Commentationes Mathematicae Universitatis Carolinas

Jiří Anděl; Václav Dupač
An extension of the Bore lemma

Commentationes Mathematicae Universitatis Carolinae, Vol. 30 (1989), No. 2, 403--404

Persistent URL: http://dml.cz/dmlcz/106759

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1989

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

An extension of the Borel lemma

Jirí Anděl, Václav Dupač

> Abstract. The Borel lemma is shown to hold true with the independence assumption replaced by a slightly weaker one.

Keywords: Borel lemma, independent events
Classification: 60F15, 60F20

The Borel lemma (BL) for independent events $D_{n}, n \geq 1$, states that

$$
\begin{equation*}
\left[\sum_{1}^{\infty} P\left(D_{n}\right)=\infty\right] \Rightarrow\left[P\left(\sum_{1}^{\infty} 1_{D_{n}}=\infty\right)=1\right] \tag{1}
\end{equation*}
$$

where 1_{D} denotes the indicator of D. We shall show that the implication (1) remains true, if the independence assumption is weakened in a specific way.
Extended Borel lemma. Let $D_{n}=A_{n} B_{n}, n \geq 1$, where
(i) $A_{n}, n \geq 1$, are independent events,
(ii) $B_{n}, n \geq 1$, are events such that $\lim _{n \rightarrow \infty} P\left(B_{n} \mid A_{n}\right)=1$.

Then the assertion (1) holds.
Remark 1. With $B_{n}=\Omega, n \geq 1$, the extended BL reduces to the usual one.
Remark 2. Equivalently, the extended BL can be formulated as follows: Let $A_{n}, n \geq 1$, be independent events, $\sum P\left(A_{n}\right)=\infty$. Let $D_{n} \subset A_{n}, n \geq 1$, be events such that $P\left(D_{n}\right) \sim P\left(A_{n}\right)$. Then $P\left(\sum 1_{D_{n}}=\infty\right)=1$. (Here, \sim means that the ratio of the left and right hand sides tends to 1.)
Remark 3. Another version is obtained for the cross-independence case: Let $A_{n}, n \geq 1$, be independent events, $\sum P\left(A_{n}\right)=\infty$. Let $B_{n}, n \geq 1$, be events such that, for each n, A_{n} and B_{n} are independent and that $\lim _{n \rightarrow \infty} P\left(B_{n}\right)=1$. Then

$$
P\left(\sum 1_{A_{n} B_{n}}=\infty\right)=1
$$

Lemma 1. Let $\left\langle a_{n}\right\rangle,\left\langle b_{n}\right\rangle$ be sequences of reals from $[0,1]$ such that $\sum_{1}^{\infty} a_{n}=\infty, b_{n} \rightarrow$ 0 . Then there exists a sequence $\left\langle c_{n}\right\rangle$ of reals from $(0,1]$ such that

$$
\begin{equation*}
\sum_{1}^{\infty} a_{n} c_{n}=\infty, \quad \sum_{1}^{\infty} a_{n} b_{n} c_{n}<\infty \tag{2}
\end{equation*}
$$

Proof : Put $s_{0}=1$ and determine integers

$$
1<r_{1} \leq s_{1}<r_{2} \leq s_{2}<\ldots
$$

so that

$$
1 \leq \sum_{s_{k-1}<n \leq r_{k}} a_{n} \leq 2, \quad b_{n}<2^{-k} \text { for } n>s_{k}, \quad k \geq 1
$$

For $n \geq 1$ define

$$
c_{n}=\left\{\begin{array}{l}
2^{-\left(n-r_{k}\right)} \quad \text { for } r_{k}<n \leq s_{k}, \quad k \geq 1 \\
1 \text { otherwise }
\end{array}\right.
$$

It is easy to check that $\left\langle c_{n}\right\rangle$ satisfies (2).
Proof of the extended BL: Assume $\sum P\left(A_{n} B_{n}\right)=\infty$. Hence, $\sum P\left(A_{n}\right)=\infty$. Define $a_{n}=P\left(A_{n}\right), b_{n}=P\left(B_{n}^{c} \mid A_{n}\right)$; they satisfy the assumptions of Lemma 1, hence, there is a sequence $\left\langle c_{n}\right\rangle, c_{n} \in(0,1]$, such that (2) holds. Let $\left\langle C_{n}\right\rangle$ be a sequence of independent events, independent also of $\left\langle A_{n}\right\rangle$ and of $\left\langle A_{n} B_{n}\right\rangle$, and such that $P\left(C_{n}\right)=c_{n}$. Put $\bar{A}_{n}=A_{n} C_{n} ;\left\langle\bar{A}_{n}\right\rangle$ is a sequence of independent events. We have

$$
P\left(\bar{A}_{n} B_{n}^{c}\right)=P\left(\bar{A}_{n}\right) P\left(B_{n}^{c} \mid \bar{A}_{n}\right)=P\left(A_{n}\right) P\left(C_{n}\right) P\left(B_{n}^{c} \mid A_{n}\right)=a_{n} b_{n} c_{n}
$$

i.e., $\sum P\left(\bar{A}_{n} B_{n}^{c}\right)<\infty$, hence $P\left(\sum 1_{\bar{A}_{n} B_{n}^{c}}<\infty\right)=1$.

At the same time, $\sum P\left(\bar{A}_{n}\right)=\sum a_{n} c_{n}=\infty$, hence $P\left(\sum 1_{\bar{A}_{n}}=\infty\right)=1$. Combining both probability 1 statements, we get

$$
P\left(\sum 1_{\bar{A}_{n} B_{n}}=\infty\right)=1 \text { and, consequently, } P\left(\sum 1_{A_{n} B_{n}}=\infty\right)=1
$$

The extended BL was formulated for the benefit of some time series studies; see [1], e.g. The authors tried to find a result of this kind in literature, but without success.

Reference

[1] Anděl J., AR(1) processes with given moments of marginal distributions, Kybernetika (submitted).

The Faculty of Mathematics and Physics, Charles Univ., Sokolovská 83, 18600 Praha 8, Czechoslovakia

