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F ree latt ices ove r halflattices 

JAROSLAV JEŽEK AND VÁCLAV SLAVÍK 

Abstract. Let P be a partial lattice in which the meet xy is defined for all pairs of elements 
x,y € P and x + y is defined whenever the elements x,y have a common upper bound. We 
investigate the free lattice F(P) over P and prove that the free lattice can be finite only if 
the set of the elements x + y € P(P) — P with ar, y £ P is a chain of a most four elements. 

Keywords: free lattice 

Classification: 06B25 

0. INTRODUCTION. 
Although the word problem for free lattices is well known to be solvable (cf. Dean 

[1]), the question still remains open to characterize the finite partial lattices P for 
which the free lattice P(P) over P is finite. 

There are partial answers to this question. In Wille [5] the problem is solved 
for the partial lattices P that are both meet- and join-trivial in the sense that 
whenever the meet xy or the join x + y of two elements x, y is defined in P then 
the elements are comparable. In [3] the problem is solved for join-trivial partial 
lattices. In the papers [2] and [4] free lattices over partial lattices from some other 
special classes are investigated. 

In the present paper we shall be concerned with free lattices over halflattices. 
By a halflattice we mean a partial lattice P such that xy is defined for all pairs 
£, y 6 P and x + y is defined whenever x, y are two elements with a common upper 
bound in P. * It is easy to see that a partial lattice P is a halflattice iff there exists 
a lattice L containing P as a relative sublattice such that P is an order-ideal in L 
(i.e., a € P implies b € P for all b £ L with b < a); for a given P we can define L 
byL = PU{l} where 1 is the greatest element of L. 

We shall not solve in this paper the problem for which halflattices P is the free 
lattice over P finite. However, we shall prove that F(L) can be finite under a 
very restrictive condition only. Namely, we prove that if F (P ) is finite for a finite 
halflattice P then the set of the elements of F(P) — P that can be expressed as 
x -f y for some x, y € P is a chain of at most four elements. And we give an example 
showing that the number four is possible in this context. 

For the terminology and notation see our paper [3]; here we shall only briefly 
recall the construction of the free lattice F(P) over a partial lattice P. The algebra 
of terms over P is denoted by T(P) . For every term t define an ideal J.t and a filter 
T< of P by 

i t = {a € P;a < t} and |* = {a € P;a > t} for t 6 P, 
if = ltt V i*2 and ft = T*i H T*2 for t = tt + t2l 

it = i*i fl i<2 and \t = f*i V \t2 for t = txt2. 
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Define a binary relation < on T(P) as follows: if u € P and v G T(P) then u < v 
iff u € it;; if u € T(P) and v 6 P then u < v iff v € T"J i-"" = "1 + u2 then it < u 
iff Wi < v and u2 < v; if t; = uiv2 then u < v iff u < V\ and u < v2; if u = uiu2 

and t; = vi + v2 then u < v iff either it < v\ or u < v2 or ui < v or u2 < t; or 
u < a < t; for an element a £ P. Then < is a quasiordering and the relation ~ on 
T(P) defined by u ~ v iff u < v and v < u is a congruence. The free lattice over P 
is isomorphic to T ( P ) / ~ . 

1. G E N E R A L P A R T I A L L A T T I C E S . 
Let P be a partial lattice and a, 6, c, a* be elements of P such that 

(1) a \\ c, a || d, b || c; 

(2) either 6 = d or else 6 < a and d < c. 

Define elements t0, t i , t 2 , . . . of P as follows: 
t0 =a + d; 
ti = b + ct ,- i for i odd; 
t,- = d + atj-i for i; > 2 even. 

We have a + 6 = t0 > ti > t2 > • • • > b, d. 

1.1. L e m m a . Let i >0 be suck that ti = t,+i. Then t,+i = t,+2. 

PROOF : If i = 0 then t2 = d + ati = d + at0 = a* + a = t0. If i > 2 is even then 
t,+2 = d + at,+i = d + at,- = d + at,_i = t». If t is odd then t,+2 = 6 + ct,+i = 
6 + ct» = 6 + ct,_i = t,. • 

1.2. L e m m a . Let i > 0 be suck that Tt» = T î+i* Then Tti+i = T**+2-

PROOF : Suppose, on the contrary, that there exists an element x € P with 
% *> ^t+2 and x J!, t»+i. 

Let i = 0. We have x > t2 = d + a t i , so that x > d and x > at\. We have 
x € T« V Tti = T« V Tt0 = T^, so that x > a and consequently a, > a + d = t0 > ti, 
a contradiction. 

Let i be odd. We have a: > t,+2 = b + ct,+i, so that x > b and a: > ct,+i. 
We have x € fa V Tt»+i = Tc V T*i = Tv^O- Hence x > cii = ct , - i and so 
a. > b + ct,_i = t, > t,+i, a contradiction. 

Let t > 2 be even. We have x > t»+2 = d + at,+i, so that a? > d and a; > at,+i. 
We have x € T<* V Tti+i = Ta V T*i = T(a*0- Hence x > ati = a t , - i and so 
x > d + a t , - i = t» > t,+i, a contradiction. • 

1.3. Lemma. Xet i>0 be such that Tt»- = T*»+i an^ U+i > *i+2- Then t,+2 > tj+3. 

PROOF : By 1.1 we have t0 > ti > • • • > t,+2 and by 1.2 we have Tt« = T*i+i -
Tt,+2 = . . . . 

Let us prove a£ti. If a < ti then t2 = d + ati = d + a = t0, a contradiction. 
Let us prove c£t2. H c < t2 then t2 > 6 + c > t i , a contradiction. 
Suppose t,+2 = t»+3. 
Let t be even. Then we have at,+i < t,+3 = b + ct,+2. There are five cases. 
Case 1: a < t,+3. Then a < t i , a contradiction. 
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Case 2: t t + i < t t + 3 . Then t t + i < t t + 2 , a contradiction. 
Case 3: aU+i < b. Then 6 G T« V | t t + i = | a V | t t and so 6 > ati == a t t _i . If i = 0 

then we get 6 > a, a contradiction. If i > 0 and 6 = d then 6 > 6 -f at t_i = t t, so 
that t t = t t + i , a contradiction. If i > 0 and b < a and d < c then t t + i = 6 4- cti > 
ati-i -\- d^ti, a contradiction. 

Case 4: aU+\ < cti+2. Then aU+% < c, c € fa V | t t + i = | a V ft t, c > at,-. If 
i = 0, we get c > a, a contradiction. If i > 0 then we get ctt > at, = a t t _i , 
t t + i = 6 -f ctt > cti > a t t _i , t t + i > d -f at t_i = t t, a contradiction. 

Case 5: ati+i < x < U+$ for some x e P. We have i G f a V | t t + i = f a V ft t, 
so that x > ati. If t = 0, we get a < x < t$ < t i , a contradiction. If i > 0 then 
x > ati = fltt_i, so that t t +3 > d -f at t_i = t t , a contradiction. 

Let i be odd. Then we have ct t + i < t t + 3 = d -f a t t + 2 . There are five cases. 
Case 1: c < t t + 3 . Then c < t2, a contradiction. 
Case 2: t t + i < t t + 3 . Then t t + i < t t + 2 , a contradiction. 
Case 3: c t t + i < d. Then d 6 ]c V | t i + i = T^ V | t t and so d > cti -= cU^x. If 6 = d 

then d > 6 4- ct^_i = t t , so that t t = t t + i , a contradiction. If 6 < a and d < c then 
t t + i = d -f ati _! ct t_i -f 6 = t t , a contradiction. 

Case 4: c t t + i < ati+2- Then ct t + i < a^ a £ | c V Tti+i = Tc V | t t , « _! ct t, 
att > ctt = ct t_i, t t + i = d-\-ati > ati _! ct t_i, t t + i > 6-f ct t_i = t t , a contradiction. 

Case 5: c t t + i < x < t t +3 for some x € P. We have x € Tc V | t i+i = Tc V |t», so 
that x > cti = ct t_i and t t +3 > ct t_i; hence t t +3 > 6-f ct t_i = tt-, a contradiction. • 

1.4. Lemma. Let i > 0 be such that ^ti = T*t+i an<L U+i > t t + 2 . Then F(P) is 
infinite. 

PROOF : It follows easily from 1.2 and 1.3. • 

2. HALFLATTICES: T W O INCOMPARABLE UNDEF IN E D JOINS. 

2.1. Lemma. Let P be a finite halflattice and a, 6,c,d be four elements of P such 
that the following four conditions are satisfied: 

(l)a\\c,a\\d,b\\c; 
(2) either 6 = d or else b < a and d < c; 
(3) a -f d <£ P and 6 -f c £ P; 
(4) a jt 6 + c and c^a-\- d. 

Then F(P) is infinite. 

PROOF : Define the elements t t as in Section 1, so that t0 = a + d, ti = 6 -f ct0 

and t2 = d -f a t i . I-* t0 < ti then a < a - f d < 6 - f c ( a - | - a , ) < 6 - f c , a contradiction. 
We get t0 > t i . Since | t i = T& H ( |c V | ( a + d)) = | 6 n ( |c V 0) = | 6 n Tc = 0, by 
1.4 it is sufficient to prove ti > t2. Suppose ti < t2. Then ct0 < a*-|- ati -*-<- there 
are five possible cases. 

Case 1: c<t2. Then c < a -f d, a contradiction. 
Case 2: t0 < t2. Then t0 < t i , a contradiction. 
Case 3: cto < d. Then d € Tc v | to = Tc v 0 = Tc> s o that a* > c, a contradiction. 
Case 4: et0 < at2 . Then cto < a; as in Case 3, we get a > c, a contradiction. 
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Case 5: ct0 < x < t2 for some x € P. Then x € TCV T*o = fa, c < x < t2 < a + d, 
a contradiction. 

We get a contradiction in all cases. I 

2.2. L e m m a . Let P be a finite halflattice and a, 6, c € P 6e such that a + 6 ^ P, 
6 + c £ P and a + 6 || 6 + c. Then F(P) is infinite. 

PROOF : It follows from 2.1. I 

2 .3 . L e m m a . Let P be a finite halflattice and a, 6,c,a* € P be such that 

(1) a + b$P,c + d<£P,a + b\\c + d; 
(2) 6 < c ; 
(3) b + diP. 

Then F(P) is infinite. 

PROOF : If d < a then we can apply 2.1 to the quadruple a, d,c,6. So, we can 
suppose that the elements a,c,d are pairwise incomparable. If d «£ a + c then we 
can apply 2.2 to the triple a, c, d; so, let d < a + c. If d £ a + 6 then we can apply 2.2 
to the triple a, 6, d; so, let d < a + 6. If a + d $ P then we can apply 2.2 to the triple 
a, d, c; so, let a + d € P. Now we can apply 2.1 to the quadruple c, 6, a + d, d. • 

2.4. Lemma . Let P be a finite halflattice and a, 6, c, d € P 6e Jtxch tltat 

(1) a + 6 £ P , c + d£P, a + 6||c + d; 
(2) 6 < cd; 
(3) whenever x € P ana* x < (a + 6)c then x < 6; 
(4) whenever x 6 P and a? < (a + 6)d i&en x < 6. 

T&en F(P) is infinite. 

PROOF : Consider the three pairwise incomparable elements a, (a + 6)c, (a + b)d 
of the relative sublattice Q =* P U {a + 6, (a + 6)c, (a + 6)d} of F(P). Put t0 = 
a + (a + 6)c = a + 6, *-. = (a + 6)d + (a + 6)c, t2 = ha + (a + b)c. In Q we have 
| t 0 = T*i = {a + 6}, so that by 1.4 it is sufficient to prove tQ > t\ > t2. 

l£t0<ti then a < (a+6)d+(a+6)c, so that in P we have a € i(a+6)dVj,(a+&)c -
j6 V lb = J,6; but a < 6 is impossible. We get t0 > t%. 

Suppose t\ <t2. Then (a + 6)d < ha + (a + b)c and we have five possible cases. 
Case 1: (a + b)d < ha. Then 6 < (a + b)d < a, a contradiction. 
Case 2: (a + b)d <(a + b)c. This is impossible. 
Case 3: a + 6 < t2. Then a < t2 < t\> t0 < h, a contradiction. 
Case 4: d < t2. Then d < a + 6, so that d < 6 by (4) and consequently d < c, * 

contradiction. 
Case 5: (a + b)d < x < t2 for some a, € P. Then x € T(« + ^) V T<* = t* 

d <t2 < a + 6, a contradiction. ' 

2.5. Lemma. Let P be a finite halflattice and a,6,c,d € P be such that 

(1) a + biP,c + diP,a + b\\c + d; 
(2) a, 6, c, a* are not pairwise incomparable. 
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Then F(P) is infinite. 

PROOF : We can suppose that a, b,c,d is a maximal quadruple with respect to 
these two properties. Further, we can suppose that 6 < c. By 2.3 we can assume 
that 6 + d € P. Consider the quadruple a,b,c,b + d\ by the maximality of a, 6,c,d 
we get 6 + d = d and hence b < cd. Let x € P and x < (a + b)c. Then the element 
y = x + b belongs to P (since x, 6 < c) and 6 < y < (a + 6)c. If y > 6 then we 
can take the quadruple a, y, c, d\ by the maximality of a, 6, c, d we get y = 6. But 
then y < b and the condition (3) of 2.4 is satisfied. Similarly one can prove that 
the condition (4) of 2.4 is satisfied. By 2.4 we obtain that F(P) is infinite. • 

2.6. Lemma . Let P be a finite halflattice and a,b,c,d£ P be such that 

(1) a + biP,c + diP,a + b\\c + d; 
(2) a£c + d, c£a + b; 
(3) b + ciP. 

Then F(P) is infinite. 

PROOF : Consider the three elements a(c + d), b(c + d) and c of the relative 
sut>lattice Q = P U {c + d, a(c + d), b(c + d)} of F(P). Put t0 = a(c + d) + b(c + d), 
tx = t0c + b(c + d), t2 = t\a(c + d) + b(c + d) = t\a + b(c + d). In Q we have 
f£0 = T*i ^ {c + d} and so by 1.4 it is sufficient to prove *0 > t\ > t2. If to < t\ 
then a(c + d) < toe + b(c + d)\ in each of the five possible cases we get easily a 
contradiction. Similarly, we cannot have t\ < t2. • 

2.7. Lemma. Let P be a finite halflattice and a, b,c,d € P be such that 

(1) a + 6 i P, c + d $ P , a + 6 || c + d. 

Then F(P) is infinite. 

PROOF : Let a, 6, c,d be a maximal quadruple with the property (1). By 2.5 we 
can assume that a, 6, c, d are pairwise incomparable. Since a + 6 || c + d, we can 
suppose that a £ c + d and c jt a + b. By 2.6 it is sufficient to consider the case 
when 6 + C G P . If 6 < c + a* then a,b,b + c,d is a quadruple contradicting the 
maximality of a, 6, c, d\ hence b^c + d. 

Let there exist an element x € P such that x < (a + b)(c + d), x £ 6 and x j£ c. 
If x + 6 € P then the quadruple a, x + 6, c,d contradicts the maximality of a, b, c,d. 
Hence x + 6 $ P and similarly a? + c $ P. Using b £ c + d and c j£ a + 6 we get 
x + 6 || x + c; by 2.2, P(P) is infinite. So, we can assume that whenever x is an 
element of P such that x < (a + b)(c + d) then either x < 6 or x < c. 

If a < (a+6)(c+d)+6 then a € l(a+6)(c+d)Vl6 C (16Vlc)Vl6 = 16Vlc = l(6+c), 
so that a < b + c and the elements a, 6 have a common upper bound 6 + c in P, a 
contradiction. We get a £(a + b)(c + d) + 6. 

Consider the elements a, 6 and c + d of the relative sublattice Q =r P U {c + d} of 
F(P). Putt 0 = a + 6, ti = ( a + 6)(c + d) + 6and*s = tia + 6. We have T*o = T*i = 0 
in Q, so that by 1.4 it is sufficient to prove to >t\ >t2. As we have proved, a ^ t\ 
and so t0 % t\. I£ t\ < t2 then (a + b)(c + d) < t\a + b\ in each of the five possible 
cases we get easily a contradiction; hence t\ > t2. • 
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3. HALFLATTICES: A CHAIN OF FIVE U N D E F I N E D JOINS. 
For a finite halflattice P we denote by UJ(P) the set of the elements u € F(P)-P 

such that u = x + y for some x,y € P. 
For u € F(P) and a £ P denote by u © a the greatest element x € P with the 

properties x < p and x < a (its existence is clear). 

3.1. Lemma. Let P be a finite halflattice such that F(P) is finite. Let p^q be two 
elements of UJ(P) with p < q and let a, b, c be three elements of P with q = a + b 
and p = b + c. Then b + (p 0 a) = p. 

PROOF : Put d = p 0 a . If c < a then 6 + d = p is clear. Consider the opposite 
case; then a, b, c are pairwise incomparable. Put 

to = p = b + c, 
tt- = tj_ia + 6 for i odd, 
t,- = t , - i c + 6 for i > 2 even. 

We have ft,- = 0 for all i. 
Let us prove that if t0 > t\ then t\ > t2. If ti < t2 then pa < t ic + b and there 

are only five cases possible. 
Case 1: pa < t\c. Then pa < c and c € T(Pa) = Ta> a contradiction. 
Case 2: pa <b. Then 6 € T(Pa) = Ta> a contradiction. 
Case 3: p < t2. Then t0 < t j , a contradiction. 
Case 4: a < t2- Then a < p, a contradiction. 
Case 5: pa < x < t2 for some x € P. Then a; 6 T(Pa) == Ta ^ d a < x < t2 < p, a 

contradiction. 
It follows from 1.4 that to = t\. Hence c < pa + b. From this we get c € 

l(pa) V [b = Id V |6, so that c < 6 + d; but then 6 + d = p. • 

3.2. Lemma. Let P be a finite halflattice such that F(P) is finite. Let p,q,r be 
three elements of UJ(P) such that p < q < r and let a, 6, c be three elements of P 
such that r = a + 6 and p= b + c. Then b + (q 0 a) = g. 

PROOF : Put d = q 0 a. By 3.1 we can suppose that c < a\ then c < d. By 
2.7, UJ(P) is a finite chain. Denote by OQ the predecessor of q in this chain. Since 
q € UJ(P), there exists an element e € P with e < q and e ^ q0; let us take a 
maximal element e with these properties. If b j£ e then b + e = g and b + d = 5 
follows from 3.1. So, let b < e. We have c j£ e (since b, c have no upper bound in 
P) and q = c + c. 

Consider the quadruple e, b, a, c. Put 
t0 = q = c + c, 
ti = t»-^ia + b for i odd, 
t, = U-ie + c for i > 2 even. 

We have fti = 0 for all t. 
Let us prove that if to > h then t\ > t2. If t\ <t2 then qa < t\t + c and one of 

the following five cases must take place. 
Case 1: qa < t%e. Then qa < e and e € T(fla) = Ta> a contradiction. 
Case 2: qa < c. Then c € !(<?<*) = fa, a contradiction. 
Case 3: q <t2. Then t0 < *i- a contradiction. 
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Case 4: a < t2. Then a < o, a contradiction. 
Case 5: qa < x < t2 for some x € P. Then a < x < t% < g, a contradiction. 
By 1.4 we have proved t0 = t i , so that e < aa-f b. We get e £ l(qa) V j.6 = |dV.i&, 

e < & -f d and consequently b -f d = q. • 

3.3. Lemma. .Let P 6e a finite halflattice. If there exist three elements u,v,w of 
UJ(P) with u < v < w and three elements a, 6, c of P with a < b < cf a < w, a %v 
and b £ w then F(P) is infinite. 

PROOF : There are two elements x,y £ P with u = x + y. If av <u = x + y then 
there are only five cases possible and we get a contradiction in each of them. Hence 
av j£ u. Put 

t0 = av, 
ti = (t t_i -f cu)6 for i odd, 
tt = (tj_i -f a)v for i > 2 even. 

We have t t < bv for all i and t0 < ti < t2 < . . . ; further, |*o = T° a - d T*« = ° -r°r 

t > 1. 
If h < t0 then tx < a, a contradiction. We get t0 < t i . Now, we can prove 

U < t t+i by induction for all i. If i is even and t t+i < t t then (t t -f ctx)6 < t t_i -f a 
and we are in one of the following five cases. 

Case 1: t t+i < t t _ i . Then t t < t t _ i , a contradiction by induction. 
Case 2: t;+i < a. Then a £ |b , a contradiction. 
Case 3: t t -f cit < tj_i -f a. Then cu < tj_i -f a < 6, so that b € T(cw) = Tc? a 

contradiction. 
Case 4: 6 < t;_i -f a. Then 6 < tv, a contradiction. 
Case 5: t ,+ 1 < x < t t_i -fa for some x £ P. Then 6 < x < iv, a contradiction. 
If t > 3 is odd and t t+i < tj then (tt -f a)v < t t_i -f cu and the five cases are: 
Case 1: t t+i < t t _ i . Then t t < t t _i , a contradiction by induction. 
Case 2: t t+i < cu. Then au = t0 < cu < u, but we have proved av ^ u above. 
Case 3: t t -h a < t»_i -f cu. Then a < t t_i -f cu < u, a contradiction. 
Case 4: v < t t_i -f cu. Then ?; < c, a contradiction with v € UJ(P). 
Case 5: t t+i < x < t t_i -f-cu for some x € P. Then 6 < a: < u>, a contradiction. • 

3.4. Lemma. Let P be a finite halflattice. If UJ(P) is a chain of at least five 
elements then F(P) is infinite. 

PROOF : Let u<t><w<r<.sbe the first five elements of UJ(P). We have 
u = x -f y for some x, y € P. Since s € 27J(P), there exists an element c € P with 
c < 3 and c ^ r; we can assume that c is maximal with these properties. Since 
c cannot be an upper bound of both x and y, we can assume that x £ c; then 
$ = c -f a?. Two applications of 3.2 yield the existence of two elements b and a in P 
such that 6 < c , r = a:-f6, a < 6 , u» = _ - f a . The assumptions of 3.3 are evidently 
satisfied, so that F(P) is infinite. • 

4. THE M A I N RESULTS. The following is a consequence of lemmas 2.7 and 
3.4: 
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4.1. Theorem. Let P be a finite halflattice. If the free lattice F(P) over P is finite 
then the set UJ(P) of the elements u G F(P) — P that are of the form u = x -f y 
for some a?,y 6 P is an at most four-element chain. 

Fig.l Fig.2 

4.2. Example. There exist finite halflattices P such that UJ(P) is a chain of 
exactly four elements. In figures 1 and 2 we present two such examples. In the 
first of them, P and F(P) are of cardinalities 8 and 29, respectively, and in the 



Free lattices over halflattices 2 1 1 

second example they are of cardinalities 25 and 58. In both cases full dots represent 
the elements of P, while blank dots stand for the elements of F(P) — P; it is a 
mechanical task to verify that the pictured lattice is free over the subset consisting 
of the full dots. 

4.3. Examp le . If P is a finite halflattice such that UJ(P) consists of one element 
only then F(P) = P U UJ(P) is finite. On the other hand, there exist finite 
halflattices P such that UJ(P) is a two-element chain and F(P) is infinite. For 
example, the fourteen-element halflattice obtained from the sixteen-element Boolean 
algebra by omitting the greatest element and one of the coatoms has this property. 
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