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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

2 9 , 4 ( 1 9 8 8 ) 

ON COUNTABLE FRECHET-URYSOHN SPACES 

V . I . MALYKHIN 

D e d i c a t e d t o P r o f e s s o r M i r o s l a v Katg tov on h i s s e v e n t i e t h b i r t h d a y 

Abstract: Mod i f i ca t ions of Frechet-Urysohn proper ty , introduced as 
< i -FU> -p roper t ies by A.V. Arhange lsk i i , are examined. I t i s shown tha t <"1-FU> 
and < 5-FU>*propert ies are s im i l a r to the c o u n t a b i l i t y character but d i f f e r 
from i t . 

Key words: Frechet-Urysohn proper ty , < i -FU> -p rope r t i es , f i l t e r . 

Classi f icat ion : 54A25, 54A35 

0. Recal l tha t a po in t x of a topo log ica l space i s said to be Frechet-

Urysohn po in t i f whenever x i s i n the closure of a set there i s a sequence 

from t h i s set converging to x . 

The Frechet-Urysohn property i s po in twise, i . e . i t i s determined by a 

neighbourhood f i l t e r of a given po in t . The character , the pseudocharacter are 

also pointwise p rope r t i es , cha rac te r i s t i c s l i k e the r f -charac te r i s not . The 

sequen t i a l i t y and many kinds of compactness are not po in tw ise . 

There are some modi f ica t ions of Frechet-Urysohn proper ty . They can be 

d iv ided i n t o three groups: 

1 . The b i s e q u e n t i a l i t y , s t rong Frechet property and so on. 

These are character ized na tu ra l l y (see, fo r example, £23 ) : by means of 

maps, by t h e i r behaviour under m u l t i p l i c a t i o n and so on. 

2 . The Preiss-Simon property (see £ 3 ] ) , $ -space i n Popov-Ranchin's 

sense L4] and some others . 

3 . The <i-FU > - p roper t ies introduced by A.V. Arhangelsk i i C l , 2 ] , 

Let us r e c a l l the re levant d e f i n i t i o n s . 

A po in t x of a topo log ica l space i s ca l l ed an( i -FU> - p o i n t , i = l , 2 , 3 , 4 , 5 

i f i t i s a Frechet-Urysohn po in t and i f f o r every countable fami ly X of 
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mutually disjoint sequences converging to x, there exists a sequence £ con

verging to x for which the following condition holds: 

1) I ̂  \ f I ̂  xo ^r every X € i£ X); 
2) |x \ C 1.̂  x for infinitely many JC € % 
3) \\r\JL |= KQ for infinitely many £ e «£, 

4) ? 0 ^ + 0 for infinitely many Z & & 

5) \$r\Z |= K Q for every Ju e % . 

Let us note that our definition 5) is equivalent to the definition 5) of 

[ 2 ] . The definitions in [5] and in 17": d i f fe r from those given in [22. 

All <i-Fu> -properties are pointwise. In the sequel, the f i l t e r of dele

ted neighbourhoods of an(i-FU) -point is called also <i-FU) - f i l t e r . 

The main results of this paper show that <1-FU> - and (5-FU> -propert i

es are similar to the countability character (see Theorem 1 and its corolla

ries) and, on the other hand, d i f fe r from it (see Theorems 2, 3). 

First of all on analogies. The following statements are well known. 

X 
Statement 1. On a countable set there exist at most 2 ° different fil

ters of countable character (i.e. with countable base). 

^o Statement 2. There exist at most 2 mutually non-homeomorphic Haus-

dorff countable spaces of countable character. 

Let us take up Theorem 1 and its c o r o l l a r i e s . 

.X" 

Theorem 1. Let 2 °=k in a model ?<ft , and ?Jfl' be obtained by adding to 

Iffl any number of new Cohen reals. Then in W'C any <5-FU>- f i l ter has a base 

of power not greater than k. 

Corollary 1. It is impossible to define in ZFC a <5-FU> - f i l t e r of the 

character C . 

Corollary 2. It is impossible to construct in ZFC a family of mutually 

non-homeomorphic Hausdorff countable (5-FU> -spaces of power greater than 

2X°. 

Let us note now that E. Resnichenko [6l constructed a family of power 2 

A sequence JL converging to x is the countable subset Z , such that 

\i*\ Ox|<.x f6r every neighbourhood Ox of x. 
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of mutually non-homeomorphic completely regular countable <3-FU> -spaces . In 

connection with this result the following question was raised: 

Is this valid for <1-FU> - and<5-FU> -spaces? 

(The general question about maximal power of families of mutually non-homeo

morphic <i-FU> -spaces was raised by A.V. Arhangelskii.)The corollary 2 shows 

that the negative answer to the indicated question is consistent with ZFC. 

The following Theorems 2, 3 expose a big difference between <1-FU>- or 

<5-FU> -properties and the character countability, and demonstrate the inde

pendence of corresponding statements from ZFC. 

C 
Theorem 2 [CH]. On a countable set, there exist 2 different <1-FU>-

C 
filters and hence there exist 2 mutually non-homeomorphic countable <1-FU/-
spaces with only one non-isolated point. 

Theorem 3. On a countable set co there exist two <5-FU>-filters F,, F2 

of uncountable character, such that the countable spaces Np , NF with only 
•"l r2 

one non-isolated point associated with them have the following properties: 

1) NF , NF are <5-FU> -spaces; 
hl Y2 

2) K 0 # Sp(Np ), X 0 4 S p ( N p ); 

3) for these spaces there exist no completely regular countable compact 

extensions of countable tightness; 

4) the product NF x NF is not a Frechet-Urysohn space; 
rl r2 

5) the character of every space NF , NF equals C under LB. 
rl v2 

LB denotes Lemma of Booth - one of the most important consequences of 

Martin axiom MA. 

Some additional remarks. Recently A. Dow proved that it is consistent 

with ZFC that each <1-FU> -filter on a countable set has a countable base and 

also that it is consistent with ZFC that each <5-FU> -filter on a countable 

set is<l-FU> ([7]). 

I. The <i-FU> -properties can be characterized in terms of Stone-uech 

compactification of the corresponding discrete space. If we wish to consider 

only separable regular spaces, then we can consider only filters on a counta

ble set and characterize them in terms of Stone-Cech compactification of the 

co . 

Let L"co]a>=-fAco>:|A|=rKoi. For A c t c o ] ^ let A* = T A ^ X o> , for 

A c [ c o l l e t Jl*= -{A* : A c A l . Let Int X denote the interior of a set 
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X c co*. 

There exists a natural correspondence among non-empty closed subsets of 
o * , countable spaces with one non-isolated point only and free f i l t e r s on 

CO : 

F C to*< .~^Nu{F$=NF<*~ i > § = iAcco :A*3 F}. 

These objects are called associated. 

This correspondence extends over some cha rac te r i s t i cs of these objects, 

fo r example, over the character F in to*, the character of the point {F} in 
the space Np and over the character of $ . 

Proposition 1. Let F be a non-empty closed subset of co* , then the as

sociated f i l t e r $ is 
0) a Frechet-Urysohn f i l t e r iff F= [Int Fl, i.e. F is the regular clo

sed subset of co*; 

1) a <1-FU> - f i l t e r iff F= [Int F3 and fo r every countable family *S* 
of clopen subsets of a)* , contained in F, there exists a clopen set E* z F, 
such that E* 3 V*i* ; 

5) e <5-FU> - f i l t e r iff F= [Int F] and for every countable family %* 
of clopen subsets of (o* , contained in F, there exists a clopen set A* c F, 
such that A"* A E*4 0 fo r every non-empty E* € £ * . 

There exist analogous cha racte r i za t ions fo r <i-FU > - f i l t e r s fo r i=2,3,4 

(by Arhangelski i's result [2], a <4-FU> - f i l t e r is s t rongly Frechet, the cha

racterization of which is given in [8].) 

II. Proofs of Theorems 

The proof of Theorem 1. Add m new Cohen reals using a p a r t i a l l y ordered 
set <F consisting of functions p, fo r which range p $-.{0,1}, dom pcm, 
|dom p| <. jCQ and p£qiff paq. Let IfA be any ground model, and flfl"= #2Z<[G], 
where G is any 7& -gener ic subset of & . It is known that fo r every E & 7tl^ 
Ecm the set G£=G A T-. is the lOt-generic subset of # E and 

W = ( W [ G - - ] ) tG^-;}, where G ~ is some 1#t[BA-generic subset of ^ ^ c -

It is known also that cardinals and t h e i r confinalities are preserved by add
ing Cohen reals, and if not greater than C new Cohen reals are added, then 
a r i t hmet ic in W T and ffli are the same. 

So, let Iffl be obtained by adding m new Cohen reals to a model *3?l, in 

which 2 °=k. 
Let, in WL , $ be any <5-FU> - f i l t e r on o and F a closed subset of to* 
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associated with i t , i .e . F= n $ * . Let A = {A e ICJ1'^:A*C F}. I t is cle

ar that r U J l * 3 =F. , 

Working i n ^ l , f ind the set Ec m, |E|-fek by transf ini te induction, such 

that the following conditions 1), 2) are f u l f i l l e d (see below). 

Let us denote the model ^ E G r ! for brevity through fflLf. In 1#V le t 

$ E = $ n J 3 9 t E , A E= An IPfl E , then $ E , Ji£ s Oatr and in W E the con

dit ions 1), 2) should be f u l f i l l e d : 

1) [ U J i ^ l ^ ( = 0 $ * ) ; 

2) $ E is the <5-FU>-f i l ter . 

The construction of the set E is a standard method for finding an inter

mediate model with necessary properties. 

It was shown that the last model TO' is obtained by adding Cohen reals 

to OT by means of the partially ordered set $ xF. 

So, let us consider the generic extension Tfflr- >• rWl'. 
Let 1 H- „|Ar\K|= >c " for every K <=. $V. We can assume that As cjx -T 

for some countable set s c m \ E . Therefore we can consider in the proof only 

the case of a countable partially ordered set (P instead of ^ m V r -

So, let l^ff „|AriK|= .jc0" for every K 6 <$E. 

For every p e (P let L = { k £ a> : 2 q ^ p , qU-„k e A"}> As it can easily 
be seen, |L A K | = K for every K 6 <$F. As $ E is <5-FU> -filter and the fa
mily -jL :p £.$} is countable, so there exists a sequence L converging to <$r, 
such that |LnL |= .KQ for every L . Therefore, 1 H- ..jAnl^ .K0". Note that 
L e JlE. 

If in Iffl A is such that | A A K | = >C for every K € $ r , then there e-
xists some L € A f i such that |LnA|= >c . It follows that § r is the base 
of $ . Let us note that in VR ' the power of $ F is not greater than k. 
This completes the proof of Theorem 1. 

/». 
The proof of Theorem 2. As it is known under CH, there exist 2 ^ of dif

ferent P-points in to* . As it was noted in 17", for every P-point p s C J * 
there exists an open set V in co* , having only one boundary point p which 
is also the unique accumulation point of o>* \ V . Hence, tV 1=V ufpj is the 
closed subset such that the filter 'f associated with it is <1-FU>. If p, q 
are different P-points in co* , then $ , <$ are also different <1-FU>-fil
ters, hence there exist 2 of different <1-FU >-filters on co . This comple
tes the proof of Theorem 2. 

The proof of Theorem 3. F. Hausdorff (see L9j) and N.N. Luzin r.10l con-
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structed in ZFC two families .A , & of infinite subsets of co with the fol
lowing properties: 

1 ) -A =<Ao6:06*«A l?, "&= {Bn:fSz C^i; 

2 ) A * c A * f B * c B * forany o C <p<c> 1 5 

3) ( U A* )n ( US** )=0; 

4) [U A* .}nCU5J*l*0. 

Now such pair is called the Hausdorff-Luzin gap. 

Let F1= t U A*1 , F2= [ U #>*] . The filters <frp $ 2 associated with 

F,, F2 are <5-FU> -filters. Let us consider the associated spaces Np = 

= COU^F^, NF =cov fF2i. These are ̂ 5-FU>-spaces. As F ^ F ^ 0 but 

Int(F1nF2)=0, one has <ifA^FA> & U<n,n>:n £ <^}2 in the product Np x 

xNp . However, there exists no sequence of the set -{<n,n>:n € c*>̂  which con

verges to the point <."£F,1 ,-LFO$> , hence the product Np x Np is not a Fr6-

chet-Urysohn space. 

Let us consider now the space N F (the arguments for the space NF are 
•"l 2 

identical). The space NF has a compact extension bN,, which is obtained from 
""l x 

ftoo by collapsing the closed set F, to a point {F,V As it is easy to see, 

the tightness of this point {F,} in bN, is uncountable, from which it follows 

that x ^ Sp(Np ). Recall that Sp(X) is the spectrum of frequences,a speci

al characteristic of a space X which was introduced by A.V. Arhangelskii [11 

to investigate the behaviour of tightness by multiplication of the space X 

with other spaces. 

It follows directly from Proposition 2 of [8] that every space NF , NF 

*"l 2 
has no countably compact completely regular extension of countable tightness . 

Let us prove the conclusion 5) of Theorem 3. It is known under LB that 

if % c [ o > ] w , * * * i s a centered family and \<£\ < C . "then lnt(n<£*)*0. 

Let us suppose that 2£(F,,o*)= %<C ; then IA>*\F,= U 3C* , where 

3C £ tc*>] , 1X1= ,A . For our situation, the family <=£ = -faA A^. :cc € coAu 

uitu \K:K s^fC} has the power .A < C and *£*is a centered family, however, 

it is easy to see that Int( ft%* )=0. This contradiction completes the proof 

of Theorem 3. 
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