Commentationes Mathematicae Universitatis Carolinas

Raffaele Chiappinelli
Remarks on Krasnoselskii bifurcation theorem

Commentationes Mathematicae Universitatis Carolinae, Vol. 30 (1989), No. 2, 235--241

Persistent URL: http://dml.cz/dmlcz/106740

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1989

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Remarks on Krasnoselskii bifurcation theorem

R.ChiAPPINELLI

Abstract

We give a generalization of the classical bifurcation theorem from eigenvalues of odd multiplicity to the case were the nonlinearity need not be Frechet differentiable.

Keywords: Nonlinear eigenvalue problem, selfadjoint operators, isolated eigenvalues, coincidence degree

Classification: 34B15, 47H15

Introduction.

The following assumptions will be made throughout this paper:
H1) X is a real Banach space with norm denoted $\|\cdot\|$;
H2) $T: D(T) \rightarrow X$ is a linear operator with compact resolvent, i.e. $(T-\mu I)^{-1}$ is compact for some (and hence for all) μ not belonging to the spectrum $\sigma(T)$ of T;
H3) $F: X \rightarrow X$ is a continuous operator mapping bounded sets onto bounded sets and such that $F(0)=0$;
H4) μ_{0} is an eigenvalue of T of odd algebraic multiplicity.
A classical result due to Krasnoselskii [4] asserts that if F is Frechet differentiable at 0 with $F^{\prime}(0)=0$, then μ_{0} is a bifurcation point for the problem

$$
\begin{equation*}
T u+F(u)=\mu u \quad u \in D(T) \tag{1}
\end{equation*}
$$

in other words, given any $\varepsilon>0$, there exists an eigenvalue-eigenfunction pair (μ, u) of (1) with $\left|\mu-\mu_{0}\right|<\varepsilon$ and $0<\|u\| \leq \varepsilon$.

Notice that, due to the assumption on T, every eigenvalue of T is necessarily isolated and of finite multiplicity, and the whole spectrum $\sigma(T)$ consists of only such points.

It is our aim to give here a generalization of this result to the case where F is not necessarily differentiable, but is merely assumed to be sublinear in a neighborhood of 0 . Precisely, for $r>0$ we set

$$
\begin{equation*}
k(F ; r)=\sup _{\|u\| \leq r} \frac{\|F(u)\|}{\|u\|} \tag{2}
\end{equation*}
$$

assuming that it is finite at least for small values of r. As $k=k(F ; r)$ is a nondecreasing function of r, we also set

$$
\begin{equation*}
k_{0}(F)=\lim _{r \rightarrow 0} k(F ; r) \tag{3}
\end{equation*}
$$

and remark at once that F is differentiable at 0 with $F^{\prime}(0)=0$ if and only if $k_{0}(F)=0$.

By using coincidence degree [5], we first show (Theorem 1) that bifurcation near μ_{0} occurs if there exist $\underline{\mu}<\bar{\mu}$ with $[\underline{\mu}, \bar{\mu}] \cap \sigma(T)=\left\{\mu_{0}\right\}$ and

$$
\min \left\{\left\|(T-\underline{\mu} I)^{-1}\right\|^{-1},\left\|(T-\bar{\mu} I)^{-1}\right\|^{-1}\right\}>k_{0}(F)
$$

Note that when $F^{\prime}(0)$ exists and is equal to zero, the condition above is trivially satisfied and Theorem 1 reduces to Krasnoselskii's result.

When T is a selfadjoint operator in a Hilbert space, our generalization becomes even more apparent, for we prove that, if μ_{0} has isolation distance (Kato [3] p. 273)

$$
\operatorname{dist}\left(\mu_{0}, \sigma(T) \backslash\left\{\mu_{0}\right\}\right)>2 k_{0}(F),
$$

then bifurcation takes place from the interval $\left[\mu_{0}-k_{0}(F), \mu_{0}+k_{0}(F)\right]$, in a sense made precise by the statement of Theorem 3.

Existence and bifurcation theorems without differentiability assumptions on the nonlinear term were proved by other authors (see in particular Schmitt/Smith [6] and the references therein), but the above result seems to be new. We have to mention that, in the line of Rabinowitz [7], these authors also gave global bifurcation results, i.e. they proved the existence of continua (maximal connected sets) of nontrivial solutions meeting the line $(\mu, 0)$ of trivial solutions within the bifurcation interval. This extension could be done in our case as well, but we have preferred to bound ourselves to show the main idea in the simplest (i.e. local) setting.

On the other hand, we remark that an explicit dependence on r in $k(F ; r)$ has not been considered up to now. That this is not a vacuous assumptions can be seen form the study of a class of integrodifferential equations (on compact intervals of R) that we consider in Section 3 as application of Theorem 3; these problems are not covered in the references cited above. It is clear that the same study, with only minor modifications, can be performed e.g. for the problem (in a bounded open set Ω of R^{n})

$$
\left\{\begin{aligned}
-\Delta u(x)+u(x) \int_{\Omega} k(x, y) f(y, u(y)) d y & =\mu u(x) & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega
\end{aligned}\right.
$$

with f subquadratic and μ near an eigenvalue of odd multiplicity of $-\Delta$, subject to zero Dirichlet boundary conditions on $\partial \Omega$.

Main results.

For $r>0$, we let $B_{r}:=\{u \in D(T):\|u\| \leq r\} ; \partial B_{r}$ will denote the boundary of B_{r}. Recall that if H 1) and H 2) hold, then the coincidence degree of the couple (T, N) with respect to B_{r}, denoted $d\left[(T, N), B_{r}\right]$, will be defined for any map $N: X \rightarrow X$ satisfying H3), provided $T(u) \neq N(u)$ for $u \in \partial B_{r}$ (Gaines-Mawhin [5], Chapter iii). We shall set for convenience

$$
d\left(T-N, B_{r}\right):=d\left[(T, N), B_{r}\right] .
$$

Moreover, for $\mu \notin \sigma(T)$ we set

$$
\begin{align*}
c(\mu) & =\inf \{\|T u-\mu u\|, u \in D(T),\|u\|=1\} \tag{4}\\
& =\left\|(T-\mu I)^{-1}\right\|^{-1} .
\end{align*}
$$

Theorem 1. Assume there exist $\underline{\mu}, \bar{\mu}$ such that:
i) $\underline{\mu}<\mu_{0}<\bar{\mu}$ and $\sigma(T) \cap[\underline{\mu}, \bar{\mu}]=\left\{\mu_{0}\right\}$;
ii) $\min \{\mathrm{c}(\underline{\mu}), c(\bar{\mu})\}>k_{0}(F)$
where $c(\mu)$ and $k_{0}(F)$ are as in (4), (() respectively. Then, for all sufficiently small $r>0$ (1) has an eigenvalue-eigenfunction pair (μ_{r}, u_{r}) with $\left\|u_{r}\right\|=r$ and $\mu_{\mathrm{r}} \in[\underline{\mu}, \bar{\mu}]$.
Proof : By definition of $k_{0}(F)$, there exists $r_{0}>0$ such that

$$
\begin{equation*}
\min \{c(\underline{\mu}), c(\bar{\mu})\}>k(F ; r) \tag{5}
\end{equation*}
$$

for all $r: 0<r \leq r_{0}$. We show that the assertion is true for all such r. For, fix $r: 0<r \leq r_{0}$ and assume by contradiction that

$$
T(u)+F(u) \neq \mu u
$$

for all $\mu \in[\underline{\mu}, \bar{\mu}]$ and all $u \in D(T):\|u\|=r$. Then, by homotopy invariance of the degree

$$
\begin{equation*}
d\left(T+F-\underline{\mu} I, B_{r}\right)=d\left(T+F-\bar{\mu} I, B_{r}\right) . \tag{6}
\end{equation*}
$$

On the other hand, for all $t \in[0,1]$ and all $u \in D(T):\|u\| \leq r$,

$$
\begin{aligned}
\|T u+t F(u)-\underline{\mu} u\| & \geq\|T u-\mu u\|-t\|F(u)\| \\
& \geq c(\underline{\mu})\|u\|-\|F(u)\| \\
& \geq[c(\underline{\mu})-k(F ; r)]\|u\| .
\end{aligned}
$$

Therefore, form (5) we get

$$
T u+t F(u) \neq \underline{\mu} u
$$

for all $u \in D(T)$ with $0<\|u\| \leq r$ and all $t \in[0,1]$ so that, again by homotopy invariance,

$$
d\left(T+F-\mu I, B_{r}\right)=d\left(T-\mu I, B_{r}\right) .
$$

Now observe that, since $\underline{\mu} \notin \sigma(T), T u-\underline{\mu} u=0$ iff $u=0$, and therefore the last degree is the same as the (coincidence) index of $T-\mu I$ at zero ([5], p.201) that we shall simply denote with $i(\underline{\mu})$.

The argument used for $\bar{T}+F-\mu I$ applies to $T+F-\bar{\mu} I$ as well, so that from (6) we have $i(\underline{\mu})=i(\bar{\mu})$. On the other hand, due to i) and to the odd multiplicity assumptions on μ_{0}, the Leray-Schauder formula ([5], p.201) shows that

$$
i(\underline{\mu}) \neq i(\bar{\mu}) .
$$

This contradiction proves the claim.

Remark 2. Under the above assumptions, we can say that $[\underline{\mu}, \bar{\mu}]$ is a bifurcation interval for (1). Notice that, if F is Frechet differentiable at 0 with $F^{\prime}(0)=0$, then ii) is trivially satisfied, and as $\mu, \bar{\mu}$ can be taken arbitrarily close to μ_{0}, the assertion reduces to saying that given any $r>0$, there exists ($\mu r, u_{r}$) with $\left\|u_{r}\right\|=r$ and $\left|\mu_{r}-\mu_{0}\right| \leq r$, i.e. μ_{0} is a bifurcation point of (1).
We specialize now to a real Hilbert space H and assume further that $T: D(T) \rightarrow$ H is selfadjoint. Then we have:
Theorem 3. Assume that

$$
\operatorname{dist}\left(\mu_{0}, \widehat{\sigma}(T)\right)>2 k_{0}(F)
$$

where $\widehat{\sigma}(T)=\sigma(T) \backslash\left\{\mu_{0}\right\}$ and $k_{0}(F)$ is as in (९). Then, for all sufficiently small $r>0$, (1) has a solution pair (μ_{r}, u_{r}) with $\left\|u_{r}\right\|=r$ and

$$
\mu_{r} \in\left[\mu_{0}-k(r), \mu_{0}+k(r)\right]
$$

where $k(r)=k(F ; r)$ is as in (2).
Proof : Let $r_{0}>0$ be such that

$$
\begin{equation*}
\operatorname{dist}\left(\mu_{0}, \widehat{\sigma}(T)\right)-2 k(r)>0, \quad 0<r \leq r_{0} . \tag{7}
\end{equation*}
$$

Consider now the intervals

$$
\begin{aligned}
& \underline{I}=] \mu_{0}-(k(r)+\varepsilon), \mu_{0}-k(r)[\\
& \bar{I}=] \mu_{0}+k(r), \mu_{0}+(k(r)+\varepsilon)[
\end{aligned}
$$

and notice that, if $\mu \in \underline{I} \cup \bar{I}$, then

$$
\begin{equation*}
\operatorname{dist}(\mu, \sigma(T))>k(r) \tag{8}
\end{equation*}
$$

This follows from the inequality

$$
\begin{aligned}
\operatorname{dist}(\mu, \sigma(T)) & \geq \operatorname{dist}\left(\mu_{0}, \widehat{\sigma}(T)\right)-\left|\mu-\mu_{0}\right| \\
& =2 k(r)+\varepsilon-\left|\mu-\mu_{0}\right|
\end{aligned}
$$

on remarking that, for all $\mu \in \underline{I} \cup \bar{I}$,

$$
k(r)<\left|\mu-\mu_{0}\right|<k(r)+\varepsilon .
$$

Now take $\underline{\mu} \in \underline{I}, \bar{\mu} \in \bar{I}$. Since by (7), $\left[\mu_{0}-k(r), \mu_{0}+k(r)\right]$ contains the only point μ_{0} of $\sigma(T),(8)$ shows that $\underline{\mu}, \bar{\mu}$ satisfy condition i) of Theorem 1 above as well as the inequality (5) because, due to selfadjointness of $T, c(\mu)=\operatorname{dist}(\mu, \sigma(T))$.

Therefore, arguing as above, we get the existence of a solution pair $\left(\mu_{r}, u_{r}\right)$ of (1) with $\left\|u_{r}\right\|=r$ and $\mu \in[\underline{\mu}, \bar{\mu}]$. On the other hand, (1) has no nontrivial solution if $\|u\| \leq r$ and $\mu \in \underline{I} \cup \bar{I}$, indeed, if $\|u\| \leq r$,

$$
\begin{aligned}
\|T u+F(u)-\mu u\| & \geq c(\mu)\|u\|-k(r)\|u\| \\
& =[\operatorname{dist}(\mu, \sigma(T))-k(r)]\|u\|
\end{aligned}
$$

and the assertion follows again by (8). This shows that necessarily $\mu_{r} \in\left[\mu_{0}-\right.$ $\left.k(r), \mu_{0}+k(r)\right]$.

Remark 4. The above argument also shows that if $\operatorname{dist}(\bar{\mu}, \sigma(T))>k_{0}(F)=k_{0}$, then (1) has no nontrivial solution in some ball $B_{r}(r>0)$ for μ near $\bar{\mu}$, so that $\bar{\mu}$ cannot be a bifurcation point. In other words, the set of bifurcation points of (1) is contained in

$$
\sigma_{k_{0}}(T):=\left\{\mu: \operatorname{dist}(\mu, \sigma(T)) \leq k_{0}\right\} .
$$

This generalizes the well known fact that, when $F^{\prime}(0)=0$, bifurcation points necessarily belong to $\sigma(T)$ (see e.g. Rabinowitz [7]).
Remark 5. The existence of solutions u_{r} of (1) with $\left\|u_{r}\right\|=r$ can be proved as long as $r<\tilde{r}$ where

$$
\tilde{r}=\sup \left\{r>0: 2 k(r)<\operatorname{dist}\left(\mu_{0}, \widehat{\sigma}(T)\right)\right\} .
$$

In particular, solutions of any norm exist if $2 k_{\infty}(r)<\operatorname{dist}\left(\mu_{0}, \widehat{\sigma}(T)\right)$, where

$$
k_{\infty}(F)=\lim _{r \rightarrow+\infty} k(F ; r)
$$

The cases dealt with in [1] and [2] are of this particular kind, with $k(F ; r)=k=$ const.

Example.

We consider the eigenvalue problem

$$
\left\{\begin{array}{l}
L u(t)+u(t) \int_{a}^{b} k(t, s) g(s, u(s)) d s=\mu u(t) \tag{9}\\
\alpha u(a)+\beta u^{\prime}(a)=0 \\
\gamma u(a)+\delta u^{\prime}(b)=0
\end{array}\right.
$$

on the compact interval $[a, b]$ of the real line R, where $L u:=-\left(p(t) u^{\prime}\right)^{\prime}+q(t) u$ is a regular Sturm-Liouville operator with real coefficients $p \in C^{1}([a, b]), p>0, q \in$ $C([a, b])$; the kernel k belongs to $L^{\infty}((a, b) \times(a, b))$ and $g:[a, b] \times R \rightarrow R$ satisfies $g(t, 0)=0$ for all $t \in R$ and is subquadratic, i.e.

$$
|g(t, u)| \leq c+d|u|^{2}
$$

for some $c, d \geq 0$ and all $(t, u) \in[a, b] \times R$. We suppose moreover that $\left(\alpha^{2}+\beta^{2}\right)\left(\gamma^{2}+\right.$ $\left.\delta^{2}\right)>0$.

Under these assumptions, we prove:
Theorem 6. Let μ_{n}^{0} denote the eigenvalues of L subject to the above boundary conditions, and let $c_{1}=\|k\|_{\infty} c(b-a)$. Then, for n sufficiently large, the intervals

$$
\left[\mu_{n}^{0}-c_{1}, \mu_{n}^{0}+c_{1}\right]
$$

are bifurcation intervals for (9); more precisely, for all sufficiently small $r>0$, (9) has an eigenvalue-eigenfunction pair (μ_{r}, u_{r}) with $\left\|u_{r}\right\|=r$ and

$$
\mu_{r} \in\left[\mu_{n}^{0}-\left(c_{1}+c_{2} r^{2}\right), \mu_{n}^{0}+\left(c_{1}+c_{2} r^{2}\right)\right]
$$

where $c_{2}=\|k\|_{\infty} \cdot d$.
Proof : For $u \in L^{2}(a, b)$, we set

$$
V(u(t))=\int_{a}^{b} k(t, s) g(s, u(s)) d s \quad(\text { a.a. } t \in[a, b])
$$

and

$$
F(u)=u V(u)
$$

so that (9) becomes

$$
T u+F(u)=\mu u, \quad u \in D(T) \subset H
$$

where $H=L^{2}(a, b), D(T)=\left\{u \in H: u^{\prime}, u^{\prime \prime} \in H\right.$ and $\alpha u(a)+\beta u^{\prime}(a)=\gamma u(b)+$ $\left.\delta u^{\prime}(b)=0\right\}$, and $T u=L u$ for $u \in D(T)$.

About the nonlinear term F, we note that V satisfies, for all $u \in L^{2}$ and a.a. $t \in[a, b]$,

$$
\begin{aligned}
|V(u(t))| & \leq \int|k(t, s)| \quad|g(s, u(s))| d s \\
& \leq\|k\|_{\infty} \int\left[c+d|u(s)|^{2}\right] d s
\end{aligned}
$$

whence

$$
|V(u)(t)| \leq\|k\|_{\infty}\left[c(b-a)+d\|u\|^{2}\right]=c_{1}+c_{2}\|u\|^{2}
$$

where $\|u\|^{2}=\int_{a}^{b} u^{2}(t) d t$.
Therefore $V(u) \in L^{\infty}(a, b)$ for $u \in L^{2}$ and

$$
\begin{aligned}
\|F(u)\| & =\|u V(u)\| \leq\|u\| \quad\|V(u)\|_{\infty} \\
& \leq\left(c_{1}+c_{2}\|u\|^{2}\right)\|u\|
\end{aligned}
$$

whence it follows that

$$
k(r)=\sup _{\|u\| \leq r} \frac{\|F(u)\|}{\|u\|} \leq c_{1}+c_{2} r^{2} \quad(r>0)
$$

and $k_{0}(F)=\lim _{r \rightarrow 0} k(r) \leq c_{1}$.
Now the result follows from Theorem 3 observing that, since $\mu_{n}^{0}-\mu_{n-1}^{0} \rightarrow \infty$ as $n \rightarrow \infty$ (see e.g. [10]), the condition

$$
\operatorname{dist}\left(\mu_{n}^{0}, \widehat{\sigma}(T)\right)>2 c_{1}
$$

is satisfied for sufficiently large n.

References

[1] Chiappinelli R., On eigenvalues and bifurcation for nonlinear Sturm-Liouville operators, Boll.Un.Mat.Ital. (6) 4-A (1985), 77-83.
[2] Chiappinelli R., On bifurcation for nondifferentiable perturbations of selfadjoint operators, Springer Lecture Notes Math. 1151 (1985), 109-114.
[3] Kato T., Perturbation theory for linear operators, Springer, Berlin (1970).
[4] Krasnoselskii M.A., "Topological methods in the theory of nonlinear integral equations," Pergamon, London, 1974.
[5] Gaines R.E., Mawhin J.L., Coincidence degree and nonlinear differential equations, Springer Lecture Notes Math. 568 (1977).
[6] Mc Leod B., Turner R.E.L., Bifurcation for nondifferentiable operators with an application to elasticity, Arch.Rat.Mech.Anal. 63 (1975), 1-45.
[7] Rabinowitz P.H., Some global results for nonlinear eigenvalue problems, J.Funct.Anal. 7 (1971), 487-513.
[8] Rabinowitz P.H., Some aspects of nonlinear eigenvalue problems, Rocky Mount.J.Math. 3 (1973), 161-202.
[9] Schmitt K., Smith H.L., On eigenvalue problems for nondifferentiable mappings, J. Differential Equations 33 (1979), 294-319.
[10] Levitan B.M., Sargsjan I.S., "Introduction to spectral theory," Transl.Math.Monographs 39, AMS, Providence, 1975.

Dipartimento di Matematica, Università della Calabria, 87036 Rende(CS), Italy
(Received January 10,1989)

