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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

29,4 (1988) 

Cofmal Families in Certain Function Spaces 
W. W. Comfort 

Respectfully Dedicated to Professor Miroslav Katětov 
On the occasion of His 70th Birthday 

Abstract. Relations of compact-covering numbers to dominating families are given for cer
tain function spaces. 
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§0. Notation and Definitions. 

The symbol co denotes the least infinite cardinal. The symbols a, p, y and X denote 

(arbitary) infinite cardinals, and rj, 9, £ and £ are ordinals. 

The discrete space of cardinality a is again denoted a. The set a in its usual interval 

topology is written <a>. Since the (infinite) cardinal a has no last element, the space <a> is 

not compact. Note that co = <co>. 

For an index set I the partial order < is defined on the set la of functions from I into a by 

this rule: 

f < g if f(i) < g(i) for all i e I. 

If I is an ordinal 8 the pre-order <* is defined on la by 

f <* g if there is £ < 6 such that f(T|) < g(rj) whenever £ £ M < 0. 

A subset 3 of *a is said to be dominating in 'a if 3 is <-cofinal in *a (that is, if for all 

g e la there is f e 3 such that g < f)- And 3 is eventually dominating in °a if 3 is <*-cofinal 

inea. 

For each a and 8 we write 

D(ea) = min{l3l: 3 c Ga, 3 is a dominating family}, and 

Ef^a)« min{l3l: 3 c ea, 3 is an eventually dominating family}. 
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(For a = 8 -= co, dominating and eventuaUy dominating families in °a are caUed 1-scales and 

2-scales respectively by Hechler [10].) 

For a space X we denote by KX, the compact-covering number of X, the least cardinality 

of a compact cover of X; that is, 

K(X) = min{r3*u: X = u 91 and each K e 9Us compact}. 

For a thorough survey of the literature about compact-covering numbers, and for a host of 

new results (with emphasis on product spaces), the reader may consult the doctoral dissertation 

of Baloglou [3]. Many of the results of [3] are given in [4]. I am pleased to acknowledge in 

addition the generous help of Dr. Baloglou in connection with the present paper: He has read 

several preliminary versions attentively and he has made many useful suggestions-

mathematical, stylistic, historical and bibliographical. 

§1. The Equality D(*a) = K(<a>1). 
« 

It is a consequence of the Baire category theorem that the space P of irrational numbers is 

not 0-compact; that is, K(P) > co. From the Continuum Hypothesis (CH) of course will follow 

the equality K(P) = 2W, but it is a natural, intriguing problem to attempt to determine the value 

of K(P) using only the usual axioms of Zermelo-Fraenkel set theory with the Axiom of Choice 

(ZFC). This problem was first addressed by M. Katetov [14], He showed, u^s a n^w class of 

spaces introduced principally for this purpose—the so-called X-spaces—that K(P) is equal to the 

number D(coco). (Katetov adopted the symbol b to denote D((Dco). In subsequent years 

mathematical usage has converged to the symbol d; in the present paper we follow this modem 

convention and we write d = D^co).) The details of Katetov's derivation of the formula 

K(P) = d need not concern us here, but it is worth noting that the result emerges as a special 

case of a very general theorem: two other cardinal invariants—the so-called compact character 

k% and compact pseudocharacter ky—are shown to agree on X-spaces, and the class of X-spaces 

is shown to be closed under arbitrary products and to contain each well-ordered space and each 

locally compact, paracompact space; that K(P) = d is derived from the relation k%(P) = k\|t(P) 

and the familiar homeomorphism P = GP. As Katetov observes [14], the formula 
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kx(P) = K(P) = d 

shows not only that P is the union of d-many compact sets (and no fewer) but indeed that there 

is a family 9t of compact subsets of P with 1911 = d such that P = u 9t and such that for each 

compact A c P there is K e 9t such that A c K. In a subsequent paper [15], Katetov 

examined certain other naturally defined cardinal-valued topological invariants and showed that 

they, too, assume the value d on the space P. The formulas derived by Katetov [14], [15] are 

exposed, placed in a broad context, and extended by van Douwen [6](§8). The space P is 

carefully examined from a topological and set-theoretic point of view by Vaughan [20]. 

Because the present paper deals in part with the space (D® and with products of the form 

a? for arbitrary (infinite) a and P, I have tried as a matter of historical curiosity to chase down 

in the literature the first statement of the homeomorphism theorem P »tam. It is difficult to 

assign credit and priority to any one mathematician for this result. Sierpinski [17](page 143) 

and Kuratowski [16](§14.V.3), for example, do not commit themselves on the matter. Were it 

not for the fact that the product topology was introduced and defined for the first time only in 

1929 by Tychonoff [19], one would be tempted, following Engelking [7](page 348), to credit 

Baire [2] in 1909 for this homeomorphism. (Note in this connection the assertion of Engelking 

[7](page 121) that "Finite and countably infinite Cartesian products of metric spaces belonged 

to the topological folklore of the twenties.") In any event the representation of each irrational 

number as an infinite continued fraction is made explicit in Baire [1](§31), and in Baire [2] one 

finds the sentence "Fensemble P se trouve decompose en une infinite (denombrable) 

d'ensembles partiels: Pj, P 2 , . . . , chacun de ceux-ci en une infinite d'ensembles particls du 

deuxieme ordre, etc " This sequence \ of clopen partitions, each refining its predecessors 

and with the property \f\ Anl = 1 whenever An e An and A ^ An+1, is the phenomenon on 

the basis of which the homeomorphism P = Gi® is readily constructed. 

Generalizations to higher cardinals of the homeomorphism P « oo®, together with 

applications, based on work of Hung and Negrepontis, are given in [5](§15). 

The Katetov formula ic(P) = D^o ) was rediscovered independently by Hechler [10], [11], 
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who showed that the cardinal number d arises in several other contexts not considered by 

Katetov [14], [15]. It is worthwhile to notice that Hechler*s proof carries over directly to a 

more general result. 

1.1. Theorem. Let a be an infinite cardinal and I an index set. Then D(*a) = K(<a>1). 

Proof. ( <. ) Given a compact cover 9t of <o>*, for each K € 91 define fK e la by 

fK(i) = (max^[K]) + l . 

(That 7t|[K] has a largest element follows from the compactness of K and the continuity of the 

projection function flj.) For every g € *a there is K e 91 such that g e K, and from 

g(i) = Tt̂ g) £ maxOiilK]) < fK(i) for each i € I 

it foUows that g < fK. 

( >.) Given a dominating family 3 C *(*, for each f e 3 define Kf c a1 by 

Kf-I I i« i [0 .« ( i ) ] . 

where [0 , f(i)] is the "closed interval" of ordinals given by 

[0,f(i)] = { $ < a : $ £ f ( i ) } . 

The sets Kf are compact by the Tychonoff product theorem. To see that u {Kf: f e 3 } = <a>* 

it is enough to note that for g e a1 there is f € 3 such that g < f (and hence g e Kf). • 

§2. The Equality D(Pa) = E(Pa). 

It is immediate from the definitions that D(Pa) I> E(Pa) for all infinite cardinals a and p. 

That equality holds in the case a = p = co was proved by Hechler [10], [11] by the following 

simple argument: Given an eventuaUy dominating family 3 in %>, for f e 3 and n < co define 

3(f, n) = {g € ^co: g(k) = f(k) whenever n < k < co} 

and set 

3 ' = - u { 3 ( f , n ) : f e 3 ,n<co} . 

Then 3 ' is a dominating family, and from 131 >. co and I3(f, n)l = co follows 13'1 = 131. Hence 

D(<»co) £ E^co). 

It is easy to see that the analogous argument fails to show D(^a) = E(i*a) when a and (3 

are allowed to assume arbitrary infinite values: Given an eventually dominating family 3 c Pcx 
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of course one may write 

3(f, 0 = {g € Pa: g(ri) = f(T]) whenever C < H < p} 

for f € 3 and f, < p, and then 

3 ' = u { 3 ( f , C ) : f e 3 , £ < p } , 

but the relation 

l3(f,C)l = la£| 

blocks the inference 131 = 13'I. Our aim in this section is to show that nevertheless the equality 

D(Pa) = E(Pa) is valid. (Set theorists of our acquaintance have responded to this theorem with 

reactions ranging from "that is probably well-known" to "that is probably false." At our 

suggestion a version of this proof is given in [3]; we have been unable to locate a proof 

elsewhere.) 

2.1. Lemma. Let a and p be infinite cardinals. Then E(Pa) > p. 

Proof. Suppose that {fr : £ < p} is an eventually dominating family in Pa. Let {Br : £ < p} 

be a partition of p into p-many (pairwise disjoint) subsets each of cardinality p, and define 

g e Pa by 

g(M) = %(u) + l - f M € B c . 

Since each of the sets Br is cofinal in p, the relation g <* fr is false for each £ < p. D 

2.2. Lemma. Let a and P be infinite cardinals and let 6 < p. Then D^a) <. E(Pa). 

Proof. Let y = E(Pa), let {fL : ^ < y) be an eventually dominating family in Pa, and let 

{B^: £ < p} be a partition of the set 

p\e -«<P:5 - se j 

into p-many pairwise disjoint subsets each of cardinality 181. For £ < p let hr be a one-to-one 

function from 8 onto Br, and for T| < y and C < P define 

by 

f T , . C : 8 ^ « 

fU*fr\'h-
Now write 3 = {f~ r : T| < Y, C < PI- F r o m Lemma 2.1 we have 
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i3i £Y-P=y. 

so to complete the proof it is enough to show that 3 is a dominating family in ea. Given 

f e ea, define f e Pa by 

f I8 = f,and 

f IB^f-hr/1 , 

and find T] < Y such that f <* f« in Pa. There is If < p such that 

f (£) < f--($) whenever IT <- 5 < P, 

and since llfl < p and {Br: C < p} is a pairwise disjoint family there is (. < p such that 

£ nBp = 0-that is, such that every <; e B? satisfies £ £ £. It is then clear that f < f» F in ea: 

Given £ < 0 we have 

» 
and hence 

f© = f (h{©) < f - ^ ) ) - %^), 

as required. Q 

2.3. Theorem. Let a and P be infinite cardinals. Then D(Pa) = E(Pa). 

Proof. Only the inequality <. requires proof. Let y = E(Pa), let {f- : Tj < Y) be an 

eventually dominating family in Pa, and using Lemma 2.2 for 0 < p let {f0 r : £ < Y} be a 

dominating family in e a Now for TJ, £ < y and 0 < p define L Q / : p -» a 

by 

£n.W; , e* s feAa n d 

and set 3 = {f« e,C: ui C < Y> 6 < P)• F r o m Lemma 2.1 we have 

131 = y y- p = Y, 

so it remains only to show that 3 is a dominating family in Pa Given f e Pa there is 11 < P 

such that f <* fa in Pa, so there is 0 < p such that f(£) < f̂ (£) whenever (T <. Z, < p. There is 

Z < y such that 

f l0<f § £ in e a, _ 6 7 0 _ 



and it is then clear that 

f < f i 8 , C i n ( J a 

Indeed if £ < 0 then 

and if ¥ <.£<(3then 

2.4. Remarks. The potential utility of the relation D(Pa) = E(Pa) just established derives 

from the fact that each of the orders we have considered (that is, < and <*) has in appropriate 

situations conceptual advantages over the other. In topological contexts (see for example 

Theorem 1.1 above) the order < and the cardinal D seem most natural, but in contexts with a 

strong set-theoretic flavor it is convenient to be able to discard or ignore small initial segments; 

see for example [9] and [13], which consider explicitly E^co) and EC*1©) in connection with 

forcing and infinitary combinatorics. 

Let us say for an infinite cardinal X, following Hechler [9], that a X-scale in Pa is a <*-

cofinal subset of Pa which is order-isomorphic to X in the order <*. Hechler [9] attributes to 

Hausdorff [8] in 1907 the fact that the Continuum Hypothesis yields the existence of an 

coj-scale in ^co; see also Sierpinski [18](page 145) for this result. Both the existence and the 

non-existence of coj-scales are consistent with ZFC together with the denial of CH, and 

Martin's Axiom and the denial of CH imply the existence of a 2<B-scale (see [9] or [12](Lemma 

24.12)). As is pointed out in [3], these results on the existence of X-scales become false if the 

definition is altered to refer to < in place of <*. Indeed, the existence of an uncountable, <-

cofinal subset of ĉo which is well-ordered under < (cf. Theorem 1.1 above) would imply that 

the space P = wco is the union of a (strictly increasing) well-ordered set of compact subsets. 

This contradicts the topological statement, easily proved, that in a hereditarily separable space 

every strictly increasing chain of compact subsets has at most countable length. 

§3. The Equality K(aP) = K(<a>P) • o(a,p). 

Several results about compact-covering numbers of spaces of the form <a>P are given in 

- 671 -



13], [41 by elementary computation. Examples: K(<a>P) = K(<cf(a)>P) for all a and p; 

K(<a>P) = cf(a) if P < cf(a.) In contrast, it is difficult to carry out concrete computations about 

the numbers K(aP). In view of the equalities 

D(Pa) = K(<a>P) and D(Pa) = E(Pa), 

for example, it follows from remarks of Jech and Prikry [13] that it is unknown whether the 

inequality K(cowi) < 2C0i is consistent with the axioms of ZFC; and Hechler [9], [1 1] has shown 

that the Katetov number d = ^co*0) can take on essentially any value consistent with the 

constraints coj < d < 2°\ cf(d) > co. In the following theorem and corollary, mild 

generalizations of results proved in [3], [4], we give a relation of recursive type in which the 

space ofi is replaced by <a>P and by spaces %? for X < p. 

3d. Notation. For infinite cardinals a and p, we write 

a(a, p) = sup{K(n71<p ^n): \ < «)• 

We note that if a = co the spaces JJ^ < p X^ are compact and we have a ( a , P) = 1. 

3.2. Theorem. Let a and p be infinite cardinals. Then 

K(aP) = K(<a>P) • a ( a , p). 

Proof. If a = co we have o ( a , P) = 1 and a£ = <a>P, so the statement is obvious. We 

assume therefore that a > co. 

( > ) It is enough to prove that K(afy >. K(«x>P) and K(aP) >. a ( a , P). The first of these 

inequalities is obvious, since there is a continuous function from aP onto <a>P. For the 

second, note that for each choice {X^ : r\ < p} of cardinals with X^ < a, the (discrete) space X^ 

is closed in the (discrete) space a; thus fltt < p \ i s closed in ofi and we have 

K(aP)^K(IlT 1 <pXn)-

It follows that K(aP) >. o ( a , p), as required. 

( £ ) Given a compact subset K of <a>P, for r\ < P let X^ = lfl1-|[K]l. The set it^K] now 

has two topologies-one inherited from <a> and the other discrete. The product space 

IIH < p ft-ifK] accordingly has two topologies; K is closed in the first, hence in the second, so 

K is covered by *(tLn < p X^-many compact subsets of f i n < p \ -
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It foUows from the preceding paragraph that for every compact subset K of <a>P there is 

a family 9t(K) of compact subsets of aP such that i9t(K)l <. a (a , p) and K £ u 9S(K). Taking 

{K^ : £ < y) a compact cover of <o>P with y = K(<a>^) and defining 

we see that 91 is a compact cover of a? with 

I9H £ Y • ° ( a , P) = K(<a>P) a (a , P). D 

In the foUowing corollary we denote as usual by a + the smallest cardinal greater than a. 

3.3. Corollary. Let a and p be infinite cardinals. Then 

(a) K((a+)P) = K(<a+>P) • K(aP); and 

(b) if p < cf(a) then K(aP) = K(<a>P) S x < a *$£)• 

Proof, (a) It is clear in this case that 

a (a + , p) = K(aP). 

(b) It is enough to show that 

<T(a,p) = I x < aK(Xi*) . 

The inequality >. is clear. For each set {X^ : rj < p) of cardinals with X^ < a there is X < a 

such that each X^ satisfies X~ < X, and we have Kdl^ < p \ ) ^ K(X^); the inequality < is 

now immediate. D 

Corollary 3.3(a) and some of its consequences are recorded in [3], [4]. Let us notice in 

particular, writing as usual 

cOn = coand 

con+1 = (con)+forn<co, 

that the identities 

K(con<°) = con d 

are easily established by induction; in particular one has 

d = K ^ ) = K(COjW) 

in (every model of) ZFC 
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