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ANY ORTHOMODULAR POSET IS A PASTING OF BOOLEAN ALGEBRAS 

Vladimir ROGALEWICZ 

Abstract: We prove that every orthomodular poset can be constructed 
from Boolean algebras using the technique developed by Dichtl [13. 
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Secondary 81B10 

"Pasting" Boolean algebras suggested by Greechie £23 has been used to 

construct a lot of interesting examples of orthomodular posets (abbr. OMP). 

This technique was generalized by Dichtl [lj. He introduced the notion of a 

pasted family Y of Boolean algebras and formulated a necessary and suffici­

ent condition in order L= U Mf (with the orthocomplementation ' and the par­

tial ordering £, inherited from the members of Y ) be an OMP (Theorem 2).We 

call OMPs constructed by this way Dichtl OMPs. Dichtl proved that if an OMP 

is a lattice, then it is a Dichtl OMP. We show that any OMP belongs to the 

class of Dichtl OMPs. This result enables us to combine the Dichtl construc­

tion with other techniques, e.g. with products of OMPs. 

We preserve the definitions and the symbols of [13 and £33. Let us only 

recall two notions. The elements a,b€L are called compatible in L (in sym­

bols: a < » b) if there are a,,b,,C€L such that a, 4 b,', a, 4c', b,|c' and 

a=a,vc, b=b, vc. An n-cycle CCB. ,ni-)^iZ0
 is a se* of n not necessarily dist­

inct members B. s Y aRd n not necessarily distinct elements m.€ 8;̂ -*•!.]> 

such that ro,m-3 n equals [0,m.3 D and that m. , kn m.' (indices mod n). i B. i B.+1 i-l B. i 

1. Definition ([l], p. 381). A family Y of Boolean algebras is pasted 

if for every pair C ,C2 s Y , the following conditions hold true: 

(i) C is not properly contained in C«, 

(ii) C n C 2 is a subalgebra of C and of C2, on which the operations of 
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C„ and C0 coincide, o 2 , 
( i i i ) for every element m e C r*C2 there exists a 4-cycle ( ( B ^ m . ) ) . 

such that B =C , B2=C2, m =m=m2 and m,=m'=m-. (i.e. an astroid for m). 

2. Theorem (tl3, Theorem 9 ) . The pasting L of a pasted family Y is an 
2 

OMP if and only if for every 3-cycle ((B.,m.))t in Y there is B c Y con­
taining U ^ t O ^ H B . 

3. Theorea. The system of all blocks of an OMP is pasted. 

Proof. Let L be an OMP and let Y be the family of all blocks in L. It 

suffices to prove ( i i i ) of Definition 1. Let C ,C2 c Y and mct^nC^, 

m4-0,1. For any m £ P m and m2 .£« m' we have m 4. m2. Hence m 4—̂ -iru and 

there is a Boolean algebra B in L isomorphic to £0,nOP x [0,m'JP . Now B is 
Lo L2 

contained in some B,ftt .In fact, B=B,. Indeed, let as B,, a £ B, and let 
us write a=(aAD m )VD (aAD m') . Then (aAD m ) «—H0,m3 P and 

Bl Bl Bl Bl Lo 

(aAD m)-*~--»b for any b&C . Assuming aA D m^O we have got a contradiction 

with the maximality of C . In the case av\R m=0 we use a/sD m' and the Boo­

lean algebra C0. Analogously there is B-,«'*lf isomorphic to C0,m]px Co,m'lp . 

l > L2 Lo 

Put B =C and B2=C2. We have constructed the 4-cycle (B ,B,,B2,B3) satisfying 
( i i i ) and hence L is the pasting of the pasted family T . 
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