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Two examples of the operators with jumping nonlinearities 

RUDOLF SVARC | 

Dedicated to the memory of Svatopluk Fučík 

Abstract. In this article the spectra of two operators with jumping nonlinearities are thor
oughly investigated. 

Keywords: jumping nonlinearity, spectrum, linear complementarity problem 
Classification: 47H12, 90C33 

Introduction 

The first results about the operators with jumping nonlinearities (see Definition 
1 below) were obtained by AMBROSETTI and PRODI in [1] and [2]. Many other 
papers by various authors concerning this subject appeared since then. Instead of 
listing them here, I prefer to mention, that many relevant results and references can 
be found in the FUCfK's book [3]. 

FUClK and MILOTA had shown in [4], that the operators with jumping non-
linearities in the finite-dimensional setting naturally appear in the investigation of 
certain variational inequalities. In this context I'd like to mention the paper [5]. 

By means of the operators with jumping nonlinearities in the finite-dimensional 
setting one can also formulate the so-called linear complementarity problem (LCP). 
From the vast literature concerning the LCP I shall mention only [6], [7], because 
as far as I know, our point of view is rather different from that one of the authors 
of the papers about LCP. 

In [3] one can find some examples of the operators with jumping nonlinearities. 
Two of them are investigated rather thoroughly there, namely 

S\,p(u) = u"(x) + Au+(x) - nu~(x), x € (0, *) 

u(0) = u(n) = 0 

and 

5A,M(u) = u"(x) + Au+(x) - fiW(x), z € (0, tr) 

U(0) = U(TT) 

U'(0) = U'(TT) 

(of course, a weak formulation is necessary if the requirements of Definition 1 are 
to be satisfied - see below). The spectrum (see Definition 2) of the above defined 
operators 5 and S turns out to be rather simple. 
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The main purpose of this article is to show, that the spectrum is not simple in 
general and that it reaUy can exhibit rather strange behaviour, if the linear operator 
S is properly chosen. Moreover, this is true even in the finite-dimensional case. 

I hope that these examples can improve the insight into the nature of the operators 
with jumping nonlinearities. 

In this article only two examples are investigated. Nevertheless, all the methods, 
which are used here, can be (at least in principle) easily generalized in order to 
calculate the spectra of a rather broad class of the operators with jumping nonlin
earities. In this class many other interesting examples can be found. (As shown in 
[8] and [9].) 

After preUminarities, which are collected in Section 1, a complete description of 
the spectra of two operators S : iS4 —> it4 and T : B? —• B* is given in Section 2. 
(See (2) and (22).) Section 3 together with Section 4 contains a sketch of the 
corresponding calculations. Of course, to perform all the necessary calculations is 
a lengthy and tedious, but rather elementary task. Hence, the problem consists in 
the appropriate choice of the examples and not in the calculations. 

Section 5 contains the results about the Brouwer degree 

<M$Af„,0,£) resp- deg(TKii^B) 

of S\tlt, resp. T\tll w.r.t. 0 and a baU B (centered in 0) and about the solvability of 
the corresponding equation 

S\tfl(u) = / resp. TX)ti(u) = / 

for various A and p and S , T as in Section 2. 
In Section 6 some conclusive remarks are collected. 

Section 1. Definitions, notation 

Let JET be a Hilbert space with a cone K of "non-negative" elements. (I.e., for 
each u € H there exist 

u+ = max{u,0} Є £ , 

u~ = max{—u,0} Є £, 

u = u+ — u~~ . ) 

Let the mappings 

be continuous. Let S : H —> H be a Unear completely continuous self-adjoint 
operator. Let A and /i be two real parameters. We define the operators 

S\tft :H —> H, 
S\tll(u) = u -|- ASu+ - nSu~. 
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Definition 1. Any operator of this type is said to be an operator with jumping 
nonlinearity and any equation of the form 

(1) SA,,(U) = / 

is said to be an equation with jumping nonlinearity. 

Definition 2. The spectrum of a linear self-adjoint operator 5 : H —> H is the set 
<r(S) C R2 of all the pairs (A, fi) € R2, for which the equation 

SxA*) = o 

has a nonzero solution u € H. Any such solution is said to be an eigenvector of 5 , 
corresponding to the eigenvalue (A, /i) € cr(S). 

Remark. This definition is substantially different from the usual definition of the 
spectrum of a linear operator. Whenever we shall need to speak about the spectrum 
of an operator S in the usual sense, we shall use the word linear. Hence, we shall 
speak about the linear spectrum, linear eigenvalues etc. 

Notation. 
(i) n = {1,2,3,. . . ,n}. 
(ii) Let u C n. The sets IC = {u = (u,-)-€ft € Rn | u{; < 0 for all t € w 

and u, > 0 , for all t € n — w] are said to be orthants in Rn. 
(iii) Let w C n and 5 : Rn -» Rn be given. C„ C <r(S) is the set of all the 

eigenvalues (A, p) € <r(S) s.t. at least one corresponding eigenvector u 6 .ft**,. 
(iv) We shall see, that for u> C n the set Cw is a semialgebraic variety, which is 

defined by a polynomial equation 

Pw(A,^) = 0 

and some inequalities. (Pw is a polynomial of degree n.) Hence we can define 
the algebraic variety 

Cw = {(A,/.)€tf|Pu,(A,/i) = 0}, 

and according to this definition Cw C Cw. 
(v) Let u = (ui)ieft € Rn be given. We define u+ = (uf ) i€f t € -Rn and u~ = 

(ur)»€* € .Rn as follows: 

uf = max{uj,0}, 

uj" = max{—u,-,0} 

for every t 6 n. 
(vi) In the sequel we shall use the Brouwer degree deg(S\tp, 0, B) of the operator 

S\tfi w.r.t. the point 0 and a ball B centred in 0. It can be shown, that 
in the case of the operators with jumping nonlinearities deg(S\,n,0,B) is 
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independent of the actual choice of B. Hence instead of deg(S\tfl,0iB) we 
shall write only deg(S\,p). (The details can be found in [10].) 

(vii) Let S\,p : Rn —• Rn be any operator with jumping nonUnearity. 
Let 

m,»j) 
be the number of distinct solutions to the equation (1). We define 

/€«* M€OfGR ~M 

where O is the system of all subsets of I2n, the Lebesgue measure of which 
is equal to zero, 

(viii) (.,.) denotes a point in R2. 
(ix) In some cases different mathematical objects are denoted by the same sym

bols, but it doesn't seem to be misleading and was caused mainly by the 
fact, that, e.g., in the description of the intersection points of <r(T) ( see 
(22)) almost all the English alphabet was needed. 

Definition 3. Let ft be any object (point, line etc.) in the (A,p) - plane. Its 
antiobject ft (antipoint, antiline etc.) in the object, which is symmetric to ft w.r.t. 
the axis A = p. Because the description of ft can be obtained from the description 
of ft by interchanging the roles of A and ft , we can speak about various formulae 
and antiformulae as well. Also we will use the same notation with tilde in the case 
of the antiformulae. 

In [3] FUClK had formulated the 

Conjecture* Let B be a ball centred in 0 € H. Let the Leray-Schauder degree 
deg(S\ffl, 0, B) of S\,p w.r.t. the point 0 and the ball B be defined and let 

deg(S\^0,B) = 0. 

Then there exists some f € H such that the equation (1) has no solution. 
This conjecture is false. The following counterexample was constructed in [10]: 

where 

5 = 

-Ӯi,—І : Rг —* Rг, 

/3.5 - 1 - 1 - 1 \ 
- 1 3.5 - 1 - 1 
- 1 - 1 3.5 - 1 

. - 1 - 1 - 1 2.5 > 

(Here as well as in the sequel we identify the operators S with the corresponding 
matrix.) 

The matrix S has a double linear eigenvalue and we can ask, what happens with 
<T(S) , if this eigenvalue splits into two simple ones. In order to answer this question, 
we should find a self-adjoint operator T: .ft* —> R? s.t. 

(i) T has only simple linear eigenvalues, 
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(ii) Ti,_i gives a counterexample to the FUClK's conjecture, 
(iii) T — 5 is small enough (in the usual matrix norm), 
(iv) the entries of the matrix of T have not many digits (else we would have to 

overcome certain unpleasant numerical difficulties), 
(v) the components of R2 — a(T) are not too small (else we couldn't draw any 

intelligible figure of a(T)). 
Of course, these requirements are rather contradictory, thus it wasn't easy to find an 
example, which would satisfy all of them in some reasonable extent. The example 

( 3.8 - 1 - 1 - 1 \ 

- 1 3.5 - 1 - 1 ] 
- 1 - 1 3.2 - 1 I 
- 1 - 1 - 1 2 .5/ 

seems to be near to optimal. We will see, that a(S) and a(T) are fairly similar, qn 
the other hand the differences between a(S) and a(T) are interesting. 

Section 2. The description of the spectra 
The spectrum a(S) of the operator 

(3.5 - 1 - 1 - 1 \ 

:i S a l : ! 
- 1 - 1 - 1 2.5/ 

consists precisely of the following curves (see Fig. 1,2): 
C f : 

A = - ( 8 + 2>/i3)/3, fi£R; 

the corresponding eigenvectors u of R$ satisfy the equations 

(3) ui = u2 = ti3 = u4(l + \Zl3)/6. 

C{i}=C { 2 )=C{3}: 

(4) p = -(34A2 + 40A + 8)/(27A2~+ 116A + 28), 

(5) A € ] -(58 + 4v/163)/27; -2/7] U [-2/9; +oo[, (i € 1-34/27; +oo[ ; 

this curve has asymptotes 

A = -(58 + 4>/l63)/27, 
(6) fi m -34/27; 

/i(-2/7) = -2 /9 = ^ -2 / 9 ) ; 
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the corresponding eigenvectors u of R{i} satisfy the equations 

(7) (9u + 2)u! = (9A + 2)u2 = (9A + 2)u3 = (7A + 2)u4, w.r.t. (4) 
(8) 9JI + 2 = -4(7A + 2)(9A + 2)/(27A2 + 116A + 28); 

interchanging the indices 1 and 2, resp. 1 and 3 in the equations (7), we obtain the 
equations of the eigenvectors u of R{%} resp. R{$}. 
cw-
(9) /< = -(6A + 4)/(3A + 10), 
(10) A € ]-10/3;+oo[, 

M€j-2;+oo[; 

this curve has asymptotes 

A = -10 /3 , 
/< = - 2 , 
/i(-2/9) = -2 /7 ; 

the corresponding eigenvectors of R{4) satisfy the equations 

(11) (9A + 2)uj = (9A + 2)u2 = (9A + 2)u3 = (7u + 2)u4 , w.r.t. (9) 
(12) 7u + 2 = -4(9A + 2)/(3A + 10). 

C{1,2} = C{if9} = ^{2,3}: 

(13) u = -(62A2 + 48A + 8)/(27A2 + 88A + 20), 

(14) A € ] -(44 + 2v^49)/27; -2/7] U [-2/9; +oo[, 

u € J-62/27; +oo[; 

this curve has asymptotes 

A = -(-M + 2v/349)/27, 
p = -62/27, 

u(-2/7)==-2/9 = ^ - 2 / 9 ) ; 

the corresponding eigenvectors u of #{1,2} satisfy the equations 

(15) (9/i + 2)u- = (9u + 2)u2 = (9A + 2)u3 = (7A + 2)u4, w.r.t. (13) 
(16) 9u + 2 = -8(7A + 2)(9A + 2)/(27A2 + 88A + 20); 

the corresponding eigenvectors of R{i,$} * resp. 12(2,3} satisfy the equations, which 
can be obtained from (15) by an obvious permutation of the indices 1,2,3. 
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The remaining parts of <r(S) are the anticurves of the curves in the above list, 
because 

(17) Cw = Ci„„. 

The above written description of the eigenvectors is exact in all but three points 
of <r(S). The exceptional points are C, D and its antipoint D (see (21)). 
C: The corresponding eigenvectors are just those u ^ O , which satisfy the equations 

(18) U!+ti2 + u 3 = 0 , 

(19) u4 = 0. 

Such vectors can be found in any orthant of R4 except of R§, R{4), R$ and i2$. 
D: All the corresponding eigenvectors are in R{*) and each of them satisfies the 
equation 

(20) ti! + u2 + ti3 = -9u4 /7. 

The curves Cw ,u; C 4 intersect themselves just in the points 

A = (-(8 + 2%/l3)/3, - (8 + 2\/l3)/3), 

B = ( ( -8 + 2>/l3)/3, ( -8 + 2v"l3)/3), 

( 2 1 ) C = (-2/9,-2/9) , 
.0 = (-2/9, -2/7) , 
E = (0,-2/5), 
F = (-2/11,-2/5) 

and in their antipoints. All the eigenvectors corresponding to the points A, B, £7, 
F, 2.7, F can be obtained from the relevant ones of the equations (3), (7), (11), (15) 
etc. 

For the convenience of the reader let us note, that the line /L* = 1, X € R inserts 
(with increasing A ) the curves C w , w c i in the order. C§, C{i} = C{2} = C{3}, 
£{4}» C{i>2} = C { M } = C{2,3}, C { M } = C{2,4} = C{3 | 4}, C{i | 2 ,3}, C{1 | 2 | 4} = 
£{1,3,4} = £{2,3,4}« By means of (17) we obtain the order of Cw for the line A = 
l , / i€ .R. 

The spectrum <r(T) of the operator 

(22) T = 

consists precisely of the following curves (see Fig. 3,4,5 ): 

'3.8 - 1 - 1 -1> 
- 1 3.5 - 1 - 1 
- 1 - 1 3.2 - 1 

ч - l - 1 - 1 2.5У 
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C$: 
A = -5.3103926, /* € R; 

the corresponding eigenvectors u of R$ satisfy the equations 

(23) -24.489884ui = -22.896767u2 = -21.303649u3 = -17.586374u4 

16.8A3 + 24.95A2 + 9.2A + 1 

( . ** 14.49A3 + 70.41A2 + 31.96A + 3.8 ' 
™ ' A € J-4.3679998; -1/3.5] U [-1/4.5; +oo[, 

/*€ 1-1.1594203; +oo[ ; 

this curve has asymptotes 

A = -4.3679998, 
/i = -1.1594203; 
/i(-l/3.5) = -1/4.8 = /i(-l/4.5); 

the corresponding eigenvectors u of R{i) satisfy the equations 

(28) 

(4.8/1 + l)ui = (4.5A + l)u2 = (4.2A + l)u3 = (3.5A + l)u4 , 

w.г.t. (24) 

4.8/І + 1 = (^A + 1)(4.2Л + 1)(3.5A + 1) 

C{2): 

(26) 

14.49A3 + 70.41 Л2 + 31.96A + 3.8* 

18.9A3 + 26.66Л2 + 9.5A + 1 
Џ ~ 14.49A3 + 68.31A2 + 30.25Л + 3.5 * 
A € ]-4.2347782; -1/3.5] U [-1/4.8; +oo[, 
/i € 1-1.3043478;+oo[; 

this curve has asymptotes 

A = -4.2347782, 

/i = -1.3043478, 

/.(~l/3.5) = -1/4.5 = /i(-l/4.8); 

the corresponding eigenvectors u of B{2} satisfy the equations 

(4.8A + l)u, = (4.5u + l)u2 = (4.2A + l)u3 = (3.5A + l)u4 , 

(27) WTt' (26) 
4 5 (4.8A + 1)(4.2A + 1)(3.5A + 1) 

M 14.49A3 + 68.31 A2 + 30.25A + 3.5' 
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<?{3>: 

21A5A3 + 28.55A2 + 9.8A + 1 
M "" 14.49A3 + 65.76A2 + 28.36A + 3.2' 

(28> A € ]-4.0708406; -1/3.5] U [-1/4.8; +oo[, 
u € J-1.4803313; +oo[; 

this curve has asymptotes 

A = -4.0708406, 
u = -1.4803313; 
u(-l/3.5) = -1 /4 . 2 = /-(-l/4.8); 

the corresponding eigenvectors u of iZ{3) satisfy the equations 

(4.8A + l)ui = (4.5A + l)u2 = (4.2/4 + l)u3 = (3.5A + l)u4, w.r.t. (28) 

4.2u + 1 = -(4.8A + 1)(4.5A + 1)(3.5 + 1)/(14.49A3 + 65.76A2 + 28.36A + 3.2). 

C{4): 

30.06A3 + 33.66A2 + 10.5A + 1 
( . ** 14.49A3 + 57A5A* + 23.25A + 2.5' 
1 ' A € J-3.4997029; -1/4.2] U [-1/4.8; +oo[, 

u € J-2.0745342;+oo[; 

this curve has asymptotes 

A = -3.4997029, 
u = -2.0745342; 
u(-l/4.2) =-1 /3 .5 = u(-l/4.8); 

the corresponding eigenvectors u of R{4} satisfy the equations 

(4.8A + l)ui = (4.5A + l)u2 = (4.2A + l)u3 = (3.5u + l)u4, w.r.t. (29) 
3.5/i + 1 = -(4.8A + 1)(4.5A + 1)(4.2A + 1)/(14.49A3 + 57.15A2 + 23.25A + 2.5) 

C{i|4}. This curve is defined by the equation 

(30) ^ - 6 - ^ - 4 * 0 

where 

a = 14.49A2 + 40.35A + 8.5, 

(31) b = 46.86A2 + 38.21A + 6.3, 
c = 10.2A2 + 6.7A + l, 
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and 

A € ]-2.5550940; -1/4.2] U [-1/4.5; +oo[, 
( ' /i € ]-2.9992513; 1/3.5] U [-1/4.5; +oo[; 

this curve has asymptotes 

A = -2.5550940, 
/i = -2.9992513, 
uX-1/4.2) = -1/4.8, M-l/4.5) - -1/3.5; 

the corresponding eigenvectors u of R{I,A) satisfy the equations 

(33) (4.8/4 + l)ui = (4.5A + l)u2 = (4.2A + l)u3 = (3.5/4 + l)u4. 

(where ft is given by (30), of course). 
C{2,4}: This curve is defined by (30), where now 

a = 14.49A2 + 38.25A + 7.75, 
6 = 48.96A2+38A + 6, 
c = 11.16A2 + 7A + 1, 

further 

A € ]-2.4186116; -1/4.2] U [-1/4.8; +oo[, 
H € ]-3.1330561;-1/3.5] U [-1/4.5;+oo[; 

this curve has asymptotes 

A = -2.4186116, 
/i = -3.1330561; 
/.(-1/4.2) = -1 /4 .5, M-l/4.8) = -1/3.5; 

the corresponding eigenvectors u of #{2,4} satisfy the equations 

(4.8A + l)u, = (4.5/4 + l)u2 = (4.2A + l)u3 = (3.5/i + l)u4. 

C{3,4}: This curve is defined by (30), where now 

a = 14.49A2 + 35.7A + 7, 
b = 51.51A2 + 37.61A + 5.7, 
c=12.3A2 + 7.3A + l , 
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farther 

A € ]-2.2489615; -1/4.5] U [-1/4.8; +oo[, 
H € J-3.2974346; -1/3.5] U [-1/4.8; +oo[; 

this curve has asymptotes 

A = -2.2489615, 
H = -3.2974346; 
M-l/4.5) = -1 /4.2, M-l/4.8) = -1/3.5; 

the corresponding eigenvectors u of R{3,4} satisfy the equations 

(4.8A + l)ui = (4.5A + l)tt2 = (4.2tt + l)ttS = (3.5fi + l)ti4. 

W.r.t. (17) the remaining parts of <r(T) are the anticurves of the curves in the above 
list. 

The above written description of eigenvectors is exact except of the points E, F, 
G, H, I, J, and their antipoints. The coordinates of E, F, G, H, I, J are written in 
(34) and in these points of <r(T) the eigenvectors are exactly the following ones: 
E: All eigenvectors are in #{3} 0 .R{i,2,3}> they satisfy the equations 

ui = «2 = 0, tt3/4.2 + ti4/3.5 = 0. 

F: All eigenvectors are in R{2) H -R{i,2,4}, they satisfy the equations 

ui = tt4 = 0, tt2/4.5 + tt3/4.2 = 0. 

G: All eigenvectors are in .R{i} O .R{i,3,4}» they satisfy the equations 

u3 = u4 = 0, tii/4.8 + ti2/4.5 = 0. 

H: All eigenvectors are in R[2) H .R{i,2,3}, they satisfy the equations 

ui = tt3 == 0, tii/4.5 + ti4/3.5 = 0. 

I: All eigenvectors are in R{i) D .R{i,2>4}, they satisfy the equations 

u2 = ti4 = 0, tti/4.8 + tts/4.2 = 0. 

J: All eigenvectors are in R{i) 0 .R{i,2,3}, they satisfy the equations 

u2 = tt3 = 0, tii/4.8 + «4/3.5 = 0. 

In all other intersection points of the curves Cu,,u; C 4 the description of the 
eigenvectors can be obtained from the related ones of the equations (23), (25), (27) 
etc. 
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The curves C w ,wC4 intersect themselves just in the points 

Л = < -5.3103926,-5.3103926), 

c = < [-0.2299105, -0.2299105), 

D = ( ;-0.2131986, -0.2131986), 

я = ( ;-l/3.5, -1/4.2), 

F = ( ;-l/4.2,-1/4.5), 

<? = < ;-l/4.5, -1/4.8), 

я = < ;-l/3.5, -1/4.5), 

I = < ;-l/4.2, -1/4.8), 

J = < ;-l/3.5,-1/4.8), 

K = < ;-0.5584973, -0.1331650), 

£ = < [-0.5313592, -0.1404882), 

(34) 
M = < [-0.5109042, -0.1483088), 

(34) 
N = < [-0,4275674, -0,1677518), 

P = < [-0.4071712, -0.1803472), 

< ? = < [-0.3789583, -0.1975821), 

Я = < [-0.3567177, -0.1539252), 

5 = < [-0.3469854, -0.1634512), 

T = < [-0.3293075, -0.1765747), 

£/=( [-0.3117133,-0.1985050), 

V = ( [-0.5150901,0.2578774), 

W = ( [-0.3798825, -0.0413857), 

X = ( [-0.3496113, -0.1016550), 
K = ( [-0.2854421, -0.1725130), 

£ = < [-0.2576014, -0.1953875) 
and theiг antipoints. 

The line џ = 1, Л € R interse ts the curves Cw, ш C 4 in the following order of ш: 
0, {1}, {2}, {3}, {4}, {1,2}, { 1,3}, {2,3}, {1,4}, {2,4}, {3,4}, {1,2,3}, {1,2,4}, 
{1,3,4}, {2,3,4} 

Section 3. 1 Гhe calculation of the spectra 

Spectrum of operator 5 . Let us notice, that w.r.t. the properties of u + and u~ 
we can give an alternative definition of <r(S): 
The point (A, p) € <r(S) iff there exists a set u> C 4 and a vector t* € Run u ^ 0 such 
that 

/ 3 . 5 * i + l -* 2 -^3 -^4 \ 
1 - * i 3.5*2 + 1 ~*3 -64

 X 

-*1 -*2 3.5*3 + 1 -*4 
-*1 -* 2 -*3 2.5*4+ 1> 

(35) Muu = « = 0, 
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where 

*i == fjt i f t € u>, 

Si = A if t € 4 - u>. 

We can subtract the last row of the matrix M„ from all the preceding ones. This 
way we obtain the equivalent matrix M^ with the same determinant: 

(4.5*i+l 0 0 -(3.5*4+ 1) \ 

0 4.5*2 + 1 0 -(3.5*4 + 1) I 
0 0 4.5*3 + 1 -(3.5*4 +1) I 

-*i -*2 -*3 2.5*4 + 1 / 
Now it follows easily: 

(i) The determinant of the matrix Mw 

PW(A,^)= (4.5*i + 1)(4.5*2 + 1)(4.5*3 + 1)(3.5*4 + 1 ) -
~*i (4.5*2 + 1)(4.5*3 + 1)(3.5*4 + 1 ) -

(36) -(4.5*i +1) *2 (4.5*3 +1)(3.5*4 + 1 ) -
-(4.5*i + 1)(4.5*2 + 1) *3 (3.5*4 + 1) -
-(4.5*i +1)(4.5*2 + 1)(4.5*3 + 1) *4 

(ii) The formula (36) implies: If PW(A,^) = 0 , then either none or least two of 
the equations 

4.5*i + 1 = 0, 
(37) 4.5*2 + 1 = 0, 
V ; 4.5*3 + 1 = 0, 

3.5*4 + 1 = 0 
are fulfilled, 

(iii) The eigenvector u satisfies (35) iff 
(38) (4.5*, + l)«i = (4.5*2 + 1)«2 = (4.5*3 + 1)"3 = (3.5*4 + l)u4 

and 
(39) *lUi + *2U2 + *3«3 = (2.5*4 + l)t*4. 

Because u / 0 , the equations (38) and (39) are not independent. If none of the 
equations (37) holds and u is an eigenvector, then (39) follows from (38). Thus 
according to (ii) we have to take the equation (39) into account if at least two of 
the equations (37) hold. But this can happen only on the lines A — —2/9 and 
fi s —2/9. In any other point of a(S) we do not need to care about (39). 

We have to distinguish 16 cases, because there are 16 orthants in H4. But if we 
take into account that in any pair of orthants R^ and -Riw, & C 4 there are the 
vectors with opposite signs of corresponding coordinates, we can easily deduce that 
we need to investigate only 8 of the 16 cases. The results about the other 8 cases 
can then be obtained by interchanging the roles of A and /*, u> and 4 -u>. Because of 
the symmetry of S in the first 3 coordinates, the number of cases, which we really 
have to treat separately, further reduces to four of them. 
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1. The eigenvector u is in R$. 
Then £, = A for all t € 4 and according to (36) 

P,(A) = (4.5A + 1)2(0.75A2 + 4A + 1). 

(We write only P#(A) , because P$ is independent of p.) We are seeking for a 
solution u ^ 0 to (35), hence P#(A) must be zero. Thus either 

A = -2 /9 or 

A = (-8 + 2Vl3)/3 or 

A = - (8 + 2\/l3)/3. 

Fbr A = -2 /9 the equations (38) and (39) reduce to (18) and (19). But with the 
exception of the zero vector, none of the solutions to (18), (19) is in R$ , hence the 
line A = —2/9 doesn't contain any point of <r(S) s.t. the corresponding eigenvectors 
would be in R§. The case A = (—8 + 2V13)/3 is completely analogous. 

In the case A = —(8 + 2\Zl3)/3 the solutions to (35) are all the vectors u € R* , 
which satisfy (38). Among them one can easily find nonzero vectors of R$. Hence 
C# is in <T(S). The equations (3) follow from (38). 

2. The eigenvector u is in 1?{i} or R{2) or R{$). 
According to (36) 

P{1}(A,«) = P(2}(A,u) = P{3}(A,/.) = 

= (4.5A + 1)((3.375A2 + 14.5A + 3.5)/i + 4.25A2 + 5A + 1) 

Hence either A = —2/9 or (4) holds. 
Let, e.g., u € R{i). 
If A = -2 /9 and p ^ -2 /9 , then the equations (38) and (39) imply 

Ui = U4 = U2 + U3 = 0 , 

but u € R{i) , hence u = 0 , which is a contradiction, because u is an eigenvector. 
The case A = —2/9, ft = —2/9 corresponds to the point C , it will be investigated 
separately. 

Let (4) hold. FVom (38) we obtain (7). 
But u 6 R{i) , thus either 

(40) 4.5fi + l > 0 , 4.5A + 1 < 0 and 3.5A + 1 < 0 

or 

(41) 4.5f- + l < 0 , 4.5A + 1 > 0 and3.5A + l > 0 

or 

(42) Ui = 0 for some t € 4. 
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Let (4) hold. \i ^ 0, hence according to (42) and (7) at least one the equations 
(37) must be fulfilled. But then at least two of the equations (37) are fulfilled, thus 
either A = —2/9 or p — 2/9 and these cases will be investigated separately. Hence 
we can assume that either (40) or (41) holds. 

Now from (4) follows (8), which together with (40) and (41) implies (5). Accord
ing to (6) (which can be easily calculated) the cases, in which (39) must be taken 
into account correspond to the points C and D and will be treated separately. The 
remaining calculations concerning O{i} = C{2} = £{3} are very simple. 

3.The eigenvector u is in R{*)» 

P{4}(A,/i) = (4.5A + 1)2((0.75A + 2.5)/i + 1.5A + 1), 

hence either A = —2/9 or (9) holds. 
If A = -2 /9 and ^ / - 2 /7 , the equations (38) and (39) imply (18) and (19). 

But only u = 0 is in H{4} and satisfies (18) and (19). The case A = - 2 / 9 , j* = -2 /7 
will be investigated separately. 

Let (9) hold. FVom (38) we obtain (11) and u € R{4] implies that either 

(43) 4.5A + 1 > 0 and 3.5JI + 1 < 0 

(44) 4.5A + 1 < 0 and 3.5/4 + 1 > 0. 

FVom (9) follows (12). (43), (44) and (12) imply (10). (39) should be taken into 
account only in the point D € C{4} because ii(-2/9) = -2 /7 in this case. This 
will be done later. 

4. The eigenvector u is in #{1,2} or R{i,z) or #{2,3 }• 

P{1,2}(<M = P{l,3}(A,/l) = ^{2,3}(A,IU) = 

(4.5/i + 1)((3.375A2 + 11A + 2.5)M + 7.75A2 + 6A +1), 

hence either /1 = —2/9 or (13) holds. 
Let, e.g., u€«R{i,2}-
If fA = -2 /9 , A ^ -2 /7 , we obtain from (38) and (39) 

Ui + u2 = U3 = u4 ss 0 

and u € #{1,2} implies, that u = 0. The cases (A,p) = C and (A,p) = D will be 
investigated separately. 

Let (13) hold. The equations (38) together with u € R{h2) imply, that either (40) 
or (41) holds. FVom (16), (40) and (41) follows (14). The rest of the description of 
C{i,2} is a matter of simple calculations. 
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Now we only have to investigate the eigenvectors in the points C and D. Because 
C = (-2/9,-2/9) , (38) and (39) imply (18) and (19) and vice-versa. The investi
gation of the point D is somewhat more complicated. From the above calculations 
follows, that D 6 C{4} ,D € C{i,4} = C{2,4] = £{3,4} and D € £{1,2,4} = £{1,3,4} = 
£{2,3,4}* Because D € C{4}> there must exist corresponding eigenvectors in R{i) , 
which must satisfy (38) and (39). But in this case (38) are fulfilled by any vector 
and from (39) follows (20). Because D € £{1.4} = £{2,4} = £{3.4} » we have to 
examine also the eigenvectors of #{1,4} >-ft{2,4} and -£{3,4}. But, e.g. (38) and (39) 
together with u 6 -ft {1,4} imply (20) and 

ui = 0 . 

But if ui as 0 and u € #{1,4} »then u € #{4} and we see that these eigenvectors are 
contained in the set of eigenvectors, which we have just found. Similarly one can 
show, that the investigation of the vectors of -R{2,4}>-R{3,4}>«R{i,2,4} etc. does not 
provide any eigenvector, which would not be in R{4) or would not satisfy (20). 

Spectrum of operator T. 
As the investigation of cr(T) is very similar to that of <r(5), we shall point out only 
the differences between the calculations of <r(S) and a(T). 

First of all, in the case of T the curves £{1}, C{2}> £{3} and C{i,2} > C{M} 1 
£{2,3} do not coincide. Hence, we have to distinguish 8 cases instead of four as in 
the case of 5. 

Secondly, the polynomials Po/(A, p) have a common factor in the case of 5. This 
is not true any more in the case of T. Hence, the description of o"(T) is more 
complicated than the corresponding formulae in the description of (7(5). 

The third difference in the arguments consists in the investigation of the equations 

4.8.i + 1 = 0, 

(45) 4.5.2 + 1 = 0, 
V ; 4.2.3 + 1 = 0, 

3.5.4 + 1 = 0, 

which correspond to (37). Namely, the equations 

(4.8.i + l)«i = (4.5.2 + l)u2 = (4.2.3 + 1)«3 = (3.5.4 + l)t-4, 

which correspond to (38), don't give a complete description of the eigenvectors iff 
(at least) two of the equations (45) hold. This happens only in the points £, F, 
G, H, I, J and their antipoints. In these points the eigenvectors must be examined 
more carefully, we have to take into account also the equation 

.1U1 + .2U2 + .3«-3 = (2.5.4 + 1)**4 

(which coincides with (39) because of the special choice of T ). 
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The fourth (and most important) difference in the arguments is to be performed 
in the investigation of Cw with card u = 2. 

Let , e.g., u> ss {1,4}. One can easily obtain the formula, which corresponds to 
(36), hence we have 

P{M) (*,/*) = <-/*2 + 6/i + c, 

a,6,c are given in (31). P{i,4} is quadratic in p and its discriminant is exactly 

A(A) = 62 - 4ac = 1604.6676A4 + 1546.4292A3 + 564.3001A2 + 92.246A + 5.69, 
A'(A) = 6418.6704A3 + 4639.2876A2 + 1128.6002A + 92.246, 
A"(A) = 19256.0112A2 + 9278.5752A + 1128.6002. 

The discriminant of A"(A) is 

-837394.62403392, 

which is a negative value. Thus 

A"(A) > 0 

for all A € R and A is strictly convex. Hence, A attains just one minimum in a 
point A0 and 

(46) A'(Ao) = 0. 

We can calculate 

A'(-0.22927256) = 1.4.10~7, 
A'(-0.22927258) = -9.1Q~8, 

hence 
A0 = -0.22927257 

is the point, where (46) holds with an error less than 10~7. Further 

A(A0) = 5.537.10~6 

hence 
A(A) > 0 

for any A € R* 
It follows, that the equation 

(47) P{i,4}(A,/-) = 0 

has for every A € R just 2 solutions 

/i(A) = ( -6 i> /6 2 -4ac) /2a , 
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the only exceptions being those A € R , for which 

(48) a = 0. 

In these values (47) has only 1 solution and by this way we obtain simultaneously 
the asymptotes of £?{i,4}. The solutions of (48) are 

A = -0.2295851 

and 
A = -2.5550940. 

Similarly one can calculate the asymptotes 

fi = -0.2347032 

and 
H = -2.9992513. 

Performing some more standard calculations, we can conclude, that C{i,4} looks 
like in Fig. 6,7. 

But the eigenvector u € R{\,A) must satisfy the equations (33). Hence either 

(49) p > - 1 / 4 . 8 and A < -1/4.2 

(50) / i< -1/3.5 and A >-1 /4 .5 . 

In these regions of B? only a part of C{i,4} is contained, namely (30) with (32). 
The curve 

/- = (-6 + ^ - 4 a c ) / 2 a 

lies completely outside of (49) and (50) (see Fig.6,7). We have obtained (30), (32), 
the rest of the description of O{i,4} is a matter of standard calculations. 

Section 4. The multiple points of the spectra 

We have to calculate the intersection points of Q and Q for various pairs of 
different subset { C 4 and ( C 4. Any such point is also an intersection point of Q 
and Cc> hence we shall seek for the solutions to various systems of equations of the 
form 

(51) P < ( A ' " ) = ° 

If we find all the solutions to (51), we only have to decide, which of them are 
contained in Q D C(. 
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Let us assume, that neither ( nor ( is neither 0 nor 4. Else the problem (51) is 
rather simple. 

First of all, let us recall, that PW(A,^) is the determinant of Mu (see(35)). If 
/- = A , then Mw = M$ , hence 

PUM) = P#(A) 

for every wC4. Thus especially 

(52) Pt(A,A) = P,(A), 

(53) Pc(A,A) = i>,(A), 

and for fi = A the system (51) is equivalent to the equation 

P,(A) = 0. 

This is a fourth order equation, hence it has 4 solutions (counting the multiplicities, 
of course). Each of these solutions A gives a solution (A, A) to the system (51). 
Thus from now on, we are interested only in those solutions (A, fi) to (51), for which 

Now P̂  and P< can be treated as polynomials in fi with coefficients depending 
on a parameter A. The system (51) is equivalent to 

(54) P< (A'" ) = °' 
^ ' Pc(A,/.)-i',.(A,M) = 0. 

But according to (52) and (53) 

P<(A,A)-P«(A,A)«0, 

hence a = A is a root of the polynomial P< — P$ and 

P((X,n) - P((X,M) = (,. - X)Vu(X,p) 

where V(t^ is a suitable polynomial. Because we are interested only in the solutions 
H £ A to (51) now, we can investigate the system 

(55) P< (A'" ) = ° 

instead of (54) (or(51)). 
The polynomials P{ and V^ (in p, A is a parameter) have a common solution p 

iff their resultant 
res(P((X,lt),V(<(X,^)) = Wu(X) 
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(which is a polynomial in the coefficients of P^ and V/t,c> hence a polynomial in A 
only) is equal to zero. (See, e.g., [11] for the definition of the resultant.) Hence 
instead of (51) we can solve the equation 

(56) We.c(A) = 0. 

If A is a solution to (56), the corresponding value fi(X) can be calculated from (one 
of) the equations (51) (or from (55)). 

In the investigation of the spectra of S and T four special formulae are important: 
(i) If card£ = card £ = 1 and 

Pf;(A,/i) = a1/i + a0, 

Pc(A,/i) = A/i + A), 

then 

(57) W « ( A ) = - A - « i 

and W£fc *s quadratic, 
(ii) If card£ = 2, card£ = 1 and 

P*:(A, /i) = a2u
2 + aifi + a0, 

Pc(A,/i) = A/i + A> 

then 

(58) WtlC(A) = ((A - a0)/A)2 - a,(A, - a,)/A + a + a 0 a . 

is a fourth degree polynomial. 
(iii) If card£ = card £ = 2 and 

Pe(A, /i) = a2ru
2 + ain + a0, 

Pc(A,/i) = /32/i
2 + /31/i + /30, 

then 

(59) WU(X) = a2((/30 - a0)/A)2 + ax(02 - a2)(j30 - A0)/A + a0(/32 - a2)
2 

is a fourth degree polynomial. 
(iv) If card£ = 3, card( = 1 and 

P$(A, /i) = a3/i3 + a2/i2 + aj/i + a0, 

Pc(A,/i) = A/i + /30, 

then 

(60) WtlC(A) = fc(A»(Aai + A,) - A(A> - o0)/A) - /32a3 

is a sixth degree polynomial. 
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The formulae (57), (58), (59), (60) can be obtained easily from the definition of 
the resultant, (52) and (53). 

We can apply them to the matrix S and we obtain the following list of W^: 

W{l)M = 11.25A2 + 7A + 1 = (4.5A + 1)(2.5A + 1), 

W{ih{i,2} = 248.625A4 + 252A3 + 95.5A2 + 16A + 1 = 

= (4.5A + 1)2(3.5A + l ) 2 , 

^{i>,{i,4> = 410.0625A4 + 364.5A3 + 121.5A2 + 18A + 1 = (4.5A + l ) 4 , 
W{i),{h2,3) = 7813.96875A6 + 11907A5 + 7536.375A4 + 2536A3+ 

+ 478.5A2 + 48A + 2 = 2(3.5A + 1)3(4.5A + l ) 3 , 
WV}>{i,2A) = 10126.265625A6 + 13471.3125A5 + +7392.9375 A4+ 

+ 2139.5A3 + 343.75A2 + 29A + 1 = (3.5A + 1)(4.5A + l ) 3 x 

x (31.75A2 + 12A + 1), 
W{*),{i,2) = 121.5A4 + 94.5A3 + 24A2 + 2A = 2(4.5A + 1)2(3A + 1)A, 
w{4),{i,4) = 410.0625A4 + 364.5A3 + 121.5A2 + 18A + 1 = (4.5A + l ) 4 , 

W{*),{h2,z) = 14762.25A6 +22963.5A5 + 14762.25A4+ 

+ 5022A3 + 954A2 + 96A + 4 = 4(4.5A + 1)4(3A + l ) 2 , 
W{h2},{i,*} = 339.1875A4 + 312.75A3 + 109A2 + 17A + 1 = 

= (4.5A + 1)2(16.75A2 + 8A + 1). 

Many other W^ coincide with the Hsted ones, because G{i} = G{2} = C{3} etc. 
The remaining W^{\) are hard to calculate. But we can also work with Pu{ A, fi) as 
polynomials in A with coefficients depending on /i. Then we can define analogously 
the resultants W^{/JL). Of course, 

We,<=^4-*,i-<-

Hence, the above Hst gives the resultants W^ in the cases, when W^ is compli
cated. 

In the case of T , the analogous Hst of W^ contains 49 polynomials, because there 
are no multiple curves in a(T) . Nevertheless, the resultants W^ can be calculated. 
F\irther, if { n (* ^ 0 , the polynomial W^x always has at least one root equal to one 
of the values 

(61) - 1 / 4 . 8 , - 1 / 4 . 5 , - 1 / 4 . 2 , - 1 / 3 . 5 

and any such root is a double root of W^. Hence twenty four of the polynomials 
W$£ can be further decomposed. Nevertheless, there remains enough work to be 
done, if we want to find aU the roots of aU these polynomials. If we find them, in 
the end we obtain the exact Hst (34) of aU the multiple eigenvalues of T. 
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Section 5. The Brouwer degree and the number of solutions 

In [8),[9] the following special class of the operators with jumping nonlinearities 
was investigated: 

(62) 5 = 

Z-1+a! - 1 - 1 ~l \ 
- 1 - l + a2 - 1 - 1 
- 1 - 1 -1 + a3 .. - 1 

V Л -1 - 1 . ~l + a j 

(63) A = - / Í , 

(64) ai + 1/A > 0 and a* + l//i > 0 for every t € n . 

For any such operator S\ifi one can define a corresponding hyperplane p(S\iJt) C Rn 

and one can show, that deg(S\ift) as well as k(S\ift) can be calculated from the 
intersection properties of a fixed n-dimensional cube Cn C Rn and the hyperplane 
p(S\,?). 

Of course, the operators S\ifl and T\itl (with 5 and T as in (2) and (22) ) do 
not satisfy (63) and (64) in general. But in the last section of [8] one can find a 
discussion of the assumptions (62), (63) and (64), which results into the statement, 
that these assumptions can be weakened and we only need to assume that 

(65) S = R + D, 

where R is a matrix with rank R = 1 and D is a diagonal matrix. Hence we can 
generalise the procedures, which have been developed in [8] , thereafter we can 
rather easily calculate deg(S\ilt) and k(S\tp) as well as deg(T\ifi) and k(T\iPt) for S 
and T given in (2) and (22) and any A and /i. Such a generalization of [8] in the 
case of T is very easy, if (A, /i) is either in 

(66) J-oo; -l/3.5[ x J-l/4.8; +oo[ 

or in 

(67) 1-1/4.8; +oo[ x J-oo; - l /3.5[ , 

because in any of these two regions all the terms 

4.8A + 1, 4.5A + 1, 4.2A + 1, 3.5A + 1 

have the same sign and ail the terms 

4.8/i + l, 4.5/1 + 1 , 4.2/i + l, 3.5/1 + 1 
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have just the opposite sign. This fact plays the same role in the case of T\tfl as 
the assumption (64) in the case (62), (63). What concerns the remaining points 
of the (A, p) -plane, the generalization of the results of [8] does not seem to be 
straightforward, nevertheless it is possible. 

deg(T\tp) is constant in every component of R2 — a(T) , hence we can speak 
about the degree of a component of .R2 — a(T). A Httle bit surprising may be the 
fact, that k(T\tfl) is constant in every component of R2 — a(T) as weU. The proof 
of this assertion is rather compHcated, because first of all one has to generalize the 
results of [8]. But the main idea of the proof is simple. 

Let 
C«{(A(t ) , / i (#) ) |*€[0; l ]> 

be a continuous curve, which is completely contained in one component of R2 —a(T). 
We can define the hyperplanes p(T\(t)t§i(t))^ t € [0,1] and these hyperplanes depend 
continuously on t. Let 

HTX(ti) MH)) £ k(THt2)MH)) 

for some tx,t2 € [0,1]. k(T\tli) is uniquely determined by a set of 1-dimensional 
edges of C n , which are intersected by p(T\tlt) , hence 

piTHh)Mh)) a n d p(TX(t7)Mt2)) 

intersect different sets of 1 -dimensional edges of Cn. But then there must exist 
a value t0 £ [*i,*2] such that p(T\(t0),i*(to)) contains an end-point of such an edge. 
Thus 

deg(T\(to)tll(to)) 

in not defined. This in turn implies, that 

(A(t0),M*o))G<r(r) 

which is a contradiction. 
Further it can be shown, that if (A, p) is neither in (66) nor in (67), then the 

problem of determining deg(T\tli) and k(T\tll) can be reduced to a dimension n < 4. 
But if S\tli is any operator with jumping nonHnearity in a dimension n < 4, then 
al'wavs 

*(SA, M ) = \deg(S\tli)\. 

For the operators with jumping nonHnearities in the dimension n = 4 we have the 
foUowing result (at least if S satisfies (65)): 

I<MSA,„) | < 3 

and either 

(68) k(SKll) = \deg(Sx,„)\ 

609 
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(69) deg(S\tfl)=Q and k(S\tfl) = 2. 

Thus is order to determine the degree of any component K of .R2 — <r(T) it is 
sufficient to choose one point (A,/x) € *, to define the corresponding hyperplane 
p(T\tp) C Rn and to use a modification of the procedure, which was developed in 
[8], If either deg(T\tll) ^ 0 or K is not completely contained in one of the regions (66) 
and (67), then k(T\ttl) = \deg(T\tli)\ and k(T\tV) is constant in K. If deg(T\ttl) = 0 
and K is completely contained in one of the regions (66) and (67), k(T\ttt) can be 
calculated from the intersection properties of p(T\tll) and Cn. Once more , k(T\tfA) 
is constant in K. 

This reasoning gives the values of deg(T\tfl) ,which are written in the Fig. 3,4,5. 
In any component of R2 — a(T) we have 

k(T\tlt) = \deg(T\tlt)l 

only in the component, which is denoted by the sign *, 

deg(T\tll) = 0 and k(T\tlt) = 2. 

(Of course, we have always 

deg(T\tfl) = < M ^ , A ) , 

*(TA,M) = k(TM,A), 

hence if the value of the degree of a component can be found in none of the Fig. 
3,4,5, one has to look onto the corresponding anticomponent.) 

In the case of 5 (see(2)), the reasoning is completely analogous and gives the val
ues of the degree, which can be found in Fig. 1,2. In all components of R2 — <r(S) we 
have (68), only in the component, which is denoted by * (and in its anticomponent), 
we have (69). 

Section 6. Concluding remarks 

The calculation of <r(S) and a(T) has been very complicated. Especially the 
calculation of the polynomials W^t^ and their roots is very lengthy. Nevertheless, 
this calculation seems to be indispensable. E.g., I would never suspect, that the 
curves C{i,2} and G{i,3} (in the case T\tft ) intersect themselves in the point T, if I 
had not found the A -coordinate of T as one of the roots of W{i,2},{i,3}« Of course, 
this can well be my fault, but without calculating, e.g., all the roots of W{i,2},{i,3} 
we can hardly be sure, that there is not another intersection point of C{\t2) and 
C{i,3} m a small neighbourhood of the point J. The existence of such a point would 
imply the existence of another component of R2 — <x(T), which could be invisible in 
Fig.5, but could be seen in another scaling. We have met a similar situation in the 
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case of the component, which is bounded by C{i,2) and ^{M} between the points J 
and T. It is invisible in the Fig.4, but can be easily seen in the scaling of the Fig.5. 

From the results of [8],[9] follows the observation, that the most interesting spec
tra seem to have those matrices 5, which "almost have" some multiple linear eigen
values (in the sense that some simple Unear eigenvalues of 5 are contained in a 
smaU interval of R). Unfortunately, the "almost-multipHcity" of the eigenvalues of 
S considerably compHcates the calculation of cr(S). Hence, in the most interesting 
cases in the dimension n > 5 the calculation of <r(5) is in principle very similar to 
the calculations, which have been described in this article, but especially the calcu
lation of the roots of W^ must be expected to be extremely lengthy and difficult 
because of the following reasons: 

(i) In the case of T we had to calculate 49 polynomials W$,c- In the n-dimensio-
nal case an analogous list of W^ contains 

(2"™1 - l ) 2 

polynomials. (In the case of T we have 

W«.C=Wc-M, 

whenever card( = 2, card£ = 1, ( C (. Hence, there are only 43 different 
polynomials on the list of W£,c and we can expect, that in the n-dimensional 
case some of the polynomials W^.r. can coincide as well. Thus the Hst of 
different W^ may contain less than ( 2 n _ 1 — l ) 2 polynomials. 
On the other hand, the number of different Wf^ can be hardly substantially 
smaller than (2n_i — l)2) . 

(ii) In the case of T the maximal degree of W^.c is equal to 6 and some of the 
sixth degree polynomials W^^ have all the roots different from the values 
(61), thus they can't be easily decomposed. In the n-dimensional case the 
maximal degree of W^ is equal to 

(n-lXn-2). 

(iii) In the n-dimensional case the formulae (57), (58), (59), (60) are not sufficient 
for the calculation of all the W^ and we should derive some other formulae, 
which turn out to be substantially more complicated than (57), (58), (59), 
(60). 

(iv) In the case of T the major part of the roots of W^ is contained in a small 
neighbourhood of the value -0.25. Hence W^ have "almost multiple" roots. 
The same situation should be expected in the most interesting examples in 
higher dimensions. But the "almost - multiplicity" of the roots of W^ causes 
serious numerical problems, if we want to calculate them. E.g., the Newton's 
method gives only few digits of the roots, because it is sensitive to rounding 
errors in such cases. 

(v) Nevertheless, we need rather good approximations of the roots of W^^ if we 
want at least to distinguish one from another. Namely, from (i), (ii) and (iv) 
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follows, that many roots of W^ are contained in a small neighbourhood of 
one value, hence some pairs of the roots must necessarily almost coincide. In 
fact, we can show, that, e.g., in the case of T one root of W^2tz),{itA) -8 

-0.2292226, 

one root of W^t^it4) is 

-0.2292256. 

(vi) In the case of T, all the coefficients of W^ are rational, but they have many 
digits. E.g., 

Wr{4},{i,2,3} = 14876.533224A6 +23235.594228 A5+ 

+ 14987.H5504A4 + 5112.162A3+ 

+ 973.1313A2 + 98.07A + 4.09 

It is hard to calculate with numbers, which have eleven digits. But because of 
(iv) the roots of W^ must be expected to be very sensitive to the errors in the 
coefficients, hence according to (v) we have to work with very good approximations 
of the coefficients of W^ (if not with their exact values). The situation must be 
expected to be even more unpleasant in the higher dimensions. 

Remark. In the case of S (see(2)) the list of W^t^ reduces to 9 polynomials and 

9 = (2"-1 - l)2 

for n = 3. All these polynomials can be easily decomposed, because they contain 
factors (4.5A + 1) and (3.5 + 1). After dividing them by these factors we obtain 
polynomials, which are at most quadratic. But 

2 = (n - l)(n - 2) 

for n = 3. Hence 5 , which has a double linear eigenvalue, exhibits some "3 
dimensional features". 

The most interesting points in a(T) seem to be the points E, F, G, H, I, J and 
their antipoints. All these points are intersection points of four straight lines and 
their antiiines and to each of these points correspond very special eigenvectors (every 
such eigenvector has two coordinates equal to zero). These properties of the points 
seem to be a consequence of the special form of T, which is a matrix of the type 
(66). 

Let us look at the Fig.7. The curve C?{i,4} contains the points A, B, C, D, because 
for every w c l the curve C^ contains them. But £{1,4} contains also the points 
E,G,S and J. 

Because card{1,4} = 2 , we know a priori, that C{\,A) must be quadratic in both 
A and /i.Thus the equation of C{i,4} contains nine coefficients.Now the coefficients 



Two examples of the operators with jumping nonlinearities 613 

(hence the equation of C7{i,4} ) can be calculated from the eight conditions, which 
assert that C{i>4} contains the eight points A, £ , C, D , E,G,H ,1. This way we 
can obtain the equation of C?{i,4} up to a scalar multiple. Similarly we can calculate 
the equation of any other curve C?w,u> C 4. 

As we have just seen the points E, F, G, H, I, J together with their antipoints and 
the points A, B, C, D (which correspond to the linear spectrum of T ) define all the 
curves Cw , w C 4. Hence, we can ask, whether in the case of a general (or generic) 
matrix 5 there exists an analogous small subset of cr(S) , which together with the 
linear spectrum of S uniquely determines all the curves C w , w C 4 . If the answer 
were affirmative, it could eventually provide a more simple and more general way, 
how to calculate <r(S). 
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