in 

the form £ -jr FN because all classes expressible in these forms are real. 

Our theorem shows that every real cut is either of the form f +R or of 

the form J r R where R is a cut closed under the operation + (cf. (14)).The 

following results deal with the uniqueness of these characteristics. 

(17) Let R, S be cuts closed under the operation + and let R£S and 

S S $ * R 4 - . 0 * S . 

a) If | +R= £ +S, then 

R=S and f «r £ * R & $ r £ * R 

which implies -|-.* 1 • 

Without loss of generality we can suppose C £ £ (which implies C *r £ = 

=06 R). Since £ c fc +R=C +S we can fix p e S with 

Under the assumption C £ £ the implication 

f +R= J + S - + R C S 

is trivial. Supposing Res we can find *t €. S so that y ^ R* Evidently, 

% + r # ? +R. 
however, this formula contradicts the formula 

% + r *S* /3 + 2r*£+s. 

We have proved R=S and consequently £ r J £ /* 6 R. 

We want to show further the implication 

( f T $ € R & $ T f € R f t R f i $ n $ ) — * 4 * 1 ' 
Without loss of generality we can assume C «& S because 

i - i iff | ^ i . 

I t is £ - £ € R and thus for every nCFN we have 

n(f -J)€R 
because R is supposed to be closed under the operation + and therefore £ 4* R 
guarantees moreover 

nCf-SX? • 
Thus we get 

0*n(l-l)6^-L1<|=l 

which proves 4-* -5» 1. 

b) I f £ -r R= J v S, then 

R=S and £ r j € R A. J - r g * R 

which implies - * - » l ies -ç- i l 

- 511 



Again we can suppose C 4 g and this assumption and the equality £ -r R= 
= | T S imply S£R by ( 13 ) . Assuming ScR we can fix 0 « f « R with if-I £ S 
and according to (13) we get 

For each oO € R we have «C +<f€ R and then 

$+«,£($ T<f)+(<f + *) < § 
and therefore the assumption Sc R implies J C f r R which contradicts 

§ ^ J T S . We have shown R=S. Furthermore we have £ 4 $ T R - £ T R and 

therefore there is «CC R such that P <<£ +o& i.e. £ - £ * R* D 

(18) For every £ , £ e N and for all nonempty cuts R, S closed under the 

operation + we have 

f +R + £-rS. 

Let us assume R, S are nonempty cuts closed under the operation + and let 

^ +R= £ T S. We have £ < J because 

f 6 f +R= J -r S & § 4 £ - r S . 

If RcS, then there is ye S with f4 R. By ( 1 3 ) 

§ +y4f +R=^S. 
Thus there is fl ft S with 

S + r + / » * ? • 
S is assumed to be closed under + and thereforey + /5 6 S which implies 

- a contradiction. 

If SCR, then we can fix «C € R such that cC d S. In this case 
5 - c C e | - r S = f + R 

is implied by (13 ) ; however, the last formula together with the assumption R 
is closed under the operation + guarantees 

£ = ( £ - < * ) + < * 6 |+R. 
We have shown that our assumptions imply J £ C T S, which is absurd. 

We have proved R=S. If C - P € R, then $ - £ +(£ - £ ) would be an element 

of € +R= £ v S, this proves J - £if R. Thence we can choose tf jf R with 2cf< 
< ̂  - £ . Furthermore we have 

I +r*£vR= £+R 
(because (**c§ R ) f + * + * < £ + 2 * £ £+(£-£ )= £ ) , 
this contradicts (13 ) . Q 

The above stated .theorem (together with (14 ) ) gives an importance to the 

results concerning initial segments of the form £ +R and £ T R where R is a 

cut closed under the operation + (cf. e.g. the following resul ts ) because 
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investigating initial segments of those forms we deal with all real initial 

segments. 

(19) Let £ , C€ N and let R and S be cuts closed under the operation 

+ . Then 

a) (f+R)+(£+S) = < - C L ^ ( £ + p + S ifRSS 

because using (4) and (5d) we have 

( f +R)+(J +S)=(f +5 )+(R+S)=( f + % )+(R US). P 
b) I f S S { , then 

_ (£+5)+R i f SCR 
(g+R)+(C T S ) - c T ^ ^ 

* ^ ^ - - ( f + p - r S i f R S S . 

For every R we have 

(£+R)+( J - r S ) s ( f + R ) + p =(£ +g)+R by (1), (4) and (7). 

We have to prove the converse inclusion under the assumption SCR. Le't 

us fix <f with 

<r + sfccf-6$:&<reii 
(such a choice is possible because we assumed SS { ) . We have R + 0 and the

refore (cf. (13)) 

($+f )+R=**;Se*« R)<#«:f+£+<*?. 
For every pc € R we have (using (3)) 

f +$+cC£(f + <*+<?)+($-<T)<l(g +R)+(9-rS), 
because oC + <$*€ R (and thus ^ +cC+<f€£+R) and because $ - C T C ^ T S ) ' 

according to (13). We have proved 

ScR~* ( f +J)+RSr(f +R)+( J r S). 

Now le t us assume RfiS and let 

^ I ( ^ R W J T S ) . 

There are tf « ( f +R)' and 3T € ( <J-r S) ' so that *0*-<if+i? a n d thus accor

ding to (13) there are cC 4 R' and <T<|i S with f & C such that 

* £f +cc&x = $ -cf , 
however, using (13) again, we get 

<fr< ^+7tif+oc+(p^)-(f + J)-(cr-oc)«((f+pT.s)', 
because cf-oC-^S (S being closed under the operation + ). We have proved 

(f +R)+(£v S)S(f +p-rS. 

To prove the converse inclusion it is sufficient to realize that for e-

very </* with 0 < d>$ S we have (cf. (13); sT-l {. S because S is a cut) 

(£ + p-r<f.*§ + (£ T-<f)k£«(|+R)'*U£ -r<r)£(£-rS) -
and to use (3c). O 
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c) I f R S 9 and S c £ , then 

^~ ( £ + ? ) • R i f SgR 
( € • R ) + ( $ ^ S ) = C T ^ 

r ^ ^ ^ ( f + p - r S i f R £ S . 

According to (4) we can assume R£S and we get 

( J r R ) + ( $ T S ) S | + ( f c - r S)=(f + £ ) • S 

as a consequence of (3a), (7) and (19b). I f <?$ S, then there is X ^ S with 

2X£<F (cf. (16)) and 

(f +J)^if£(f r* )+(J^tr)*.f • T « ( f •s)s(fT- R)'& 
«.(§-»• i:)*(S-r S)' 

follows by (7) and (13). Therefore using (3b) and again (13), we obtain 

( ( § + $ ) - r S ) ' f f ( ( f T R ) + ( { T S ) ) ' 

i .e . 

( f + J ) x S S ( f • R ) + ( $ T S ) . D 

d) I f ^ - rSSf+R, then 

^ ^ ( € • ? )+R i f S£R 
( S + R ) T ( J + S 1 - C 

* " " ^ ( J T P T S i f R c S . 

Since £ft ($+S)'&(f+R)', we are able to fix 3 € R ' with 

% * f + * . 
I f ^ • ( f • 9 )+R, then there is oC € R' with ^ < ( £ • £ ) + ©c and for e-

very p 6 S' we have 

< * + ( * + £ ) < ( £ • £ )+od+J + / 3 . £ f +oC+«C+/3 . 

Assuming SSR we get Z + «C +/3 £ R'which implies 

f + 3 + o c + / 3 c ( f + R ) ' 

and this guarantees 

" f r+($+(* )« f +R. 

We have proved 

( f • $ )+R£(f+R)-r ( f+S) . 
The converse inclusion is t r i v i a l , since for every -#* , the formula 

(Vp€ s')(3tsc e R ) ^ + j:+/3< f + »6 
implies 

(3ctCR') < * < ( £ • £ )+oC/ 

and thus the formula in question implies even the formula 

**€(£ • £ )+R. 

Let us deal with the case RcS. By (13) every element of ( f -r J )^S is 

of the form ( f • £ ) • S where 0-< J&xf-l ̂  S. For such <T and every 

|3 fiS we have 
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((£ T ? )T<f) +(9 +/5)^(f +^)TQT-^)^| + S6 
( i t is (l£(f). We have shown the inclusion 

( £ T £ )TSS(£+R)T (£+S). 

If # £ ( f ? { ) r S , then there is p e S' with 

* + /& * f T £ 
and thus 

*+(£+(*)2r£ . 

Choosing f̂ £ S with f̂ ̂t R we get 
# + ( $ + / * ) + r 2 f + y • f +R-

Since C +(£ +^y) C f + S , we ob tain 

4 4 (f+R)-r(£+S), 
thus we have shown the inc lus ion we had to prove. P 

e) I f S £ $ and i f ( £ T S ) S f + R , then 

^ ( 9 r f H if ScR 
( ^ R ) T ( J T S)=CL 

^ ^ ( J T £ )+S, if RCS. 
At f irs t let us prove (assuming RuS4*0) that there is X* R<->s witn 

£ * f + T . 
If ̂ < ̂ ( f - f )f Rfs> then there is ^ ^ R u S such that 

£+2<fr<£ 

(RuS being a cu t closed under the opera t ion + ) and therefore fo r each 

(3 € S' we have 

£ +<#+/*< f+2<$<£ 

and hence 6 + •$«( C r S). Furthermore \ + *fr $ £ +R holds trivially and the

se fac ts con t radic t our assumptions. We have shown that 

(f T ? )+$-£ | + T 
where of fi R i /S . 

For every oC <5 R', /3 * S and every cT with d-6 J $t rf*4 s we nave 

(f Tf )+oc+^)+(^-<D^((f T?)+p+oc-Qr-jS)-6§+r+oc-(cf-/3). 
Evidently (<f-l)~/S 2 0 i.e. <f-/J>0. If f c R, then ̂  +O6*R'. If T € S, 

then < . f -£-tr2T0 and therefore in both cases we get 

(( f T ? )+<* + f*)+(?-<T)e<f+R)' 
and using (13) we obtain the inclusion 

(£ TJ)+(RI/S)S(£ +R)-i-(f T S ) . 

I f # 4 ( f T £ )+(Rv/S), then there is y + R u S so t h a t 

( f T P + 2 T < * 
according to (16) and fu r the r we can choose c f > 0 so that 
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(because S c C ) and thus we get 

<*+($v<r )*(§-rp+2r+(?-«r)fcf+r4 §+R-
To prove the inclusion 

( f + R ) v ( J T S)S( f r f )+(RuS) 

i t is sufficient to apply (13). n 

f ) I f R S f and i f £ +S S | T R, then 

^ ( ? T J ) T R , i t SSR 
(9-rR)v(C+S)=CT r 

r r ^ ^ ( § T p T S , ifRHS. 

Under the assumption R\/S=0, our assertion is t r i v i a l . Assuming RuS-^O, 
let us realize at first that 

£+(Rt/5)Sg 
i.e. the formula 

(V<**tO(V(3€ S')J+<K + ̂ 4 f 
is a consequence of (C+S) fi £vR. The equalities 

(£-*-R)v(?+S)= f T(R+(£+S))=£ T* (£+(R+S))=f V(£+(RUS))= 
=(|+0)v (£+(RoS))=( £ T-f ) T-(RUS) 

are consequences of (6),(4),(5d),(l) and (19d). D 
9) If R S £ , S c J and if J T S £ fxR, then 

. ( 2 T 5 : ) T R , if SCR 
(JTR)T(?TS)< r r 

X ^"Mfv£)+S, itRcS. 

If ScR, then the equalities 
(f T R) v ( $ v S)= J v (R+( £ T- S))= f — (J +R)=( p T o ) T ( J +R)= 

=(f -r$)vR 
hold according to (6),(19b),(l) and (19f). Supposing RcS we get 

(f -r R ) T ( J T S ) = f v (R+(fT S))= f v(£-rS)=(f+0)-r ($ v S)= 

= ( f v f )+S 
by (6),(19b),(l) and (19e). 

We have claimed that there are cuts R, S and!?, S*such that 

(R TS)+S^R and (R+S)v^% R, 
using the last statement we can construct such cuts quite easily. If TcUcC 
are cuts closed under the operation + , then putting 

R= f +T S= f T T 
"R= f T T S- {TT 
?f= f +T S=U 
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we have 

(R T S)+S # R (R+S) -r S=R 

( R T S ) + S = R (R+S)T-"5*R* 

( R T S ) + ? * R (R+S)TS4FRT. 

In fact, using (19) we get 

((RT S)+S=((|+T)T(J TT))+(g-r T)=T+(frT)=fTT^R(R+S)xS= 

(R+S)T S=((£+T)+(|-r T))-r(£ T-T)=(2| T T ) T ( | T T ) = f +T=R 

(RT"s)+S=((fTT)T(^T T))+(£T T)=T+(£T< T)=f-r- T=R 

K ) T ^ ( ( { T T ) + ( ^ T T ) ) r ( f T T)=(2f T T) T (f -r T)= § +T 4-TT 

( ^ T S ) + ? = ( ( ^ + T ) T U ) + U = ( ^ T U)+U= f T U * # 

CR+S)-r?=((|+T)+U)TU=(^+U)-TU= f +U+f. 
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