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COMMENTATIONES MATHEMATICAE UNIVERSTATIS CAROLINAE 

29,3 (1988) 

ADDITION OF INITIAL SEGMENTS II 

Antonin SOCHOR 

Abstract: In the previous paper [S] we extended addition and subtract­
ion to the system of all initial segments of N. In this article we continue 
in the investigation of properties of these operations and we describe some 
examples. » 

Key words: Alternative set theory, natural number, finite natural num­
ber, initial segment, •jr-semiset, tf-semiset. 

Classification: Primary 03E70 

Secondary 03H15 

This paper is a direct continuation of the article [ST . 

We use the notation usual in the alternative set theory (see LV3); comp­

lete subclasses of N are called initial segments and cuts are initial seg­

ments closed under the successor operation; the letters R, S and T are reser­

ved for variables running through initial segments. The results of the paper 

iSl are cited using the number of the result in question only; we numer the 

results of the present article in accordance with [Si, 

For every two initial segments R, S we define (see C S J ) 

R'=Ru*R* 

R+S=--.*;(.3cCC R ' ) ( . 5 / S s S ' ) ^ " < o C + / 3 ? 

R T S = ^ ; ( V / 1 S S')^+t3e R} 

R+=i<(h;(VoC6 R')l>+oC6Rl*=R -T*R. 

The magnitude of the class R determines considerably the behaviour of 

addition and subtraction on the class R (see e.g. (5)). The following result 

helps us to determine the magnitude of the cut R+. 

(20) a) (R')+=R+=(R+)+, 

to prove this assertion it is sufficient to use the definition of R and (14) .0 

b) (R+S)+=R+u S+. 

For every f & (R+S)' there are o c s R' and (3 « S' such that t £ aC + (I 

( c f . (3b ) ) ; furthermore, fo r every *&& R+u S+ e i ther - v r+oce R or $ + [ 3 s 5 
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and therefore (cf. ( 3 c ) ) 

<#»+f £*£+<* +/&CR+S. 
I f -#»4 R+ i/S+ then there is & 4 R+i/ S+ with 2&£ <& (see (14) and 

(16)) and using the definitions of R+ and S+ we can find aCf iR'and f i g S' 

with 

ot + # 4 R & ( * + $ 4 s 
and hence by (15) we get 

ac + /a +-£>(<*+#)+(/$ +£) 4 R+sg.oc+/5c (R+s)'. D 
c) Se R ~ * (R - r S)+ =R+U S+. 

Let # c R+US+ and let t € ( R r S ) ' ( i . e . (V /§C S')T?+]5 € R'). We want to 

show i r + t i R T-S, i .e . that for every p € S' i t is 

( # + * ) + £ € R. 

However, this is t r i v i a l in both cases: i f n ^ C S , thena^+/3cS and thence 

$ + /J +16 S' from which 

# + ( ! +1+Tf€ R' 

follows. I f ^ t 5 R + then i-t i s suff icient to use the definit ion of R+ because 

t J + p c R ' . ^ _ 

I f # 4 R+I^S+, then we can again choose <# 4 R+<-/S+ with 2 ^ ^ - ^ and 

further we are able to f i x (3 c S' with / l + # 4 s - Without loss of generality 

we can assume / I + # € R because 

R=S~»(R-rS)+ =(R+)+ =R+ . 

Therefore we are able to f i x moreover cC € R' with 

/ 1 + * < < J C & O C + ¥ 4 R . 

The natural number oC - (/3 +«5») is an element of ( R r S ) ' because for every 

jT c S' we have / J * /3 + *3& and therefore 

oC - ( /3+#)+/ i £oCCR'. 
However, 

(*- (/3+£)+*)+(? *oC + i?4R, 
which implies 

<sC-(/3+#)+'£ 4 R ~ s 

and consequently ^» 4 ^ T S)+. £J 

The last result and (5) imply the equality 

(R+S)-rS+=R+S 

for all initial segments and if SftR, then we get moreover 

(R-rS)+S+=R-rS. 

Now we are going to investigate the behaviour of the operations + and -y for 

monotonous systems of initial segments. 
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(21) a) If for every ntfFN we have 

then 
n— n+1*" п - n + ľ 

U í Rn;n€ FN?+ Uí Sn;n6 FNj= Ui Rn+Sn;n€ FNÍ. D 

b) I f for each ngFN we have 

then 

R n + l £ R
n « - S n £ S n + P 

A4Rn;n£FNjr U -£ Sn;n*FN{=n i% ** Sn;n€ FN*, 
because the fo l lowing formulas are equivalent: 

#<S( 0-CRn;n€FN * - r C j i S n ; n c f N \ ) 

( V n e F N ) ( \ / / 3 e S n ) ^ + /3 6 0-fRm;m€FNj 

( V n *FN)( V/3 6 Sn)( VmeFN)^+ /^e Rm 

and the above stated formulae are equivalent furthermore to the formulae 
( V n t F N ) ( V / 3 c S n ) $ . + ( . i * Rn 

^ e O j R n T Sn ;n€FN^ 

because the systems of R s and S s are supposed to be monotonous, ( in de­

t a i l : Let n,mgFN be given and l e t 

( V k € F N ) ( t / £ 6 S^)#+/3fcRk 

ho ld . I f m£n , then for every (S c S' we have 

^ + / 3, .R n cR r a ; 

i f n£m, then S c s and thus ' n m 

( V / 3 € S n ) * + / 3 e R m 

fo l lows from 

iVfieSjfi+fie.RJ). D 
I f for every neFN we have 

R e. R , & S , £-S (L T , c T , n - n + 1 * n + 1 - n * n+ l~ n» 
then the formulae 

and 

C-(Rn-rSn;n6FN?CiyíRn;n€FNJ--0<Sn;n«FN} 

0 - ł T n ; П e F N Ï + П 4 " S n ; n f t F N ^ П U n + S n ; П € F N Î 

are trivial consequences of (7), however, the following examples show that 
these assertions cannot be strengthened to equalities. 

Choosing the sequences ^i^jncFN* and -fr ;neFN£ and P e N with 

*n"-"*n +l*
F N*'*n +l-' *"n *

 F N * + o < f *• ( Vn* FN) *n * f 
and putting 

R-f+04;*n;nfcFN} 

S
n
=^-rҒN 
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*n'í + %+ ř N 

S= UťKniП íFN, 

T п = ( ş - Г n ) ^ Ғ N 

we get 

U^R-rSn;n6FN}cR -r n -iSn;ncFN? 

U ÍRn-r S;n « FN } C U{ Rn;ne FNl -r S 

and 

a4Tn;n«FN? +S C/HTn+S;n*FN? 

(and the in i t ia l segments in question are nonempty cuts with S c R 6 S£R ). 

In fact, we have 

f 6 R-rO-(Sn;n<cFN? = (c.+OV*n;neFN) T f M ^ n c F N ? 

and 

fe*R-r(*nTFN)SR-r*n+1; 
furthermore 

£ f i U-CRn;n6FN}T S 

and on the other hand, 

fc*Rn-S 

because 

f. + r i 4 R . f **n+l i n 

To prove the last claim let us realize that for every n^FN it is 

f = ( f -W + * i » i«V s 

and on the other hand, assuming 

£€ O -CTn;n<;FNi+S 

one could find oc , (3 with 

«ts(fUTn;n«FN$)'= ( W ^ n €FN |& fi G S'=S&£<CV + ^ . 

Thus there would be n iFN with 

£<* +*n> 
which contradicts the choice of the class T . 

If R and S are real classes, then the classes R+S and R T S are real, 

too. In other words, if R and S belong to the system of all jr-semisets and 

C'-semi sets, then R+S and R r S belong to the same system. Furthermore, if 

we know whether R is a 3f-semiset or a e'-semiset and whether S is a or -semi-

set or a *C~semiset, then we can in some cases decide whether R+S ( R T S res­

p e c t i v e l y ) is a cr-semiset or a *>-semiset. Let us note that all possibili­

ties which are not excluded by the following statement can be realized. 

(22 ) a) If R and S are -TT-semiset ( € -semiset r e s p e c t i v e l y ) , then R+S 

is also a it -semiset ( Gf -semiset r e s p e c t i v e l y ) . Let 
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R= n * r n ; n c F N $ * S = m ^ n ; ^ 
Evidently 

R+Ssn -Cr n
+ ^ n ; n 6 Pa­

using the prolongation axiom we can f i x monotonous functions f , g with 

(VneFN)( f (n)= y n&g(n)=crn ) . 

I f 

^eOi^O^jneFNi 

then there is ^ ^ FN such that 

(Vv .s^)^<f(v)+g(P) 
by overspill. Evidently 

i(^)«(mrn5
nsFNP^9((iv)s(ri{<rn;n6FNi)' 

and therefore 

-#*< f(^i)+g(^t) 

is an element of R+S. The second assertion is a trivial consequence of (21a)..Q 

b) If R is a or-semiset and S is a Sf-semiset, then R-*- S is a ̂ -semi-

set and S rR is a tf-semiset. 

The statement (21b) implies the first assertion. Let 

R=ntrn;n«FNUS=U</Jn;n«FN>8l(VnsFN)(Jln<(Jn+1arr|+1,jrn). 
The inclusion 

S-rRcU-(f1n-rrn;n£FN^ 

follows from (7). According to the prolongation axiom we are able to choose 

monotonous functions f, g so that 

(VneFN)(f(n)=rn&g(n)=/3n). 

Let 

**U{/3n-rrn;n€FN} 

be given. Using overspill we can find ftt̂  FN with 

(Vv *(4,)*>g(v)-rf(T>). 

Obviously 

0(fir)4 S&f(ttc)6R' 

and thus 

W((t*)jg((-v) 

implies ^ S T R . Q 

The following six examples confirm our claim that all possibilities which 

are not excluded by the last statement can be realized. 

At first let us realize that if R is a ̂f -semiset ( €T -semiset respecti­

vely), then for every £ , the initial segment £ +R is a ̂ -semiset ( S -se­

miset respectively) and C 7 R is a QT-semiset ( ir-semiset respectively). 
If R and S are cuts closed under the operation +, then 
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^* R, if S£R 
R+S= CL 

^ s S, if RCS 

and thus assuming that R is a 3r~semiset and S is a 6-semiset we see that 
the sum of a ar-semiset and 6 -semiset can be sometimes a JT-semiset and at 
some other time a Cf-semiset. 

Furthermore we have 

R v R=R+=R and S ? S+=S+=S 
and moreover for every P with 

RuS ft £ 
we get 

( J T R ) T ( J T R)=( | v R)+=R+=R 
and 

(f T S ) r ( f r S)=(^--rS)+=S+=S 
according to (21) (and (14)) and hence neither the system of all ar-semisets 
nor the system of all tf-semisets is closed under the operation T . 

In (19a) - (19c) we have described the class R+S under the assumption 
that both R and S are real. The following four results can be considered as a 
description of R+S, too: however, now we replace the assumption of reality of 
S by the assumption that S is closed under the operation + (we have S=S in 
this case). 

(23) If 
R= <Mr n i n € F N $ 

and i f there is T « S+ such that 

(VncFN)r0T rn s * . 
then 

R+S=To+S. 
The inclusion 

R+SS^+S 

is a t r i v i a l consequence of (7). Let f be a monotonous function such that 

(Vn e FN)f (n)=min( TQ, . . . , ^ n> 

(the existence of such a function is a consequence of the prolongation axiom). 
We can choose ft<^ FN so that 

(\/i>£^)(f(«P)^f(v+l)Af(0)-f(i>)^f). 
Evidently 

(VneFN)f(fO « y n 

and thus 
f((Lfc)6R\ 
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Therefore fo r every ft c S' we have 

ro
+^= f (^ ) + ( f ( 0 )~ f (^ ) ) +P^ f (^ ) + ( r + ^ ) e R + s 

because T. + /3sS is a consequence of f 6 S . The converse inclusion is pro­

ved. Q 

(24) If 
R=mr n;nePN* 

and if 

(Vn eFN)(rn+1 -= r n
) & ( V n &FN)( v P « S)(3 meFN)(rn- ym >fl ), 

then 

R+S=R. 

If ot & R', (,<s S' and n 6 FN are given, then we can choose msFN with 

y - a** £ |3 and thus (since oc -£ y ) we get 

«+C-*rm
+«rn-rm>rn-

We have proved 

(\rnfeFN)oc+ ft &Yn 

i . e . oC +(3 6 R' and consequently we get R+SSR; the converse inc lus ion i s 

t r i v i a l . D 

(25) If 

R= Vlet ;n*Fn\ 

and i f 

then 

( V n e F N ) o C n + 1 ^ - « c n % S + , 

R+S= «C +S. 

Real ly , i f oce R' and $6 S ' , then there i s n€FN such t h a t o C ^ ° £ n + l 

we have 

< * + /»* ° W l3 * - V ? (<*k*]7"k)+ /»s Vs 

K=0 
because 

js <*k+i---<k)cS* 
according to (14) and because this fact implies 

n 
3E (<*k+rT*k)+/* 6 s-

k=o K l K 

The converse inclusion is a trivial consequence of (7). O 

(26) If 

R=U-r«rfn ;nc.FN} 

and if 
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(Vn6FN)oCn+1-rocn4 S), 
then 

R+S=R. 

For each cC & R' and (Js S' there is n^FN so thatac£:eC and therefore 
oC+/i4<c n+(^ n + 1^^ n)6max(« n,^ n + 1)6R' 

is a consequence of the implication 

At the end of the paper we are going to describe some pa r t icu la r exam­

ples. 

(27) a) For every £ , the initial segment 

•C^;(3neFN) n | > <&} 
is the smallest initial segment containing £ and closed under the operation 

+ ; if C > 1, then the class 

4<fr;Gn<sFN) n £ > & ? 

is a cut. D 

b) For every £ r the initial segment 

4^;(VneFN) n •# < £ } 

is the maximal initial segment closed under the operation + and not contai­
ning | ; if | ̂  FN, then the class 

*<* ;(Vn6FN) n # < £ } Q 

is a cut. 

(28) For every £ ^. FN we have 

f T { ^ ; ( V n 6 F N ) n&<p= - \# ; (Jn6FN)(n+ l )#« n f if 

and 

f + - C ^ ; ( V n 6 F N ) n * < £ ? = •[#>;( VnsFN) n-#<(n+ l ) f f . 

Let us put 

R= -. i*;(Vn6FN) n # < f\ 

and 

S= {^;(3n&FN)(n+l)#< n£J . 
If oce R' and £ e S, then there is nsFN so that 

(n+l)P<nf and (n+l)oc < f 

because R=R' by (27) and thus 

(n+l)(oc+/*)=(n+l)oc +(n+l)/3<£ +n f =(n+l)f 

i.e. oc + ft < P which proves Sg £ T R. 

To prove the converse inclusion let us assume £-£ S i.e. 

(VneFN)(n+l)(5"> nf . 

By the prolongation axiom we can choose ̂  ^ FN so that 
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and furthermore we are able to fix ©c such that 

(C-v+l)ot;<£ <£. (̂ 4+l)(0C+l). 

By the definition of R we see that t& is an element of R and consequently 
c* +16 R and therefore the formula 

(^+l)(cT+oc+l)=((a+l)cT+((u+l)(oc+l)2(u,f +f =((U+1)£ 

i.e. the formula 

cf+oC+1 Z £ 

implies cf^ £ ~? R» 

The second equality is evident - it is sufficient to use the following 

formulae 
n * < £ - » n(£+#)= n £+n#<nf + f =(n+l)£ 

and 

(tf*>£ 8Ln^<(n+l)p—>n(n?--|)=n^-nf<(n+l)^-nf= f . 

Note. We investigated the operations on initial segments related to ad­

dition on natural numbers. Similarly we can deal with operations related to 

multiplication and more generally with any associative operation on natural 

numbers. Using similar methods as in [S3, we are able to prove e.g.: If R is 

a real cut closed under the operation + , then there is a natu ral number £ 

such that 

R=<*;(3fie S)<*< pf } 
or 

R= W;(\t ft <*$)<&(*< f} 
where 

S= ̂ ;(Voce R)oc£eR?. 

We can also deal with two operations related to two operations on natu­

ral numbers - e.g. we are able to prove the d i s t r i b u t i v e law f o r operations 

extending addition and multiplication, however, there are cuts R, S and T ful­

filling the inequality 

i#;C3oC* R T S ) ( 3 < £ T ) ^ < 0 C ^ l 4 . C^;(3oC6 R)(3tfiT)*^. 

<cc-cl-rĈ ;(3(3 6S)(3r€T)*</3rJ 

(choose £ 4 FN and put R=S= f +FN and T=FN). 
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