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Simple motions

A.TZOUVARAS!

Abstract. We single out a special kind of motion, called here “simple”, and study its
topological features. The main result (which is the nonstandard version of a theorem of
Eilenberg) is that a set u is the range of a simple motion if the space E = u x u — Fig(A)
can be partitioned into two disjoint open figures (A = {(z,z);z € u} ).

Keywords: Alternative set theory, II-equivalence, motion, simple motion, connected set,

simply connected set .

Classification: 03E70 , 54J05

“Motion” in AST is a function the values of which at near points are indiscernible.
This makes it a useful device for describing and simulating real processes. Besides
it offers an intuitive approach to topological connectedness.

Here we shall be concerned with the latter, that is some relations between motions
and connected spaces.

0.Preliminaries. By a topology we shall understand a m~equivalence = and by a
space a pair (w,=) where w is a set.

A homeomorphism between the spaces (wy, =), (wy,=) is a 1-1, onto function
f 1wy — wy such that (Vzy)(z =, y « f(z) =2 f(y)).

Recall the following definitions and facts from [V]. A figure X (with respect to
=) is closed iff X = Fig(u) for some set u.

A set u is said to be connected if there is no partition of u into sets u;, uz such
that Fig(u;) N Fig(uz) = 0.

A class X is said to be connected if for any two points z,y € X, there is a
connected set u C X such that z,y € u.

Of course we have besides the classical notion of connectedness, according to
which the space cannot be decomposed into two disjoint open (hence clopen) sets.

This classical version is stronger than that given in terms of =. They coincide,
however for closed figures. Namely, the following holds.

Lemma 0.1.

a) The set u is connected iff Fig(u) is connected.
b) Fig(u) is connected iff it cannot be decomposed into two closed disjoint figures.

!This paper was partly written during the author’s two-month staying in Prague. Thanks are
due to P.Vopénka, A.Sochor and other people of the Prague Seminar for helpful discussions and
suggestions.
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PROOF:

a) [V, Ch.III, §3]
b) Immediate from a) and the definitions. ®

As for the open figures the following implication holds:

Lemma 0.2. If X is an open figure and X is decomposed into two open disjoint
figures, then X is disconnected.
ProoF: Let X;, X, be open figures such that X; UX; = X, X; N X, = 0,
X1,Xs #0. Let z € X3,y € X3. f u C X is a set containing z, y and put
u; = uN Xy, uz = uN Xy, then u; Uu; = u, u; Nuy = @ and u,, u; are E—classes
(because X, X; are such). Hence u;, u are sets such that Fig(u;) N Fig(uz) = 0.
Thus, u is disconnected. ®

A function f is said to be a motion if dom(f) =9 € N and f(a) = f(a +1) for
ala+1€9.

The following is an important characterization of connected sets and classes.
Lemma 0.3.

a) A set u is connected iff it is the range of a motion.
b) A class X is connected iff for any two points z,y € X there is a motion f
such that f(0) =z, f(9 —1) =y and myg(f) C X.

PROOF:

a) [V, ChIV]
b) Immediate from a) and the definitions. ®

1. Interval topologies. Every motion f with respect to = with domain ¢ induces
a topology ? on ¥ defined as follows:

aﬁﬂ iff (V7)(y between a, 8 — f(7) = f(a)).
Clearly we have then
1) (VaB7)azy & a<B<y—azp).

Because of (1) the equivalence classes of 7 are m—intervals of the segment 9, that

is convex 7-classes. Moreover, no monad of ? is a set2. This leads to the following
definition.

Definition. A topology = on a segment 9 of N is called interval topology (int.top.)
iff all of its monads are convex classes.

The int. top. = is said to be non degenerate (n.d.) if all of its monads are proper
classes.

2Except of the trivial equivalence = = V3.
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Examples.
(1) Let I be a m—cut closed under addition. Then the equivalence

z=ryiffjlz—ylel

is a n.d. inter. top.
(2) ¥ = is an int. top. on ¥, then the equivalence =’ such that

z="yiffd-1—-z=9-1-y

is an int. top. too, called the inverse of =. Clearly, if = is n.d., then so is
R
(3) (This is due to P.Zlatos). Define on N the equivalence
an B (L= 51< ) & @B #0,

that is the rational % is near to 1. .

This is an int. top. but is degenerate, because for n € FN Mon(n) = {n}.
However for every a > FN, Mon(a) is a proper class, so if we choose some o > FN
and put

zr~gyiffzta~y+a,

then ~, is a n.d. int. top.

Interval topologies raise the interesting problem of their classification. In partic-
ular n.d. inter. top. which appear in close relation to motions. We shall not deal
with this problem here.

We shall cite only the following result:

Proposition 1.1.

a) The intersection of countably many n.d. int. top. is a n.d. int. top.
b) For any n.d. int. top. = there is a cut I (v and closed under addition) such
that =;C=.

PROOF: a) Let =,, n € FN, be n.d. int. top. Clearly == N, =, is an int. top.
For every z the monads Mony(z), with respect to =,, are all proper r—intervals.
If N, Mong(z) = [v, 6] a set-interval, then we easily deduce from the properties of
n—classes that there is a finite number of monads whose intersection is [y, 6]. But
then, clearly, some of them is equal to [y, 6], a contradiction.

b) Let o(n,z), n € } \" be for every z the sequence of sets such that Mon(z) =
N{o(n,z) : n € FN}. Clearly, o(n, z) can be all intervals containing z as an interior
point, and let o(n,z) = [23,zL]. Choose ¥ > FN such that [0,7] € Mon(0) and
[9-1-4,9—-1)C Mon(d —1). Put

an = min({|z — Zol |z — 20| : 2 € [1,9 = 1 =2} U {}).

Since = is n.d. a, > FN for every n. Choose some g such that FN < 8 < a,
for every n € FN and put I =N{B/p:n € FN}.

Clearly I is a 7—cut closed under addition and if |z — y| < I, then |z — y| < ay,
hence y € o(n, z) for every n, thus z = y.
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2. Simple motions. It is evident that for every motion f

()
(Vep)(a=B — f(a) = f(B)).

The converse of (2) would mean that the motion f enters at most once each
monad and this is the simplest kind of motion we can imagine.
So we give the following.

Definition. A motion f is simple if
i) fisl-1
i) (Va)(a2f - (@) = F(6).
The set u is said to be simply connected if it is the range of a simple motion.
(This term has a different meaning in classical topology).
There is a close connection between simple motions and n.d. int. top. because
of the following straightforward result.
Proposition 2.1..
a) The motion f is simple iff f is a homeomorphism between the spaces
(domi(£),2) and (ol £), =)
b) u is simply connected iff it is the homeomorphic image of a space (J,=)
where = is a n.d. int. top.

PROOF: Both claims are immediate from the definitions. m

From b) above we see that simply connected sets posses an inherent linear ordering
transferred to them by the homeomorphism and the natural ordering of 9.
We shall see in the sequel that this ordering is almost unique.

Lemma 2.2. Let =,, =; be two n.d. int. top. on ¢ and let f : (J,=,) — (J,=2)
be a homeomorphism. Let Mony(z), Mony(z) be the monads of z with respect to
=,, =3. Then, either

(Vay)(z <y — Momy(f(2)) < Momy(f(y))

or

(Vzy)(z <y = Mom(f(y)) < Mona(f(2)).

(Let us call f almost increasing and almost decreasing in the two cases respectively).

PROOF: We first show that one of the following holds:
a) f(0)=0and f($-1)=9-1
b) f(0) =9 —1and f(¥ —1) =0.
Clearly it suffices to see that f(0) = 0 or f(0) = ¢ — 1. The case for 9 — 1 is
similar and the combination of them yields a) or b).
Suppose that f(0) = z # 0, 9— 1. Then either rng(f) C [0, Mon,(z))] or rng(f) C
[Mony(z),9 - 1].



Simple motions

(Both of them are impossible because f is onto).

Indeed let y < z be such that f(y) < Mong(z) < f(2) or f(z) < Monz(z) <
f(y) Let 8 = ma_x{a : f(a) < z}’ v = ma.x{a : f(a) > I}. Then, some of them,
e.g B, is less then 9 — 1. But f(8+ 1) < z too, since f(B + 1) = f(8). This
contradicts the definition of £.

Therefore a) or b) holds.

We claim that if a) is true then f is almost increasing and if b) is true then f is
almost decreasing. Let us verify the first claim the second being similar.

Assume a) is true and for some pair ¢ < y Monz(f(y)) < Monz(f(z)). Then
inductively we see that f(y+1), f(y+2),..., f(9—-1) < f(z). But f(9-1)=9-1

a contradiction. m

Lemma 2.3. Let 9, =, =3, f be as in the previous lemma. Then, either
(V2)(f(2) =2 2) or (Va)(f(z) =29 —1-12).

PROOF: By the preceding lemma f is either almost increasing or almost decreasing.
Assume the first. It suffices to show f”m = m for every monad m of =,. Suppose
f"m = p # m. Then the cuts I} = [0,m) and I, = [0, ) are different. However,
since f is almost increasing f""I; = I,. By overspill and the fact that f is 1 -1 this
is easily proved to be a contradiction.

Suppose f is almost decreasing. Then we have to show that f'm =9 —-m =
{9 =1 ==z :z € m}. This is proved as before. m

Theorem 2.4. Let f, g be simple motions (with respect to the same =) with same
domain 9 and same range u. Then, either

(Vz)(f(2) = g(2)) or (Vz)(f(z) = g(¥ - 1-1z)).
PROOF: Put h =g o f. Then

22y o f(z) = fy) & 9“f(z)fy“’f(y)-

Therefore h is a homeomorphism between the spaces (9, ?), (9,=) where ?, = are
9 ]
n.d. int. top. According to the preceding lemma, (Vz)(h(z)=z) or (Vz)(k(z)=
9 ’
?19 — 1 - z) from whence the conclusion follows. m

Given a simply connected set u, “enumerated” by the simple motion f, we can
say that to every monad Mon(f(a)) there corresponds the “symmetric” monad
Mon(f(9 — a)). The preceding theorem says that this pairing of monads is inde-
pendent of the particular motion f used to enumerate u. Moreover the following
holds.

Theorem 2.5. Let u be simply connected and let f : u — u be a homeomorphism.
Then for every pair of symmetric monads m,m’' of u, either f'm =m or f'm=m'.

PROOF: Take some simple motion g such that rmg(g) = u. Then the function
h = f o g is a simple motion too with same domain and range u. By the previous
theorem we have either (Vz)(k(z) = g(z)) or (Vz)(k(z) = ¢(J — 1 —z)).
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In the first case f o g(z) = g(z) hence f"m = m while in the second f o g(z) =
g(9 — 1 — z) hence f"m = m' since the monads of g(z) and g(9 — 1 — z) are
symmetric. ®

Corollary 2.6. If u is a simply connected set with |[u| = 9 we have essentially
two ways to range over its elements by a simple motion. And these are inverse to
each other that is, if one goes from 0 to 9 — 1 the other traces the same steps back
from 9 —1 to 0. “Essentially” means that we ignore disturbances in the interior of
monads which are described by the relations f(z) = g(z), f(z) =g(9 -1 -z).

3.Simply connected sets. In this section we shall give a necessary and sufficient
condition in order that a connected set be simply connected. This result (Theorem
3.6) in its classical version concerns orderability of topological spaces and is due to
S. Eilenberg (see [E]). The modifications of the version adapted here concern the
treatment of monads.

Lemma 3.1. Let u be a connected set. Then u is simply connected iff there is a
set-ordering < on u such that

3 (Vzy)(z <y & z #y — Mon(z) < Mon(y))

(where Mon(z) < Mon(y) has the obvious meaning).

PROOF: Since u is connected all monads of u are proper classes. Suppose u is
simply connected and u = rng(f) with dom(f) = 9 where f is simple. If we put

fl@) < f(B) iff a < B,

then clearly < has the property required. Conversely suppose < has the property
(3) and let |u] = 9. Obviously there is a function f : 9 — u, 1 — 1, onto, such that
a < B« f(a) < f(B). Since the monads of u are not sets f(a) = f(a+1), otherwise
there is some z such that Mon(f(a)) < z < Mon(f(a + 1)), which contradicts the
fact that f preserves the ordering. Hence f is a motion and, by (3), it is a simple
motion. ®

In fact we can weaken considerably the assumptions of the last lemma.

Given a set-relation < on a space (u, =), consider the following properties:

(A) (Vzy) (exactly one of the relations z < y, z =y, y < z holds)

(B) (Vzy)(z <y & z #y — Mon(z) < Mon(y))

(C) (Vzyz)(z,y,z not all in the same monad and z < y and y < z then z < z).
Clearly (A), (B), (C) together are weaker than the assumptions of Lemma 3.1,
because (C) is weaker than full transitivity of <.

We are going to prove, first, that (A)-(C) suffice for a connected set u to be simply
connected and, second that, in a connected u (A) and (B) imply (C). Therefore,
finally, a connected u satisfying (A) and (B) is simply connected.

For the first goal, clearly, we have to show that (A), (B), (C) imply transitivity
not necessarily for <, but for a relation <* satisfying (A), (B) and agreeing with <
on pairs (z,y) such that z # y.
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Deflnition. A cycle (with respect to <) is a set-sequence
{{zo,z1), (21, 22) ..., (Ta=1,Za)s (ZTa) T0)} C< .

Lemma 3.2.
(1) Let u, =, < satisfy (A), (B), (C) and let {zo,...,z4} be a set such that
Mon(zo) < Mon(z,) < :-- < Mon(za). Then Mon(zy) < Mon(z,).
(2) If for some B in the above sequence Mon(zg) < Mon(zg4,1), then Mon(z,) <
Mon(z,).
(3) If z <y and z # y, then (z,y) does not belong to any cycle of <.

PROOF: 1) Observe first that the following is true: For any z, y
) Mon(z) < Mon(y) « (3n € FN)(o(n, 2) < o(n,y))

where o(n, z) are the sets producing the monad of z.

One direction of (4) is trivial and the other is a simple consequence of the pro-
longation axiom.

Given the set {zo,...,2zq} such that Mon(z¢) < --- < Mon(z,), consider the
function f : @ — N defined by

f(7) = min{B: o(B,2+) < 0(B,2741)} for y < @

(Put f(v) = 0 if no such B exists).
It follows from (4) that f"a C FN.
Let m € FN be a bound for the set f"a. Then it is clear that

(5) Mon(z,) < Mon(z,41) «+» o(m,z,) < o(m,z,4;) forall y < a

Put P = {o(m,z,) : ¥ < a}. Pisaset and we claim that the relation < on P is an
ordering. It suffices of course to see that < is transitive on P. Let o(m, z), o(m,y),
o(m, z) be elements of P such that o(m,z) < o(m,y) and o(m,y) < o(m, z). Let
T1, Y1, 21 be elements belonging to the above three sets respectively. We have to
show that z < z. Since by assumption z < y, y < z it suffices (in view of (C))
to show that z, y, z are not all in the same monad. Assume the contrary. Then
z; < Mon(y) < z;. By (B), Mon(z;) < Mon(y) < Mon(z,) which is a contradiction
since Mon(z,) = Mon(z).

Therefore < is an ordering on P. By the hypothesis and (5) we have o(m,zo) <
-+ £ o(m, z4), whence o(m,z¢) < o(m,z,). By (4) again, Mon(zo) < Mon(Zq).
2) This is immediate from the equivalence (5) and the fact that if for some S,
o(m,zg) < o(m,zg4+1), then o(m,zo) < o(m, z,), since < is an ordering on P.

3) Suppose

2< <z <Yy<++-<z2

is a cycle containing the pair z < y, z # y. Then by (B),
Mon(z) < - -+ < Mon(z) < Mon(y) < ...Mon(z).

It follows from 2) above that Mon(z) < Mon(z), a contradiction. This completes
the proof. ®
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Lemma 3.3. If < is a relation satisfying (A), (B), (C), then there is an ordering
<* on u satisfying (A), (B) and such that

z<y & rz#y—sz<ty

PROOF: Let R =< —{(z,y) : (z,y) belongs to some cycle of <}. It is easy to see
that R is transitive, hence a partial ordering.

Indeed, let (z,¥), (y,2) € R. This means that (z,y), (y,z) do not belong to any
cycle.

Suppose (z,z) ¢ R. Then, either (z,z) €<, hence z < z < y < z, which is a
cycle containing (z,y), or (z,z) €< and (z, z) is contained inacyclew < --- < z <
z < -+ < w. But then, clearly (z,y), (y,z) are contained in a cycle too. In both
cases we get a contradiction, therefore, (z,2) € R.

Now, it is well known that every partial set—ordering of a set u can be extended
to a total set-ordering on u. Extend R to such a total ordering <*. According to
Lemma 3.2. 3), every pair z < y such that z # y does not belong to a cycle, hence
(z,y) € R. Consequently z <* y. This completes the proof m

Corollary 3.4. If u is connected and there is a relation < satisfying (A), (B), (C),
then u is simply connected.

PROOF: Modify, by Lemma 3.3, < to <* having the properties of Lemma 3.1.
Hence u is simply connected. ®

Let us come now to the second reduction. This is essentially due to Eilenberg.

Lemma 3.5. If u is connected, then (A) and (B) imply (C). Thus, if u is connected
and satisfies (A), (B), then it is simply connected.

Proor: For z € u, put

T ={y:y#z &y<z}
et={y:y#z & y<a}

Claim 1. The conjunction of properties (A), (B) is equivalent to the conjunction
of the properties

(A") (Vz)(u = 2~ UMon(z) Uz*)

(B”) For every z, the classes z~,z* are open figures.

PROOF: Suppose (A), (B) hold. Then, clearly, (A’) holds. Since
z~ = {y:z <y} — Mon(z),

2=, z* are Tclasses. From (B) also follows that they are figures, hence open
figures. The converse is similar, @



Simple motions

Claim 2. If (A’), (B’) hold, then the classes z~ U Mon(z), z* U Mon(z) are con-
nected closed figures.

PROOF: First observe that z— U Mon(z) = cl(z~) and z* U Mon(z) = cl(z*).
Indeed, since z~, zt are open and disjoint, cl(z~) € z~ U Mon(z) from whence
cl(z™) = 2~ U Mon(z) since z~ is a figure.

Suppose cl(z~) is not connected. Since it is a closed figure, it can be decomposed
(see Lemma 0.1) into two disjoint figures Fig(v,), Fig(vz). Thus, u = Fig(v;) U
Fig(va)Uz*. If Mon(z) C Fig(v;), then, obviously, Fig(v;)Uz* = Fig(vz)Ucl(z?) =
Fig(w) and Fig(w) is disjoint from Fig(v,). Hence u is decomposed into two disjoint
closed figures, a contradiction. m

Let us come now to prove the assertion of the Lemma. Suppose r < y, y < z and
either z # y or y # 2. We shall show that z < 2.

Assume z # y (the other case is similar). Then Mon(z) C y~ or, equivalently,
u —y~ C u — Mon(z), hence according to (A’), Mon(y) Uy* Cz~ U zt. .

By claim 2, Mon(y) U y* is connected, while z~ U z+ is not (see Lemma 0.2 and
claim 1). Thus y* U Mon(z) must be included either in z~ or in z*. Since by
hypothesis y € z¥, it follows that y* C z+. By hypothesis, z € y*, he-ce z € zt,
thatisz < z2. ®

To come to the main theorem, consider on u X u the product topology, denoted
again by =, that is

. df . .
(z,y)=(z1,m)oz=z & y=u

Obviously Mon((z,y)) = Mon(z) x Mon(y).

Let A = {(z,z) : z € u}
Theorem 3.6. Let u be a connected set. u is simply connected iff the space E =
u X u — Fig(A) can be decomposed into two disjoint open figures.

PROOF: Direction “—” is easy. Suppose u is simply connected. By Lemma 3.1.
there is an ordering < of u satisfying (3). Put

E, = {{z,y) : z < y} — Fig(A), E; = {{z,y) : y < =} — Fig(A).

E; are L—classes and if (z,y) € E;, then z < y and z # y, hence by (3) Mon(z,y) C
E,. Thus E; are open figures such that E, UE; = E and E; N E; = 0.
To prove the converse implication we need the following.

Lemma 3.7. Suppose u is connected and E,, E; # @ is a partition of E into open
figures.
Thcn (sz)((zv y) € El And (yv:"') € E2)~

PROOF: Let s : u x u = u x u be the function s({z,y)) = (v,z). s is a home-
omorphism. Suppose E;, E; do not satisfy the conclusion of the lemma. Then,
s"EyNE; #0. Put

D, =s"E\NE,, D, = E;Us"E,.

17
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Clearly, Dy, D; are open figures such that DyUD; = E, DyND2 =@, D,,D; # 0
and s"D; = D; for i = 1,2.
Put for every z,

Dy(z) ={y: (z,y) € D1}, D2(2) = {y : (z,y) € Ds}.
Since Dy, D; are open figures we easily see that D;(z) are open figures too and
(5) z =1’ — Dji(z) = Di(z') for i = 1,2.
Moreover, for every z
u = Dy(z) UMon(z) U Dy(z).
By the same reasoning used to prove the claim 2 of Lemma 3.5., we see that
cl(D;(z)) = Di(z) U Mon(z)
and that cl(Di(z)) is connected.

Suppose, now, that for some z, Di(z) # 0 and Dy(z) # 0. Let y € Dy(a),
zZE Dz(.‘t). ||

Claim. cl(D1(z)) x Mon(z) € D; U D, and cl(D;(z)) x Mon(y) € D, U D,.
PROOF: We show the first; the other is similar. Let wy € cl(D1(z)), wa € Mon(z).
We have to verify that w; # w, (since D; U D; = Ey U E; = E).Since cl(Dy(z)) =
D, (z) UMon(z) either w; € Dy(z) or w; € Mon(z). .
i) w; € Dy(z) & (z,w1) € D;. Now wy € Mon(z) and z € Dy(z), thus
(z, z) € Dy, hence (z,w2) € D;. Suppose wy = w;y. Then Dy N D, # @ since
they are figures, a contradiction.
il) w; € Mon(z) — z = w; and again (z,w;) € D;. Hence (w;,w;) € D,.
Therefore wy # w,. The claim is proved.
Now, cl(D;(z) x Mon(z)) is connected and Dy U D; is not. Since (z,z) € D>, it
follows cl(Dy(z)) x Mon(z) C D;. But y € Dy(z), therefore (y,z) € D,.
Similarly from the inclusion cl(Dz(z)) x Mon(y) C Dy U D; we get (z,y) € D;.
The relation (y,z) € D; & (z,y) € D, contradict the fact that s" D; = D;.
Therefore for every z, some of the sets Dy(z), Dz(z) is necessarily empty.
Assume for some z, D;(z) = 0. Then u = Dy(z) UMon(z). If z = z', (5) implies
D, (z') = Dy(z) #0. If y € Dy(z), then = € Dy(y) thus, Dy(y) # 8. We infer that
Dy(z) # @ for every z, consequently, D, = @, a contradiction. This contradiction
completes the proof of the lemma. m

Proof of the direction “—” of the Theorem 3.8.

Suppose E;, E; form an open—figure decomposition of E. It suffices, by Lemma
3.5., to show that there is a relation < on u with properties (A), (B).

E,, E; are disjoint L-semisets and, by the foregoing lemma, s” E; = E;. We can
extend by the prolongation axiom E,; to a set u; such that s"u; Nu; = 0. Also u;
can be ‘taken to be total. (This is easily done by a “completion” construction).

Define the relation < on u as follows:

z <y iff (z,y) € u;.

Clearly < satisfies (A) since it is total and s"u; Nu; = @ and satisfies (B) because
contains E; and E, is a figure. This finishes the proof of the theorem. m
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