
Commentationes Mathematicae Universitatis
Carolinae

Martin Kalina
A sequential approach to a construction of measures

Commentationes Mathematicae Universitatis Carolinae, Vol. 30 (1989), No. 1,
121--128

Persistent URL: http://dml.cz/dmlcz/106712

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1989

Institute of Mathematics of the Academy of Sciences of the Czech Republic
provides access to digitized documents strictly for personal use. Each copy
of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic
delivery and stamped with digital signature within the
project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/106712
http://project.dml.cz


Comment.Math.Univ.Carolinae 30,1(1989)121-128 121 

A sequential approach to a construction of measures 

MARTIN KALINA 

Abstract. This paper deals with measures in the Alternative Set Theory. First of all 
er-additive measures are constructed. Then measures, "depending on the way of measure-
ment", are obtained. It is proved that the measure of a given class can, in the dependence 
on the way of measurement, be an arbitrary nonnegative real number. 

Keywords: Alternative set theory, measure, <r-additivity, way of measurement, observable 
class 

Classification: 28A99, 03H20 

The idea of developing the measure theory in the Alternative Set Theory has orig­
inated in Prague seminar on Set Theory (see the notes in [6 1976]). M.Raskovic, 
in his paper [R 1981], has re-constructed Loeb measure in the framework of AST. 
Further results, concerning the measurability of projective semisets, are due to 
K.Cuda [C 1986]. A different approach is due to A. Tzouvaras [Tz 1987], where 
he has used the notion of cuts of classes to the construction of a measure. 

In this paper a new approach is developed. Both classical measures (i.e. a-
additive and nondecreasing) and measures, "depending on the way of measurement" 
are obtained. 

1. P r e l imina r i e s . 
The reader is assumed to be familiar with [V]. The notions, results and conven­

tions from it will be used freely without any reference. Some modifications and 
supplements are stated below. 

1.1. The letters 6, c, d (possibly indexed) and m, n will always denote natural num­
bers (i.e. the elements of the class N); t,j,fc, will be reserved for finite natural 
numbers (i.e. for the elements of the class FN) and a will denote a fixed infinite 
natural number (i.e. an element of N \ F N ) . 

The indiscernibility equivalence = of infinitesimal nearness on the class Q of all 
rational numbers is defined by 

p = q = ((3k)(Vt > 0)(|p| < k & \p - q\ < 1/t) V (Wk) 

(p>k & q > k) V (p < -Jfc h q< ~k ) ) . 

For each q G Q denote mon(g) = {s G Q; s = q}. 
R will denote the class of all real numbers. Denote 

oo = {q G Q; (Vt)(<* > •)} and - oo = {q G Q; (Vt)(<* < - t ) } . 
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oo and —oo are assumed to be real numbers, too. The letter r (possibly indexed) 
will be reserved for real numbers. 

The countable sum of nonnegative real numbers r,- is defined by the following -
let bi € rj. Prolong the sequence {6,;t € FN} onto a set {bn;n € a}. Then, since 
the numbers r,- are nonnegative, there exists a d < a,d £ FN, such that for all 
c< d, c $ FN, there holds 

i>=i>-
n=sO n=0 

d 

We put 53 ri = r> where r € R is such that 53 6n € r. 
t€FiV n=0 

1.2.. Further we state some modifications of notions and results from [K—Z 1988] 
and [K-Z 1989] 

Let X be a class. Then 2C_ will denote its lower cut (i.e. 2L = {**; (3«)(u C X h 
n<u)}) and X its upper cut (i.e. X = {n;(Vtt)(u D X => nQu)}). If X = X, then 
the common value will be denoted by |X| and called the cut of X. The order < on 
the family of all cuts is given by inclusion. 

Further, if C, D are arbitrary cuts, then we shall denote 

C/FN = {n; (Vt)(n . % £ C)}; C • FN = {n; (3m < C)(3i)(n < m • i)}; 
C + D = {c; (3n < C, m < D)(c < n + m)}; 

C - D = {n; (Vm < D)(m + n € C)}; 
int(C) = C - C/FN; cl(C) = C + C/FN 

We define an equivalence » on the family of all cuts by C « D = int(C) < D < 
d(C). 

A cut D is additive if D + D = D. A cut D is nonadditive if it is not additive. 
Let {Ai;i € FN} be a sequence of cuts. Then we shall denote 

VJ{A.; i 6 FJV} = {n; (3j)(n € A0 + A, + • • • + Aj)}, 

V j f ^ i 6 FN} = {n;(V/)((jV D dom(/) C FW) & 

& (mg(/) C JV) & (Vi)(/(i) i Ai) =» n < £ / ) } . 

1.2.1. Theorem. Xe< {Ai;i € FJV},{2?,;i 6 FJV} ie sequences of cuts such that 
(Vi)(A; « £,). Tker. 

VJ{x,.; i e FJV} « Vj{Bi; i e F.V}. 

1.2.2. Theorem. let {JT,;i e FiV} ie a sequence of pairwise disjoint classes. 
Denote X = \J{Xiti 6 FN}. Then 

£ { £ ; i € FN} < £ < X < Y,{X<; i€FN}. 
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Denote B the smallest a-ring of semisets such that V C B. The elements of B 
will be called Borel semisets. 

1.2.3. Theorem. ___ __ 
Let X € B. Then each of X_ and X is either it or a and X_ » X. 

We define an equivalence « on the family B by the following 

( V B , C € t f ) ( B « C = B«£). 

1.2.4. Theorem. Let X £ B. Then X_ = X or there exists an additive cut A < X_ 
such that for each n G X \ X_ there holds X_ = n — A and X = n -f- A. 

1.3. Remind that a family of classes A is said to be codable if there exists a pair 
of classes (X, S) such that 

(1) (VK e .4X3* € X)(S"y = Y) & (Vy € X)(S"y 6 A) 

and the pair (X, S), having Property (1) is said to be the coding pair of ,4 . 

1.3.1. Ax iom. Each codable family of classes A is extensionally codable, : .e. there 
exists such a coding pair (X, S) of A, for which 

(2) (Vx,yeX)(S"x = S"y = x = y) 

holds. 
Troughout the whole paper, if A is a codable family and (X, S) its coding pair, 

then we shall assume Property (2) to hold for (X, S). 

1.3.2. Remark. Since B is the smallest cr-ring such that V C B, obviously B is 
codable. 

2. Basic notions. 
Let {sn;n G FN} be any sequence. By UHfanjn G FN} we shall denote 

U fl SJ and W fl U{«*n; n G FN} we shall denote f| \J Sj. 
i€FNj>i i£FNj>i 

A sequence {sn;n G a} of natural numbers is said to be an approximating se­
quence of a pair of cuts (A, B) if 

U f ) K ; n G FN} = A and f | [){sn; n G FN} = B. 

2.1. Lemma. Let A,B be any cuts. There exists an approximating sequence of 
the pair (A, B) iff A < B and each of the cuts A, B is w or a. 

PROOF: Let A < B and each of them be it or a. Then there exists monotone 
sequences {bn;n G a} , {cn; n G a} such that U fH^nJ n G FN} = A and f] \J{cn; n G 
FN} = B. Obviously the sequence {sn;n G a} , such that sn = 6n for even n and 
sn = cn for odd n, is an approximating sequence of the pair (A, B). 

On the oiher hand, if {sn;n G a} is any sequence of natural numbers, then 
obviously U f|{5n; n G FN} C f) [){sn; n G FN} and each of the cuts U f){*n; n G 
FN} and Q U(5n5 n G FN} is TT or a, as they are real classes. • 

A sequence {sn;n G a} of natural numbers is said to be an approximating se­
quence of a class X if it is an approximating sequence of the pair (X_, X). 



124 M. Kalina 

2.2. L e m m a . Let B be a Borel semiset. Then there exists and approximating 
sequence of B. 

PROOF: follows immediately from 1.2.3 and 2.1. • 

2 .3 .Remark . For each set u the sequence {bn;n £ a} , such that for each 
n £ a bn = |tx|, iis an approximating sequence of u. 

2.4. L e m m a . Let (X, S) be a coding pair of B. Then there exists a map F with 
DomF = X such that for each x £ X F(x) is an approximating sequence of S"x. 

PROOF: Using transfinite construction we can get the function F. • 

2.5. Agreement . We shall consider B to be the domain of the above mentioned 
map F and for each B £ B by F(B) we shall denote the value F(x), where x £ X 
is such that S"x = B ({X, S) being the coding pair of B). 

Any map F which assigns to each semiset A £ B a sequence, approximating A, 
will be called the Borel approximating function (BAF , to be short). 

Let F be a BAF, s = {sn;n £ a} any approximating sequence of a nonempty 
Borel semiset and B £ B. Let F(J3) = {bn\n £ a}. The semiset B will be called 
s, F-observable if there exists a d < a, d £ FN, such that for all m < d,m ^ FN 
and n < d,n £ FN it holds bn/sn = bm/sm. 

The system of all s, F-observable semisets will be denoted by 0(s,F). 
Let F be a BAF and s = {sn;n £ a} any approximating sequence of a nonempty 

Borel semiset. We define a measure mSiF : 0(s,F) —• R by the following: 
m9iF(B) = r iff there exists a d < a,d $ FN such that for all n < d, 
n £ FN bn/sn £ r holds, where B £ B and F(B) = {6n; n £a}. 

3 . Classical measures. 
Throughout this section s = {sn;n £ a} will denote a fixed approximating se­

quence of a Borel semiset having nonadditive cuts. 

3.1 . Proposit ion. Let {bn;n £ a} be an arbitrary approximating sequence of a 
nonempty Borel semiset B. Then the cuts of B are nonadditive iff there exists an 
n < a, n $ FN, such that for all m < n. m ^ FN bm/bn = 1 holds. 

PROOF: Let the cuts of B be additive. Then by Theorem 1.2.4 j? = B. Because 
of the additivity of \B\ for each i there exists a j > i such that bj/bi > 2 or 
bi/bj > 2, hence for each n < a, n £ FN, there exists an m < n, m £ FN, such 
that bm/bn $ 1. 

If the cuts of B are nonadditive, then by Theorem 1.2.3 there exists a d £ N such 
that int(d) < B < B < cl(d), hence for each k > 1 there exists an i such that for 
each j > i there holds 

d-d/k 1 - 1 / k 1 + 1/k d-yd/k 
d + d/k ~ 1 + 1/k <ailai< 1 - 1 / k ~ d-d/k' 

Prolongation Axiom implies the assertion of this proposition. • 
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3.2. Agreement . For each B € B, having nonadditive cuts, we shall assume that 
for its approximating sequence {bn;n € a} there holds bm/bn == 1 for all m , n < a, 
m,n£ FN. 

3.3. Theorem. Let F be a BAF. Then 0 ( s , F ) = B. If G is any other BAF, 
then m9tF = m9tQ. Ifb£B has an additive cut, then 

, f l l = f 0 , if\B\C\Jp[{sn;neFN) 
m , ' n ' l o o , if\B\D(][J{sn;neFN}. 

PROOF: Denote F(B) = {6n;n € a} . If B has nonadditive cuts, then by Propo­
sition 3.1 for all n , m < a n,m £ FN bn/bm = sn/sm = 1 holds. This implies 
BeO(s,F). 

If B has an additive cut, then there are two possibilities. 

i./ |B | C U fl \sn\ n € FN}- Then there exists an t such that for all j > i there 
holds Sj $ \B\. Hence there exists an i such that for all j > i Sj > bj. 
And, since | B | is additive, for each k there exists an i such -hat for all 
j > i k> bj < SJ holds. Hence B G 0 ( s , F) and m9tF(B) = 0. 

ii./ | B | D f l U { 5 n ; n € FN}. Similarly one can prove that B G 0 ( s , F ) and 
m9tF(B) = oo. 

Let F, G be two different Borel approximating functions and let F(B) = {bn; 
n e a} and G(B) = {cn; n G a} for a B G B. Define a new BAF H by H(B) = {dn; 
n G a}, where dn = bn for even n and dn = cn for odd n. Since B G 0(syH), 
m9tH(B) is defined and by the definition of H m9tn(B) = m8tH(B) = ma>G(-B), 
which was to be proved. • 

In the remainder of this section F will denote a fixed BAF. 

3.4. Theorem. Let B,C eB be such that B^C. Then m9tF(B) = m9tF(C). 

PROOF: If B , C have an additive cut, then the equality m8fF(B) = m8tF(C) is 
implied by Theorem 3.3. 

If B , C have nonadditive cuts, then by Theorem 1.2.3 there exists d such that 
int(d) < B « £ « B « C < cl(d). Denote F(B) = {6n;n G a} and F(C) = 
{cn; n G a}. Then for each k > 1 there exists i such that for each j > i there hold 

(d - d/k)/d = 1 - 1/Jb < 6,/d < 1 + 1/Jb = (<f + d/k)/d 

and 

(d - d/k)/d = 1 - 1/k < Cj/d < 1 + 1/k = (d + d/k)/d, 

hence for each n < a, n $ FN 6 n / c n = 1, hence bn/sn = cn/sni which was to be 
proved • 

Theorem 3.4 has the following trivial, but important consequences. Their proofs 
are left to the reader. 
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3.5. Corollary. Let B € B have nonadditive cuts and d be such that d » B. Then 
™>»,F(B) = mon(d/sn) for any n < a, n $ FN. 

3.6. Corollary. mBfp w an additive measure. 

3.7. Theorem. ms>p w a-additive, nondecreasing and nonnegative measure. 

PROOF: Obviously m8fF is nonnegative and nondecreasing. We shall prove its 
or-additivity. 

Let {Bt;i € FN} be a countable system of pairwise disjoint Borel semisets. 
Without loss of generality we can assume the measure of each B t to be finite (and 
hence B* < U n {sn;n € FN} • FN for each i). Since the semisets Bi,i € FN, are 
pairwise disjoint, there holds 

^ { B . ; i € FN} < U{B t ; i€FN} « U{B t ; i€FN} < 

<53{ft;«"€FJV} 

and 

Vj{Bi; i e FN} » VJ{B;;. e FJV}. 

Denote Jf = {»' 6 FJV; 5^4-Bi ^ Bt} and for each i £ X take a di such that d; a* B,. 
Then 

£ { £ ; » € FN} « £ > , ; . € X} + Vj{|B.|;. 6 FAT\X}, 

£{*;. 'SX}«Vj{d,;,eJO 

and, since for all i € FN \ K |B.| are additive and ma)/r(Bt) < oo, 

]T{|B t | ; i € FN\X} < Un K ; n G FN}/FN 

Hence, by Theorem 3.3 m,,F(X-{.B*l; i € FN\K}) = ma,F(U{Bt; i € FN\K}) = 0 

and hence, by Corollary 3.6, 

m.>F(U{Bj;» 6 FN}) = m,,F(Vj{<.,;!' € X})+ 

+m.,F(Vj{|Bi|;»- 6 FN \ A"} = m.,i-(VJ{*;. 6 X}). 
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Hence, without loss of generality, we can assume X = FN. Then 

m.,f(U{B.;« e FN}) = m.,F(VJ{<.,;. e FN}) = 

= m.,-(2t.*;<eF.v}), 

hence for each n € FN and each {dm; m < $}, where B G N \ FN, there holds 

n 

X)m,,F(*) = m.,F(* + •' • + rfn) < mB,FCjT{di; i G FN}) = 
t=0 

= mJ,F(U{.B i;t G FN}) = m S ) F ( ]T{d . ; t € FN}) < 

< m,>F(d0 H + de) = mon((d0 + • • • + d6)/sh) 

for any 6 ^ FN, and the cr-additivity follows. • 

4. Measures depending on the way of measuremen t . 
Throughout this section s = {«sn;n G a} will denote a fixed approximating se­

quence of a nonempty Borel semiset having an additive cut. 

4 .1 . Lemma. Let F be any BAF and 6 G B. Then 

i.) if n U {sn; n G FN}#B then B G 0 ( s , F) an<2 m, ,F(B ) = oo 

ii.) if U n {sn; n G FN}*B, then B G 0 ( s , F) and m , ) F ( B ) = 0. 

PROOF: The proofs of i.) and ii.) are very similar, therefore we shall prove only 
ii.) 

Let F(B) = {6n ;n G a} and d G U n {sn;n G FN} \ B. Then there exists an i 
such that for all j > i bj < d. Since S = U n { s n ; n G FN} is an additive cut and 
d G 5, for each k there exists an i such that for all j > i there holds Sj > d • k, 
hence B G 0 ( s , F) and m , t F ( B ) = 0. • 

4.2. Theorem. l e t B G # , |B| = U n {5„;nG FN}, n e n 

i.) for each 0 < r < oo there exists a BAF F such that B G 0(s,F) and 
matF(B) = r 

ii.) there exists a BAF G such that B £ 0(s,G). 

PROOF: We shall restrict our attention to the case |B | being a. Assertion i.) will 
be proved in three steps. 

a.) Let 0 < r < oo and q G r. Put 6n = \q • sn] (f ] being the integer part) . The 
equality \B\ = U n {sn; n G FN} and the additivity of |B | imply {6n; n G a} 
to be an approximating sequence of B. Put F(B) = {6n;n G a}. Then 
obviously B G 0 ( s , F) and mBfF(B) = r. 

b.) Let r = oo. Put 6n = n • sn. Then {6n; n G a} is an approximating sequence 
of B and for F(B) = {6n; n £ a} Be 0(s, F) and m,iF(B) = oo. 
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c.) Let r = 0. Obviously each of the sequences |{f.sn/k"|; n G a}, k ~fi 0, approxi­
mates B. Since |B| is cr, without loss of generality Si G | £ | can be assumed for 
aU i. Define a sequence {n(k)\0 ^ k £ FN} by the following - n(l) = 0 and 
for all k > 2 put n(k) = t, where t is the least number such that t > n(k — 1) 
and for all j > i \sj/k] > s*. Since | £ | is additive, such an . does exist. For 
n(k) <j< n (k+l) put bj = \sj/k]. Then obviously nu{bfj G FN} = |B | 
and hence any prolongation {bn;n G a} of {bn;n € FN} is an approximat­
ing sequence of B and if we put F(B) = {6n; n £ a}> then B G 0(s, F) and 
mttF(B) = 0. 

ii.) Assertion i.) implies the existence of BAFs F, H such that mttp(B) ^ 
mttH(B). Denote F(B) = {6n;n G a}, H(B) = {cn;n G a} and define G by 
(7(1?) = {dn\n G a} such that dn = bn for even n and dn = cn for odd n. 
Then obviously {dn;n G a} approximates B and B $ 0(s,H). • 

4.3. Remark. From the physical point of view, Theorem 4.2 can be interpreted 
as the dependence of a measure (or of a result of an experiment) on the way of 
measurement. 

Using transfinite construction, from Lemma 4.1 and Theorem 4.2. we get the 
following ! 

4.4. Theorem. Let O C B be any class of semisets such that 

(VB G B)(B £ U D K ; n G FN} V B ^ H U {sn; n G FN}) =» B G O 

and let A : O —• R be any nonnegative real-valued function such that 

(VB G 0)(B £ U0 {.sn;n G FN} => A(£) = 0) & 

& (£^r iU{5 n ;nGFN}=>A(B) = oo). 

Then there exists a BAF F such that 0(s,F) = O and mSiF = A. 
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