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A note on the almost left and almost 
right joint spectra of R.Harte 

ANDRZEJ SOiTYSIAK 

Abstract. It is proved that a complex unital normed algebra has a nonzero continuous mul­
tiplicative linear functional if and only if the almost left [right] joint spectrum 07(01,. . . , an) 
[ov(ai, . . . , an)] is non-empty for every finite set of elements a i , . . . , an in the algebra. This 
is a counterpart of the main result in [1] to the normed algebra case. 

Keywords: Normed algebra, almost left [right] joint spectrum, multiplicative (linear) func­
tional 

Classification: 46H05 

Let A be a complex normed algebra with the unit 1 and let a i , . . . , an 6 A. The 
left spectrum of ( a i , . . . , a n) is the set 

^ ( a i , . . . , a n ) = J (Ai,...,An) € C" : 1 £ ^ A K - \t) \ 

(We simply write aj — \j instead of aj — Ajl) and the almost left spectrum of 
( a i , . . . , a n ) is the set 

af(au...,an)=l(\ll...1\n)eCn:l<t f ^ A ^ - A i ) ) f 

(Here the bar denotes the closure in the norm topology of A.) The definitions of 
the right and almost right spectra of ( a i , . . . , a n ) are similar. (See [2], pp . 457-458.) 
The sets 

aA(all... ,an) = crf(all... ,an ) U crr
A(all... ,a n ) 

and 3?A(ai , . . . , a n ) = af(au... , a n ) U 3 / ( a i , . . . , a n ) 

are called the Harte spectrum and, respectively, the almost Harte spectrum of 
( a i , . . . , a n ) . 

It is obvious that always 

af(ax,..., an) C 0 / (01 , • • .,On), ?£(<*i, • • •, «n) C <r*(ai, . . . , a n ) , 

and ? A ( a i , . . . , a n ) C <r 4 (a i , . . . , a n ) . 

In the algebra A is complete, then it is easy to see that the above inclusions can be 
replaced by the equalities. In general, we have the following 
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Lemma. Ltt A be a complex unitai normed algebra and let A denote its completion. 
For arbitrary elements a\,... ,an € A the following equalities hold: 

(1) °?(a>\,..., a n ) = <jf(ax,..., a n ) , 

(2) af(ax,..., a n ) = af^,..., a n ) , 

(3) ? A ( a i , . . . , a n ) = <JA(ax,..., a n ) . 

PROOF : We shall give the proof of (1). Equality (2) can be shown in a similar 
manner. It is seen at once that (1) and (2) imply (3). 

Let (au . . . , a n ) € An. It is clear that (cf. [2], p. 460) 

af(at,... ,an) = af(at,... ,an) C<rf(ai,... ,an). 

To prove the converse assume that (Ai , . . . , An) ^ c r ^ a i , . . . , a n ) . Then there exists 
^ ^ ^ n ^ ^ 

b\,... ,bn € A such that ]T bj(aj — Xj) = 1. Since A is a dense subset of A, we 

have Cj -+ bj BS k —* oo (j = 1 , . . . , n) for some c"- ' £ A. Then 

i= i >=i 

(tM*i-*i)) as k —» oo and so 1 € [ X) ^ ( a i "" -\j) | meaning that (Ai , . . . ,A n ) ^ 

^ ( a i - . - . - a n ) . 

A nonzero complex homomorphism of an algebra A will be shortly called a mul­
tiplicative functional. 

The above lemma has the following obvious 

Corollary. Let A be a commutative complex normed algebra with unit and let 
a i , . . . , a n € A. Then 

<jf(at,...,an) = af(au... ,an) = aA(au... ,an) 

= { (^(a i ) , . . . , $(an)) : <j> is a continuous multiplicative functional of A}. 

It is well-known that the almost spectra may be empty. Notice, however, that if 
a normed algebra A has a continuous multiplicative functional <j>, then 

(</>(ax),..., <t>(an)) € cf(au... ,an ) 0 aA(au... ,an) 

I £ A(Qj - tfa,-)) J H ( 5 > ; - <t>(aj))A J C kernel of <f>. 

Thus in that case af(au...^an\aA(au...^an)y and <JA(ax,. ..,an) are always 
non-empty. Now we show the converse of this fact: 



A note on the almost left... 319 

Theorem. Ifaf(ai,..., an) [respectively aA(ai,..., an) or aA(at,..., an)} is non­
empty for an arbitrary n-tuple (a\,..., an) of elements in the complex unital normed 
algebra A with n = 1 ,2 , . . . ,then A has a continuous multiplicative functional. 

PROOF : We shall only give the proof for the almost left spectrum. The other 
cases can be shown in a similar way. 

Assume that aA(a%,... ,an) ¥" 0 f° r arbitrary a i , . . . , a n € A and every n = 
1,2, By the lemma we have 

af(au... ,an ) = af(au ... ,a n ) ^ 0. 

Since A is dense in its completion 4 , the upper semicontinuity of aA implies that 
af(au... , a n ) ^ 0 for every finite subset {a x , . . . , a n } of A (cf. [2], p. 463). To 
make the proof self-contained we shall show this fact directly. Take an arbitrary 
n-tuple ( S i , . . . , a„) € An. Then there exist (b[k),..., bn

k)) € An (k =-= 1,2,. . .) 

such that £ \\aj - bf]\\ < I for all k. Let (\[k),..., \n
k)) € crf(b[k\.. ..,6(„fc)). 

i=i 
Since 

*frb\k),..., &<„*>) C a\b(k)) x . . - x «-*(&«) 

C .0(0, l l ^ l l ) x . . . x .O(0,||l£k>||) C D(0,1 + Ha.ll) x . . . x .0(0,1 + ||S„||) 

(where D(0, r) denotes the closed disc in the complex plane centered at zero and with 

radius r) , we may suppose, passing if necessary to a subsequence, that (\\ , . . . , An ) 

—* (Ai , . . . ,A n ) as k —• oo. We claim that (Ai , . . . ,A n ) € aA(a\,... , a n ) . If, 

on the contrary, it was not so, then there would exist u i , . . . , u „ € A such that 
n 
Y^ Uj^cLj — Xj) = 1. And further 
i=i 

||1 - ±uj(b<?) - A«)« < || ±uj(aj - fc« + A « - A,)|| 
>=i y=i 

< max, UuJ I £ HS> - 6^11 + £ |A<-fc> - A;| J . 

Thus we would have ||1 — ]Ci==i "i(^» — Aj || < 1 for sufficiently large k and conse­

quently (Aj , . . . , An ^ ^ ( ^ i »• • • i°n ), which would contradict our assumption. 
Now by the theorem of [1] (cf. also [3]) the Banach algebra A has a complex 

homomorphism. Its restriction to A is the desired continuous multiplicative func­
tional. • 

Let us conclude with the following 

Problem. Assume that <xA(ai,...yan) ^- 0 [or aA(ax,.. . , a n ) ^ 0, or 0 ^ ( 0 1 , . . . 
>an) ^ 0] for an arbitrary finite subset { a i , . . . , a n } of a complex unital nonned 
algebra A. Does there exist a multiplicative (not necessarily continuous) functional 
on A? 
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