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On compactness with respect to semi-open sets 

MAXIMILIAN GANSTER, DRAGAN S .JANKOVIC , IVAN L.REILLY 

Dedicated to the memory of Zdenek Frolik 

A bstract. This paper shows that semi-compactness of a topological space is equivalent to 
hereditary compactness of a larger space, namely the associated space of a-open subsets. 
This indicates the strength of the notion of semi-compactness. 
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1. Introduction. 
Recently a strong form of compactness has been defined by requiring each cover 

of the topological space in question by semi-open subsets to have a finite subcover, 
[1]. A subset of a topological space is semi-open if it is contained in the closure 
of its interior. In [6] it was shown that semi-compactness of a topological space is 
equivalent to compactness of a much larger space, namely that having the collection 
of all semi-open subsets of the given space as a subbase. 

Let (X, r) be a topological space. We denote the closure and the interior of a 
subset 5 of X by clxS and intxS respectively. A subset S of (X,r) is called semi-
open [respectively regular closed, a-open] in (X,r) if S C clx(intxS) [respectively 
S = clx(intxS),S C intx(clx(intxS))]. Clearly every open set is a-open, and 
a-open sets and regular closed sets are semi-open. A subset S of (X, r) is called 
nowhere dense, abbreviated nwd., if intx(clxS) = <f>. Njastad [5] has shown that 
the collection r a of all a-open sets in (X,r) is a topology on X larger than r. 
Moreover, V £ r° if and only if V = U — N where U € r and N is nwd. in (X, r). 
Hence nwd. subsets of (X,r) are closed and discrete in (X, ra). 

Let A and B be famiUes of subsets of X. We say that B refines A if each member 
of B is contained in some member of A. Following Hodel [3], we call a pairwise 
disjoint collection of non-empty open sets in (X, r) a cellular family. A simple 
application of Zorn's lemma yields the foUowing. 

Lemma 1.1. Let S be a family of semi-open subsets of X, r . Then there exists a 
cellular family Q such that Q refines S and U{G : G € Q] is dense in U{5 : S € S}. 

Finally, the cardinaUty of a set X is denoted by |X|. A cardinal number is the 
set of all ordinals which precede it. In this paper, K will always denote an infinite 
cardinal number. 

In this paper we indicate the strength of the semi-compactness property by show
ing that (X, r) is semi-compact if and only if (X,r° ) is hereditarily compact. We 
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prefer to present our results for a general cardinal K, rather than for the special case 
K = u;, so that we obtain corresponding results for the Lindelof case, for example, 
at the same time. An example is provided to show that the role of the topology r a 

of a-open subsets is crucial. 

2. Semi-K -compact spaces. 

Definition 2.1. A space (X, r ) is called /c-compact [respectively semi-/c-compact] 
if every open cover [respectively semi-open cover] of (X, r ) admits a subcover of 
cardinality < K. 
, Hence u;-compact = compact, u>i - compact = Lindelof, semi-u>-compact = semi-

compact [1] and semi-wi-compact = semi-Lindelof [2], Let us observe that, for 
every /c, any set X with the cofinite topology is semi-/c-compact. 

The following result is part of our main theorem. 

Proposition 2.2. I e t ( X , r ) be semi-K-compact. Then 
i) every nwd. subset of (X,T) has cardinality < K. 
ii) every cellular family in (X, r) has cardinality < K. 

PROOF : Let N be nwd. in (X, r ) . Then N is closed and discrete in (X, r ° ) . Since 
( X , r a ) is clearly /c-compact we have \N\< K. 

Now let Q = {Gi: i € I} be a cellular family in (X, r ) and suppose that |I | = K. 
Then we may write I = \J{Ip : 0 < K} where |I^| = K for each f$ < K and 
Ip fl I7 = ^ whenever 0^7- Let G = U{G» : i € I} and for each 0 < K let 
Vfi = U{Gi : i 6 I^}. If A = clxG - G then A is nwd. and consequently | A | < K. 
Let A* = {x € A : 30 < K such that x € clxV$x }• For each x 6 A* pick 0X < K 
such that x € clxVpx. Since |A*| < K there exists 7 € K - {ftx : x € A*} and thus 
we have cixG = clx(U{Gi : i g I7) U F 7 . Now, {X - clxG} U {c/x(U{Gi : i f| 
I-r})} u {^i : i € I7} is a semi-open cover of (X, r ) having no subcover of cardinality 
< K. Hence ii) is proved. • 

Theorem 2.3. For a space (X, r) the following are equivalent: 

1) (X,T) is semi-K-compact 
2) Every nwd. subset of (X, r) has cardinality < K and every cellular family in 

(X,r ) has cardinality < K. 
3) (X, Ttt) is hereditarily K-compact. 

P R O O F : 

1) -=> 2): This is Proposition 2.2. 
2) => 3): By an analogous result to Theorem 1 of [7], we have to show that 

each W € Ta is a K-compact subset of (X, r ° ) . So let W be an a-open 
cover of W € r a . By Lemma 1.1 there exists a cellular family Q in ( X , r ) 
which refines W and whose union is dense in W. By assumption, \Q\ < K. 
If A = W - U{0 :<?€(?} then 4 is nwd. in ( X , r ) and hence | A | < K. For 
each (? € Q pick Vb € W such that G C VG. Then W = U{VG : G € Q} U 4 
proving that W is K-compact in (X , r t t ) . 

3) •=» 1): Since (X, r ° ) is /c-compact, every nwd. subset of (X, r ) has cardinality 
< K. Let {Si :€ I} be a semi-open cover of (X, r ) . For each i € I there exists 



On compactness with respect to semi-open sets 39 

Vt € r such that Vt C 5, C clx(Vi). I fV = U{Vt : t € I} then V is dense 
and open in (K, T) and thus \X — V\ < K. By assumption there exists Io C I 
whit |Io| < K and V = U{Vt : i € Io}. Hence X = U{St : i € Io} U (X - V) 
showing that (K, r) is semi-K-compact. 

Corollary 2.4. A space (Xr) is semi-compact if and only if(X,Ta) is hereditarily 
compact. 

Corollary 2.5. (see also [2]). For a space (K , r ) the following are equivalent: 

1) (K , r ) is semi-Lindelof 
2) ( K , r a ) is hereditarily Lindelof 
3) ( K , r ) satisfies the countable chain condition and every nwd. subset of(X, r ) 

is at most countable. 

Hence, if (K, r ) is an uncountable Hausdorff space then (X, r ) is semi-Lindelof if 
and only if (X, r ) is a Luzin space in the sense of Kunen [4]. 

3. An examp le . 
In this example we point out that in our Theorem 2.3 the condition u(X,Ta) 

is hereditarily ^-compact" is essential In particular ( X , r a ) cannot be replaced by 
(X,r ) . We show that for each K there exists a hereditarily /c-compact T\ space 
(X, r) which is not semi-Ac-compact. 

Let X be a set with \X\ = K and let X = Xx U X2 with IX-J = |X2 | = « and 
X\ f)X2 = <f>. Define a topology r on X in the following way: a basic neighbourhood 
V of x € Xi is of the form V = Ux U £/2 where for i = 1,2,17, C X t , |X t - /J t | < K 
and x € Cli. A basic neighbourhood V of a: G X2 is a subset of X 2 containing x 
such that |Ki -V2\<K. 

Then (K , r ) is a hereditarily ^-compact T\ space. Since X\ is nwd. (X , r ) and 
IKi | = «, (X, r) fails to be semi-«-compact. 
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