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On positive solutions of semilinear elliptic problems 

PAVOL QUITTNER 

Dedicated to the memory of Svatopluk Fucfk 

Abstract. In this paper we study the existence of positive solutions of semilinear elliptic 
equations. Our method is based on the use of the topological degree and the apriori 
estimates of Brezis and Turner. 
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Classification: 35J65, 47H15, 34B15 

1. Introduction and main results. This paper deals with the existence of 
solutions of the problem 

-Au = f(u) in Q 

(1) u = 0 on 00 

u > 0 in it 

where Q is a smooth bounded domain in 1RN and / : H + —• IR is a continuous 
function. Our existence results are based on the following three assumptions 

(Al) f crosses the first eigenvalue X\ of the operator —A on Hl(Q), i.e. 

limsup ^ - < Ai < liminf ^~ 

«—o+ * *->+oo t 
(A2) | f(t) |< C(l + 11 T), where a < (N + 1)/(N - 1) 
(A3) / > — A, where A > 0 is "sufficientlyn small (more precisely see 

Theorem 2) 

and they can be easily extended e.g. to the problem 

-Lu = f(x, ,ti,Vti) in fì 

(2) u = 0 

u>0 

on 

in 

i дQ 

ӣ 

where L is a general second-order elliptic operator with smooth coefficients. 
If /(0) > 0, then the existence of solutions to (1) was proved under rather general 

assumptions by many authors (see P. L. Lions [6] for a survey). If /(0) < 0, 
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then the existence of solutions to (1) in a general domain 0 was proved under the 
assumption (A3) in SmoUer-Wasserman [8] for sublinear / and in Castro [3] for 
f(u) = A(u« - 1), where q € (1,2* - 1), 2* = 2N/(N - 2). The proof of Castro is 
based on the mountain pass theorem and thus it can be used only in problems with 
variational structure. Our method is more general, on the other hand we require 
more restrictive growth condition (A2) on / . First we use the topological degree 
and the apriori estimates of Brezis-Turner [2] to prove that under the assumptions 
(Al) and (A2) the variational inequality 

(3) u € K + : < - A u - / ( u ) , v - u ) > 0 Vv € K+ 

(where K+ = {u € H*(ft);u > 0} and {•,•) is the duality between H-~X(Q) and 
Hl(Q)) has a nontrivial solution and then we use the maximum principle in order 
to show that under the additional assumptions (A3) any nontrivial solution of (3) 
is automatically a solution of (1). 

To be more precise let us formulate our main results for the model problems 
(1),(3): 

Theorem 1. Let f € C(IR+,IR) satisfy (Al) and (A2). Then the inequality (S) 
has a nontrivial solution. 

Theorem 2.. Let E 6 C(2R+,1R+) fulfil (Al) and (At) with f replaced by E. Then 
there exists X = \(E,Sl) > 0 such that for any f £ C(lR+,[-A,-foo)) satisfying 

(4) / < E 

and 

(5) H m i n f - ^ > A 1 
V ' <—+oo t l 

the problem (1) has a solution. 

Note that using Theorem 2 one can easily prove the existence of solutions to (1) 
with /(u) = X(g(u) - 1) or f(u) = g(u - {}>- A, where A -* 0+, g 6 C(1R,H+) 
satisfies the growth condition (A2), g(t) = 0 for t < 0 and lim inft~++<x> *t = +oo 
or lim inf t.̂ +oo * > ^i» respectively. Finally, let us remark that the growth 
condition (A2) can be weakened to 

l i m s u P 4 r = 0 with 0 = ^ ^ 
I-И-00 t? и N - 1 

in Theorem 1 and Lemma 1 and that the existence of a nontrivial solution of (3) 
for f(u) = u9 - 1, q£ (1,2* - 1 ) , was proved by Szulkin [9,Theorem 5.1] using his 
version of the mountain pass theorem. 



On positive solutions of semilinear elliptic problems 581 

2. Proofs of Theorem 1 and 2 (for N > 1). We shall write briefly Ju instead 
of Jl u dx and we put ||u|| := (/1 Vu J2)1/2 . By c and C we shall denote various 
constants which depend only on 12 and / (in Lemma 1 and Theorem 1) or on Q 
and E (in Lemma 2 and Theorem 2). First we prove some apriori estimates for the 
solutions of (3). The following Lemma 1 is based on the results of Brezis-Turner 
[2] (see also de Figueiredo [5]) and so its proof is just sketched. 

Lemma 1. Let f 6 C(2R+,JR) satisfy (A1),(A2). Then there exists a constant 
C = C(/, £1) > 0 such that for any s>0 and for any solution u of the inequality 

(6) u € K + : ( - A u - / ( u ) - 5 # , v - u ) > 0 Vv € K+ 

we have \\u\\ < C and ||u(|£,» < C . 
Here $ is the positive eigenfunction of—A on Hl(Q) corresponding to the eigenvalue 
A i -

PROOF : Let s > 0 and let u be a solution of (6). Putting v = u + $ in (6) and 
using (Al) we get 

Aj / u $ > ff(u)$ + sf$2 > (\t+e) fu$~C f$ + s f$2 , 

hence / u # < C, / / ( u ) $ < C, s < C . 

Putting v = 2u and v = 0 in (6) we get {—Au — f(u) — .*#, u) = 0, thus 

(7) \\u\\2<Jf(u)u+C . 

Putting 7 = 2/(N + 1),/? = (N -I- 1)/(N - 1), using the estimate f(t) < erf + Ct 

and the Hardy-Sobolev inequality we obtain 

/ / ( . )»< (//(«)«) ,(/ife» , /"-")'" , 

which together with (7) implies ||u|| < C. Now the regularity results for variational 
inequalities (Brezis [1]) imply 

(8) Nk».-<C||/(u) + a*m,<C(||u||J,,+l) for any p>2 

which enables us to use a bootstrap argument to conclude ||UIU«> < C . • 
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Lemma 2. Let E G C(IR+, 1R+) satisfy (At) and (At) with f replaced by E. Then 
there exists c = c(E, Q)>0 such that for any f € C(2R+, M) satisfying f <E and 
for any nontrivial solution u of the inequality (S) we have \\u\\ > c, IMU00 > c. 

PROOF : Without loss of generality we may suppose a > 1. 
Let u be a nontrivial solution of (3) with / < E. Since E(t) < (Xt -e)t for t < t0, 
we have 

(9) IMP = / / ( « ) « < ( A i - e ) / u 2 + / C(u«+1 + 1). 
J J J{*>U) 

Moreover, 

(10) ju* < j-\\u\\* , 

( i i ) / Cu°+1 < CM**1 < S T - M 2 i f N l < c , 
J{*>u) 3Ai 

. , f x2/(a+l)/ / v (a-l)/(a+l) 

meas{u>t0}<2 < / u2 < ( / u«+ 1) ( / l ) 
J{u>t.) \J / \J{u>t0) / 

< C|H|2(meas{u>t0}) ( a-1 ) / ( a + 1 ) , 

hence 

(12) / C = Cmeas{u>t0} < rf-||u||2 if ||u|| < c . 
J{«>M *A-

FVom (9)—(12) it follows that ||u|| > c, ||U||L«*> > t0. • 
PROOF of Theorem 1: Let H be the Hilbert space H\(Q) with the scalar product 
((u, v)) := / VuVv and let P be the projection in H onto K+. Then the inequality 
(3) is equivalent to the equation 

u € H : u - PF(u) = 0 , 

where F: H —i• if is a compact map defined by ((F(u), u)) := / f(u)v. 
Putting Bc •= {u € H; ||u|| < c}, using Lemma 2 and the homotopy H(t,u) := 
u-*PF(u) we get 

deg(J~PF,0 ,£c) = deg(/,0,J3c) = 1 , 

where deg is the Leray-Schauder degree and I is the identity in H. Hence to 
prove the existence of a nontrivial solution of (3) it is sufficient to show deg( J -
PP, 0, Be) = 0 for some C. According to Lemma 1 and the homotopy invariance 
property of the degree we have 

deg(/ - PF,0,Be) = deg(/ - PF.,0,Be) , 
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where ((Ft(u)t v)) := f(f(u) + s$)v. Thus it is sufficient to show that the in
equality (6) has no solution for s sufficiently large, which follows from the proof of 
Lemma 1 (we have shown .s < C under the assumption of solvability of (6)). • 

PROOF of Theorem 2: Let / € C(H+, [-A, +oo)) satisfy (4) and (5) and let u be 
the nontrivial solution of (3) whose existence is guaranteed by Theorem 1. It follows 
from (8) and Lemma 1 that ti € W2>*(Q) for any p > 2, hence u € C1'"^) for 
any v < 1. Moreover, 

(13) yule... < q|u||n„., < c i /w iw < C||u||2., 

where v = 1 — N/p. In what follows choose p such that a < (N + v)/(N — 1) and 
choose x0 € ft such that K := u(x0) = maxr€n u(x). According to Lemma 2 we 
have K > c > 0. First we shall prove that for e = CK~lKN~l) (with suitable 
C > 0) we have 

B « ( x 0 ) : = { x € H N ; | x - x 0 | < e } c ft 
(14) K 

«(.c) > — for any x € Be(x0) . 

To prove this let us choose x\ € ft such that | x0—x* |= min{| x0—x |;ti(x) = K/2} 
and u(xx) = K/2 . Using (13) we get 

K I1 

~ = | tl(x! ) - «(X0) | < / | Dtl(x0 + t(xX - X0))(X! - X0) | dt 

< C J tv\xx-x0 |1+" Kadt = C | xj - x0 |1+* KQ , 
Jo 

hence | xx - x0 |> Clir<--«>/<-+»'> > CK"1/^-1*, which implies (14). 
Now let us denote by z the unique solution of the problem 

- A * = f"~(u) in ft 

* = 0 on 0ft 

where /"* = max(0, —/). By the maximum principle we get z > 0 in ft and using 
standard regularity theory we obtain 

(15) ||*||ci < C max / - < CA . 

Putting w := t* + * we get — Aw = /+(ti) -f ,u, where /i is a nonnegative measure, 
thus w is superharmonic and positive in 0, w > u. 
Choose 6 = 6(fl) > 0 such that ft* := {x 6 ft; dist(x, #ft) > 6} is connected and 
BB6(x) fl ft« ^ 0 for any x € ft. 
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Let y0 € dB$(x0) n U* he fixed and let u, be the solution of the problem 

- A u f = 0 in B6(y0) 

uw = w on 0Bs(yo) . 

Then u> > u9 on £.5(y0) and (14) implies 

u9(y0) = C / w > C I u 
J»Bt(V0) JdBf(v.) 

> CjmeBaN^(dBs(y0)nBe(x0)) > C , 

where C = C(6) > 0 does not depend on u and / . 
Using the Harnack's inequality we get uv(x) > C for any x G £.5/5(1/0), hence 
w > C on BSj5(y0). 
Choose a fixed covering U£Li ^6/s(y%) of $1$ with y* € ft*. Without loss of 
generality we may assume y0 € B26/$(yi)> hence 

u>(*) > # / w > C I w > C for any ar 6 B ^ y i ) . 

Repeating this argument m-times we get tv > C on Q$. 
Let us be the solution of the problem 

—Au« = 0 in fi \ 0$ 

u$ == 0 on dQ 

us = C on #n« . 

By the strong maximum principle we have u$(x) > C dist(x, d£l) for any i € ft\ft< 
and some C > 0. Hence w(x) > C dist(a?, dft) for some C > 0 and any a? € H. 
Now (15) implies u = u> — z > 0 in ft, provided A is small enough. 
Note that the decomposition u^w — z was used also by Castro [3]. • 
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