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Asymptotic rate of a flow

MIROSLAV KRUTINA

Abstract. The asymptotic rate H,(T) of an automorphism T', introduced by K.Winkel-
bauer in [7], works as its crucial characteristic (e.g. for the existence of finite generators).
In case of a flow {Tt }:cRr on a countably generated probability space (£2, F, ), the relation
Hy(T:) = |t| - Hy(T1) (for any t € R\ {0}) is derived in the present puper The asymp-
totic rate of a flow, defined by Hu({T:}:er) = Hu(T1), equals the 1 supr

of the entropies of its ergodic components, if such a decomposition exists (provided the
separability of F).
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INTRODUCTION

Let N be the positive integers, I the integers and R the reals.

(R, F, p) always denotes a probability space. By a partition of  we mean any
collection { = {Z,,a € A} of mutually disjoint F-measurable sets with =
U Za. The class of all finite and all at most countable partitions of £ will be

a€A
denoted by ps and p, respectively.

Define a real function 5 by n(t) = —t -logt for 0 < t < 1, 5(t) = 0 otherwise,
log = log,. Recall the conditional entropy of such a partition ¢ € p with respect to
a o-algebra £ C F is given by h,(C|€) = [ H,(¢|€)(w)dp(w), where H,((|E)(w) =

E n(1(Za|E)(w)) and p(Z4|E) means the conditional probability. The entropy of

C is deﬁned by hu(¢) = hu(¢|{B,w}) and, given 0 < € < 1, the E-length by

Ly(e,¢) = min{card(4') : A' C 4, Y u(Za) > 1-¢}.
aEA’

Put p, = {¢ € p: hu(() < 00}

Let T be an automorphism of (2, F, u) (invertible measure-preserving transfor-
mation of  onto itself). If ( = {Za,a € A} is a partition of Q, then T*¢ =
{T*Z4,a € A}(k € I) is a partition, too. Another partition ¢ = {Xs,8 € B}
is a refinement of ( (¢ < §) if, for any ,3 e B,Xg C Z, for some a € A. Put

V T-*¢ and, for any n € N,{} = V T*¢ (\/ means the customary opera-

tion of the roughest common refinement). The entropy of T is given by

(1) “(T) = sup h[l(T7 C) = Sup hM(T! C)
CEpu (€ps
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where, for ( € pu, hu(T,¢) = hu({lo¢r) = li‘l;n Lh,(¢3) (see e.g.[2]; oM means

the smallest o-algebra over a set-system M C exp§2). The asymptotic rate of T,
introduced by K.Winkelbauer, is given by

(2) H,(T) = sup H,(T,{) = sup H,(T,¢)
(Epu {€Epy

where H,(T,() = lixgl limsup 2 log L, (e, () for ¢ € p,;the limit H,(T,() always
e—=04 4

exists. (The validities of the second equations in (1) and (2) were shown in [2],[9],
too.)

By (,F,u,{Ti}:cr) we mean a flow on the probability space (2, F,u), i.e.
{T:}ter is a group of its automorphisms with respect to the composition o such
that

(a) Te4s = Tt o T, for any t,s € R,

b) p(w,t) =Tw  (w € t € R) is an F x Bg — Br measurable mapping

(Br means the Borel sets of R).
If D,€ C F are sub-o-algebras such that, for any D € D there is E € £ with
u(D A E) = 0 (A denotes the symmetrical difference), we write D C ;D = £
means D C £ and £ C D at the same time. The space (2, F,p) is said to be

countably generated if F = o({Fn}3%,) for some sequence {F,}32, in F. In fact
by this supposition, it has been shown for the flow that

©) hu(Te) = |¢] - hu(Th)

for any t € R\ {0}, see [1],[3], compare with Lemma 3.
The aim of the present paper is, first of all, to prove a corresponding relation for
the asymptotic rate, too.

Theorem 1. If (Q,F,p, {Tt}ier) is a flow on a countably generated probability
space then, for any t € R\ {0},

() Hu(T) = |t| - Hu(Ty).

Afterwards, the definition below is justified.

Definition. The entropy h,({T:}icr) and the asymptotic rate H,({T:}ier) of a
flow (@, F, 4, {Tt}:er) on a countably generated probability space is defined by

(5) ‘ hu({Ti}eer) = hu(Th)
and
(6) Hy({Tiher) = Hu(Th),

respectively.
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If T is an automorphism of (Q, F, ), I denotes the o-algebra {F € F : TF =
F} of T-invariant measurable sets. For a flow (Q,F,u, {Ti}ter), the o-algebra
of flow-invariant sets is taken as T= () ZI7,. The measure y is called T—ergodic

tER
(ergodic) if there is no E € Ip(E € I) with 0 < p(E) < 1- M(T) denotes the
class of all T-invariant probability measures 7 on (2, F) (i.e. moT~! = m). Put
M({T:}ier) = DRM(T‘)'
t

Let us consider for a moment an example @ = A!, F = oV, where A is an at
most countable set and V4 the class of all elementary cylinders [a]! = {z € A" :
(Zis Tiga, - ‘TJ) =a},z € AT G < J»i,j EL Put y4 = {[a]ma € A};itisa
measurable pa.rtition of AY. Further, define a 1:1 bimeasurable mapping S4 of A!
onto itself (the shift) by (Saz) = 41,2 = {2:}%,z € AL As known, (41,0V,)
is a Polish space when a suitable metric is introduced (0V 4 is the o-algebra of its
Borel sets), so the family of regular conditional probabilities induced by Is, with
respect to a given S4-invariant probability measure ¥ on (AY,0V,) always exists.
In this special space, denote it by (9;,z € A!). For almost all z[J], the measures
9, are Sy-invariant. As it has been shown in [4] and [8], the following assertion
holds.

Proposition 1. If hy(v4) < oo then

(7) ho(Sa) = / ho.(SA)d9(z),
(8) Hy(Sa) = ess.suppy) ho, (Sa)-

(ess. suppg) means the essential supremum modulo ¥J; the supposition hg(74) < 0o
can be omitted, c.f. Lemma 6.)

To obtain such a relation between the entropy and the asymptotic rate of a flow
(€, F, 1, {T1}+er) in a more general case, the decomposition into ergodic compo-
nents of p is needed. To this end, we shall suppose that F is even sepa.rable, ie.

= o({En}3,) (strictly) for some sequence in F, and that the family (mZ,w € Q)
of regular condmonal probabilities induced by T with respect to p exists. It rep-
resents just the desired ergodic decomposition because almost all [¢] measures mZ
belong to M({T:}er) and are ergodic (Lemmas 7 and 8). Although in general
I C I7, (compare with (5) and (6)), the next theorem is true.

Theorem 2. Let (2, F,p, {Tt}ter) be aﬂow on a probability space whose o-algebra
F is separable. If there is the family (mZ,w € ), then

©) ho({Ti}eer) = / honz ({Te}eem)dii()

and

(10) ,Hﬂ({Tt}IER) = ess. sup(u) hmz ({Tt}ter)-

25
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2. The conjugacy with the shift and further basic facts.

Let T be an automorphism of (Q, F, ). For E € F with u(E) > 0 put ug(F) =
A‘%?,F € Fiug € M(T) if E € Ir. The measure g is said to be T-aperiodic if,
for any n € N, each set F' € F of positive measure contains some E C F(E € F)
such that u(E A T™"E) > 0. On the contrary, p is said to be T-purely periodic,
if there is a partition £ = {X,,,n € N} € p such that y(E A T~"E) = 0 whenever
EC Xn.(E€ F)andneN.

If p is not T—purely periodic, there is a T-aperiodic part u, € M(T) of p, i.e.
a T-aperiodic measure of the form u, = pg for a certain E € I such that, if
w2\ E) > 0, pp = pq\g is T-purely periodic (it is a consequence of the above
terms). Thus

(11) B=vu pat(1=v,) pp

for v, = u(E) if po and p, are defined.

Lemma 1. If p = Y vapn is an at most countable convez combination in M(T)
then hy(T) = S vn - by, (T) and Hy(T) = sup{H,.(T) : vn > o}.

Lemma 2. If p is T-purely periodic then h,(T) = Hu(T) = 0. In the opposite
case, h,(T) = v, - h, (T) and H,(T) = H, (T).

For the proof of Lemma 1 see [7]. The first part of Lemma 2 follows from (1) and
(2) directly, the second one from (11).

For an arbitrary partition ( = {Z,,a € A} € p we define an S 4-invariant prob-
ability measure pu¢ on (A1,0V,4) by pé([a}) = u( ﬂ T7%24,),@ = (;,...,0;) €

A~ § < ji j €L By an examination of the deﬁmtxons we obtain that

(12) h}l(Tv C) = hp‘ (SA» 7A)’
(13) Hy(T,() = Hyc(Sa,74)
for ¢ € py.

F(p) denotes the measure-algebra associated with (Q,F,u). For any F € F,
the equivalence class containing F will be denoted by F. { € p is a generator
(for T,p)if oCr = F ((r = V T*¢). In such a case the automorphisms T and

Sa are conjugated, it means there isa measure—algebra isomorphism & : F (p) —
(ov,,)(,ﬁ) satisfying 30T =540 (T and §4 are induced transformations on
the equivalence classes). The entropy and the asymptotic rate are invariant with
respect to the conjugacy as we deduce from (1) and (2), so h,(T) = h,(Sa) and
H,(T) = H,c(S4). If, moreover, ( € p,, then h,(T) = h,(T,¢) and H,(T) =
H,(T,0) (12119))

As it follows from (1),(2),(7),(8) and (12),(13), the inequality

(14) Hu(T) 2 hu(T)
always holds.
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Proposition 2. If(Q,F, i) is countably generated and y is T-aperiodic, then there
is a generator ( € py (for T, p) whenever h,(T) < oo.

For the proof see [2],[9].

Let (Q,F,u, {Tt}:er) be a flow. For F € F,w € Q and n € N, we write in short
sn(Fyw) = & [*, #p(Tw)dA(t); £ denotes the characteristic function of F and
) the usual Lebesgue measure on (R, Br). The next statement is a consequence of
the individual ergodic theorem (see e.g. [5]).

Proposition 3. For any F € F,
(15) liin sn(Fyw) = p(FIT)(w) pu-a.e.

Proposition 4. Let (,F,u) be countably generated. Then }inlx) w(TFAF)=0

for any F € F. If u is ergodic then, for all (with an ezception of at most countable
set)t € R, p is Ty-ergodic, too.

The proof can be found in (e.g.) [3]. The second part is based on the known
fact that u need not be T,-ergodic (t € R), only if e®* =1 for some poi~t 8 of the
discrete spectrum associated with the flow.

For the basic calculus of the entropic theory, which will be used below, we refer
to [2].

3. The proof of Theorem 1.
(R, F, #, {Tt}ser) is still a flow on a countably generated probability space.)

Lemma 3. Ift € R\ {0} and E € F such that u(E) > 0 and T,E = T,E = E,
then

(16) hus(Te) = |t hug(Th).

PROOF: Asclearly hup(T;) = hug(T-:), it suffices to prove (16) for t > 0 only. For
t being rational it follows directly from the definition (it holds namely T}/, F = E
if t = p/q and p,q are relative prime). Suppose that ¢ > 1 is an irrational and
put C = {i +jt : ¢,j € I};C is dense in R. Let ( € py and € > 0. There is
§ > 0 such that h,g;(TsClo¢) < € whenever s € C' N (—4§,6) by the first part of
Proposition 4. Take a finite subset D C C N (0,1) which is é-dense in (0,1), and
put £ = \ T;3¢. For n,p € N let k = k(n) = [(n + 1)¢] (the integer-part) and
s€D

r(p) =max{i +s:i+s<pt,i€l,s€ D}. By the usual calculus, for any n € N,

hm\"/ T4 < hu<vT~*<)+hu(v S\ T <

=0 =0

<hu<vT—lo+zhn<T~‘ 49°

1=0

=1
|=0 4
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As lim 52 = ¢, it holds hyg(Te) < t-hug(Ty) +¢, and s0 hyy(Te) < ¢ hyug(Th)
because ¢ was chosen arbitrary. If 0 < t < 1 (irrational), we can use the relation
hug(Te) = L hug(Tue) < & - hyyp(Th), where k € N is taken as to kt > 1. The
converse follows by the exchange ¢ forl. m

For the proof of Theorem 1, let us suppose that H,(T;) > |t| - H,(Ty) for some
t € R\ {0}. Denote the T;-aperiodic part of u by p'. According to (14), (16)
and Lemma 2, b, (T;) < 00, and so there is a generator ( = {Z4,0 € A} € p,
(for T, 1) by Proposxtlon 2. Write in short (1 )¢ = 9, let $: .7-'(;4 ) — (av,,)(o)
be the corresponding measure-algebra isomorphism under which T, and S4 are
conjugated. As H,(T:) = H,(Tt) = Hy(S4), it holds that 9(Fp) > 0for Fo = {z €
A : hy,(Sa) > |t| - Hu(T1)} by Proposition 1 (since hg(va) = h,(¢) < 00). Take
Eo € 31, such that Eo € Ir,; it is possible since Fy € IsA Further, put for any
k€N Ey = TeEo\ U T;Eo and E_; = T_xEo\ ) TyEs,and E = | Eq.

j=—k+1 j=—k+1 kel

Thus T\ E = T,E = E and T;Ex = E for any k. Let Ip = {k € 1:y'(Ex) > 0} and,
for k € Iy, take Fy € Q(T_kEk) The measures p; = /‘E and 9; = Jp, are Ty~
and §4-invariant, the automorphisms T; and S, (of (<, F,ux) and (AL, 0V 4,9%),
respectively) are under ® o T_x conjugated, and 9(Fi \ Fo) =0, so

huu(T2) = hoy(Sa) = 5(—}5 ] ho(SA)d(z) > It Hu(Ty)
F, .

by (7) (since clearly hy,(y4) < 00 and (9,,z € AT) corresponds to 9k, too). But it
further implies h, (T‘) > |t| - Hu(T1) by Lemma 1, which gives a contradiction as

H,(T)) > H, (Tx) >h, (Tl) Proof of the converse is the same.

4. The decomposition.

In what follows, the o-algebra F is assumed to be separable. Let T be an au-
tomorphism of (Q,F, p). Recall that hx(T,(a) T ha(T),n — oo, for an arbitrary
n € M(T), if {¢,}52, is a nondecreasing sequence (with respect to <) in py satisfy-

ing o( ?1 (n) = F (that exis\s just by the separability). Let us make the following

convention: a sub~o-algebra D C F has r.c.p. if there is the family (m2,w € Q)
of regular conditional probabilities induced by D with respect to u. The next two
assertions we obtain by the use of standard methods (c.f. [4],[2]) employing the
calculus of conditional probabilities. The proofs are the same as those of Lemma 2
and Theorem 6 in [6].

Lemma 4. Let D, & be sub-o-algebras of F such that D has r.c.p., € is separable
and D C E. Then, given F € F,

an m2({z : u(FIE)(z) = mE(F|E)(2)}) =1
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for almost all wy].
Lemma 5. If D C Iy has r.c.p. then mD € M(T) p-a.e. and, given { € py,

(18) m(T,0) = [ Bz (T, ).
Corollary. If D C Iy has r.c.p. then
(19) hu(T) = [ Bz (D).

Lemma 6. If D C Iy has r.c.p. and, moreover, if

hua(T) = [ g (Dde()
whenever E € I with u(E) > 0, then
(20) H,(T) = ess.supp,) hpz (T).
PROOF: Write s = ess.supy,) hm2 (T). Let Hy(T) > s and denote the T-aperiodic
partof uby u'. It is h,(T) < 0o, as hy(T) < oo by (19), so a generator { = {Za,a €
A}l ep, (for T, ') exists: the corresponding measure-algebra isomorphicn assign
by &. Hy(T) = H,(T) = Ho(Sa) = ess.suppy) ho,(S4), where 9 = ('), by
Proposition 1. So 9(F) > 0 for F = {z € A! : hy_(S4) > s}, 9r € M(S4) and
hsx(S4) > s by (7). But thxs is impossible as taking E € ®~'F N I7 (recall
F € Is,) such that pp = pp, we get hop(Sa) = hup(T) = S hmz(T)dpg(w) < s
by the supposition. On the other hand, H,(T) < s is 1mpossxble, too, otherwise
hug(T) > Hu(T) 2 Hug(T) for E = {w : hpo(T) > Hy(T)Y(E € It as D C
IT). |
The proof of Theorem 2.

Let (2, F, 4, {T:}:er) be a flow (F is still assumed to be separable). From now
on we always assume that 7 has r.c.p. Notice that for any 7-measurable function
g, mI({z: g(z) = g(w)}) = 1 for almost all w[u).

Lemma 7. For almost all w[u],mI € M({Ti}ier)-
PRoOF: Thereis N C @ (N € F) such that y(N) = 0 and mZ € M(T,)
whenever w € Q\ N and s € Q (the rationals). Thus, for such w,s and arbitrary
t € R, F € F,mI(T,4+F) = mI(T,F). According to the definition of a flow, given
F € F and w € 2\ N, the function mZ(T¢f) of t is Br-measurable. Thus, for every
a<b(a,beR)ands€Q,

b—s b—s
(21) / mI(T,F)dA(t) = / mI(T, 4 F)dA(t) = / mI(T,F)dA(t)
by the translation-invariance of the Lebesgue measure A, which implies mZ{T\F) =
const. A\-a.e. By application of (21) to each F € Fy, where F; means a countable
algebra generating F, we get a t, € R such that mZ o T, = mZ 0T, A-a.e. But an
easy examination shows that G = {t e R: ml o Ty ,, = mZ o Ty } is an additive
subgroup of R, so G = R (because \(G) > 0). m



30

M.Krutina

Lemma 8. For almost all wlp],mZ is ergodic.

PROOF: F = afo for a certain counta.ble algebra Fy. It suffices to show that,
given F € Fy mI(F|T)(z) = mI(F) mI-ae. for almost all w[p] Due to (15)
hman(F z) = p(F|I)(z) p-a.e. and hms..(F z) = mI(F|I)(z) mI-ae. if mI €
M({Tt}ten) The first equality gives h’Iln 3a(F,z) = p(F|I)(z) mZ-a.e. for almost
all w[u], which implies the assertion because u(F|I)(z) = mZ(F) mZ-a.e. for almost
allwlp]. =

Let I’ be a fixed separable o-algebra such that ' C Ir, and Ir, cT ; notice
that hu(T3, ) = hu(CIZ V oCT,) for ¢ € py. Put

n—1

Fu(Gw) = Hul¢IT'V 07, )(w) and fi(¢,w) = limsup = Zf“(c Thw);

/ £2(6,w0)dy(w) = hu(T, )

by the ergodic theorem. Further observe that, for E € Iy, with u(£) > 0 and for
FeF, pup(FIT'Voly) = y(F|I V o(z,) pe-a.e. Fix a nondecreasing sequence

{¢a}3%, in ps which satisfy o V ¢s) = F. For any n € N it holds that u(E) = 0

for E = {w: fi((a,w) > f,,((,.“,w)}, otherwise (since pg € M(T1)) hyug(Th,¢n) =
ffpg((mw)dﬂE(w) ff ((mw)dl‘E(‘-‘-’) > ff (Cn-{-l,w)dl‘E(W) = up(Tl,<n+l) )
which is impossible.

Lemma 9. If p is ergodic then lim f3((n,w) = hu(Th) p-a.e.

PROOF: If p(Fn) > 0 for some F, = {w : fi((a,w) > hu(T1)} then
p(U TFF,) = 1 for a certain t € R by Proposition 4. Put E; = F, and,
kel

k-1 . k .
for k € NJEx = TFEy\ U T/Eo,E_x = T;*Ey\ U T/Ey; it is still
j=—k+1 j=—k+1
E, € Iy, since f;(Cn,.) is an Ir,-measurable function. If u(Ex) > 0 (k €
I), put pp = pp, and pok = pr, Ex. We get hy(T1) 2 hy(Th,T(C) =
Ruon(T1,6a) = [ fa(Cnyw)dpox(w) > hy(Ty), which is a contradiction by Lemma
1. Thus li,r'n fi(Carw) < hy(Th) p-aee.

I u(F) >0for F = {w: li'l;nf;((,.,w) < a} for some a < h,(T1), we have
hue(Th) = li':'nh,,,(Tl,(,.) = li'r.nff;(c,.,w)dyp(w) < a. Further, for E C TFF
(k € I) with u(E) > 0 and E € Ir, it holds h,.(T) = li'rznh,,E(Tl,T,"(,.) =
li'x‘n Ry, (T1,Cn) (where E' = T, *E; we use the fact that of v Tk(a) = F, too).

n=0
This is equal to li’l.n J f3(¢n,w)dpEr(w) < a. So by an analogous argument as in the
first part, we obtain a contradiction h,(T)) < a by Lemma 1. ®
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Lemma 10. lim f3((n,w) = hmz (T1) p-a.e.

ProoF: For almost all wly] it is mI({z: li,r‘nf;(sz) = hmg(Tl)}) = mf({z :
lim £%,7 (Cay 2) = hmz(T1)}) by the use of Lemma 4 (D=7 and £ = I' V ¢(r) and
b;r theul'—measurability of h,z(T1). The last term is equal to one by Lemma 9,
which implies the assertion due to the decomposition of 4. m

The proof of Theorem 2 will be complete if hug(T1) = [ hpz(Ty)dpp(w) for an

arbitrary E € I, with u(E) > 0 (compare with Lemma 6 and the Definition in
§1). But it is true:

hua(T) = i (T, o) = lim [ £3(Gro)dip(e) =

= [ tim 73 Miee ) = [ Bz (T (o),
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