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On dimension of locally pseudocompact groups 
and their quotients 

M.G.TKA6ENKO 

Dedicated to the memory of ZdenSk Frolfk 

Abstract. It is shown that dimfJ = indB = indo B for every quotient space G/K of 
a closed subgroup K in a locally pseudocompact group Gt and the equality dimC? = 
dim/if + dimG/K is established. We answer a question of A.V.Arh&ngeYskil by showing 
that an extremally disconnected quotient space of a closed subgroup in a pseudocompact 
group is finite. 

Keywords: Locally pseudocompact group, covering dimension, small (large) inductive di
mension, quotient space, C-embedded subset, <r-lattice of mappings, perfect ib-normality. 

Classification: 54F45, 22A05 

By theorem of B.A.Pasynkov [10] , if G is a locally compact group and K is 
a closed subgroup of G, then the equalities dimG/K -= mdG/K = ladG/K and 
dim G — dim K -f dim G/K hold. Here we prove similar equalities in case when 
G is a locally pseudocompact group. When passing from (locally) compact groups 
to (locally) pseudocompact groups, two circumstances would be mentioned. First, 
neither pseudocompact group G nor its quotient space G/K have to be normal 
spaces. Second, a closed subgroup of a pseudocompact group need not be pseu
docompact [5, Theorem 2.4]. An absence of normality obliges us to define the 
dimension dim in terms of finite functionally open covers (see [6, p.472]). The large 
inductive dimension function Ind would be replaced by Indo which was introduced 
by V.V.Filippov and studied in [9]. The function Indo is defined in the following 
way: Indo X = -r-1 iff X is empty, and Ind0K < n +1 iff for every disjoint zero-sets 
Fo» Fi oi X there exist disjoint open sets 0Q% 0\ and a aero-set C of X such that 
Fi C O, (i = 0,1),X \ C =- O0 U OX and IndoC < n. (Note that O0 and Oi 
are cozero-sets of X by Lemma 7.2.12 of [0]). It is known that IndoK « IndK 
for every normal space X, each closed G«-subeet of which is perfectly ib-normal [7, 
Proposition 1]. 

A useful equality dim 2? = dimB, where B = G/K is the quotient space with 
respect to a closed subgroup K of a locally pseudocompact group G and B — G/K 
is the completion of B, was established in [3]. If, in addition, the underlying space 
of G is normal, then dimG = dimB -f dimK [3, Theorem 4]. Thus our Theorems 
1 and 2 complete the work begun in [3], and the condition "G is normal" is deleted 
(obviously, a normal locally pseudocompact group is locally countably compact, 
and closed subgroups inherits the latter property). 



160 M.G.TloMSenko 

In fact, Theorem 1 states a bit more: d i m F = i n d F = Ind0 F for each zero-set 
F in B. An analogous equality does not hold even for closed subsets of pseudocom-
pact groups, for every Tychonoff space embeds as a closed subset into a suitable 
pseudocompact group. 

Theorem 2 impUes that the dimension of a quotient space of a closed subgroup in 
a locally pseudocompact group G does not exceed the dimension of G (CoroUary 2). 
A question of A.V.Arhangel'skii is answered by showing that any extremaUy discon
nected quotient space of a closed subgroup in a pseudocompact group is necessarily 
finite (Theorem 3). 

In what foUows aU topological groups are assumed to be Hausdorff and spaces 
to be Tychonoff. A subset Y of a space X is said to be N0-dense in X provided 
Y meets aU non-empty G^-subsets of X. It is important to mention that a dense 
C-embedded subset Y of a space X is necessarily N0 -dense in X [8]. 

By FtxU we denote the boundary of a set U in a space X. 
Let / : X —• Y and g : X —> Z be continuous mappings onto.The symbol / -< g 

means that there exists a continuous mapping h : Y —* Z such that g : ho f. 
Obviously -< is a partial order relation on the family MAP(K) of all continuous 
mappings with the domain X. Given a family T C MAP(K), we say that T is a 
cr-lattice for X if the following conditions are fulfilled: 

(LI) for any fuf% £T there exists / € T such that f •< f\ and f -< fi\ 
(L2) if fi € T and / j + 1 -< fc for each t € N, then the diagonal product A g 0 / t of 

/ i ' s belongs to T] 
(L3) the diagonal product j = AT of aU mappings belonging to J7 is a homeo-

morphism of X onto the subspace j(X) of A / g ^ / ( K ) . 

Note that if J1* is a <r-lattice for K, then T is N0-directed by -«., i.e., for every 
countable subfamily Z C T there exists f*€T such that / * -< f whenever / € Z. 
We say that T has the factorization property provided the foUowing holds: 

(L4) for every continuous real-valued function g on X there exists / € T such 
that f <g. 

It is clear that if a <r~lattice T for X has the factorization property and g : X —> Z 
" is continuous, w(Z) < N0, then one catt find f £ T with f < g. 

T h e m a i n resu l t s . Let K be a closed subgroup of a topological group G. We 
denote by G and K the group completions of G and K respectively, K = clgK . 
Identify G with the corresponding subgroup of (7, and consider the natural quotient 
mappings p : G -~* G/K and p: G —> G/K. A simple verification shows that p(G) 
is a subspace of B = G/K , which is homeomorphic to B = G/K. Therefore, we 
may identify p and P\Q. The foUowing theorem is the main result of the paper. 

Theorem 1. Let $ be a ztro-stt in a quotitnt space G/K of a locally pseudocom
pact group G with rtsptct to a closed subgroup K. Thtn d i m $ = i n d $ = Ind0 $ = 
dim#, ,whtrt # = c/g$. 

Remark 1. One can assume that group G under consideration is generated by a 
pseudocompact neighborhood Vo of the identity. Indeed, let H be the subgroup of G 
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generated by Vo. Then H is open in G and the quotient space G/K is a topological 
sum of spaces, each of which is homeomorphic to a quotient space of H f) aKa~~l 

in H for some a € G (see [12, Lemma 1]). From now to the end of the proof of 
Theorem 1 this assumption is supposed to be fulfilled. 

To prove Theorem 1 we need four auxiliary lemmas. In the sequel the above 
notations are used without reservation. 

Lemma 1. Suppose that a space X has a a-lattice T consisting of open mappings 
onto second-countable spaces, Y is #o-dense in X and <L> is a zero-set in Y. Then 

(a) X is perfectly k-normal; 
(b) Y is C-embedded in X; 
(c) $ is perfectly k-normal; 
(d) $ is C-embedded in Y and in X; 
(e) $ = clx $ is a zero-subset of X; 
(f) every zero-set in $ is a zero-set in Y. 

P R O O F : (a) Recall that a space is said to be perfectly k-normal provided the 
closure of each open subset is a zero-set in this space. The space X has the Souslin 
property by virtue of [2, Theorem 1]. (A slight modification must be done to trans
form the proof of Theorem 1 of [2] to that of the above statement, for A.Blaszczyk 
dealt with inverse spectra in [2]). Since T has properties (LI) and (L2), the sets 
of the form f~~l(U) constitute a base B of X, where / € T and U is open in f(X). 
For a given open subset 0 of X one can find a countable subfamily 7 C B so that 
V = (J j is dense in O. Using the fact that T is No~d-rectecl by "̂> w e can pick 
/ € T and an open subset U C f(X) so that V = f~~l(U). Since / is an open map
ping, the equality clO = clV = f~~l(clU) holds. Obviously, cli7 is a zero-subset 
of the second-countable space f(X). Therefore clO is a zero-subset of X, i.e., X 
is perfectly k-normal. 

(b) Being N0-dense in X, the set Y is C-embedded in X by [13, Theorem 2]. 
(c) Since the space f(X) is second-countable for each / € J7, an No-density of 

Y in X implies that f(Y) = f(X). This equality enables us to conclude that the 
restriction of every mapping / £ T to Y is open as well. Define T* = { / |y : / € T). 
Since Y is No-dense in X, T* is a cr-lattice of open mappings for Y. Hence Theorem 1 
of [15] implies that T* has the factorization property. Taking into account that 
$ is a zero-set in K, we can find a continuous function g : Y —> R such that 
# = g~'(Q). There exists / 0 € T such that / 0 < g. Clearly $ = /0""Vo(^). Put 
2~% ~~~ if ^ T* : / -< fo}- Then T% is a cr-lattice of open mappings for # ; therefore 
$ is perfectly k-normal by (a). 

(d) Let <f> be a continuous real-valued function defined on $ . Since J\£ has the 
factorization property, there exist g € T% and \j>: g($) —• R such that ^ s ^ • g. By 
the definition of T% one can find / € T* so that / -< /o (see the above item (c)) and 
g = / | * . Then $ = /""VW* a-1^ tn*8 -n t u m implies that / ( # ) is closed in f(Y) 
(we use the fact that / is open and hence quotient). Since f(Y) is second-countable, 
tj> extends to a continuous function ip : f(Y) —> R. Obviously, ^ • / is a continuous 
function extending <j> over F , so # is C-embedded in Y. But Y is C-embedded in 
X by (b), and so is $ . 
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(e) Let /o € ?* and # = /0""1/o(^)- There exists / € T such that /0 = / |y . 
The set F = /o($) is closed in the second-countable space /o(Y) = /(K); hence 
f~l(F) is a zero-set in X. Now the No-density of K in X implies the equality 
/~ l (F) = clx$» -•«-, clx$ is a zero-set in X. 

(f) Assume that C is a zero-set in # and / is a continuous real-valued function 
defined on # such that C = /*"1(0). Extend / to a continuous function / : F —> R 
and put Ji = | / | + |̂ |, where g : Y -H• R is a continuous function with # = g~l(0). 
Clearly, C = fc-^O). • 

Lemma 12. If X, K, $ anil $ are as tn Lemma 1, ihen ind $ = ind $ and Ind0 $ = 
Indo$. I%ri!.%erTO0re, if X is normal, then Indo$ = Ind#. 

PROOF : We begin with the equality Ind0$ = Ind0$. First, the inequality 
Ind0 # § In do # will be verified. Apply an induction on n = Ind0 $.. Assume 
that $o and #i are disjoint zero-sets in #. There exists a continuous real-valued 
function / on # such that #* = /"^(t), t = 0,1. Extend / to a continuous function 
g over JIT (use Lemma 1(d)) and define Fi = g"1(i)ii = 0,1. Since Y is N0-dense 
in X, we have Fi = clx$t for each t = 0,1. The equality Ind0 $ = n implies that 
there exist a zero-set C of $ with Ind0 C ^ n - 1 and disjoint open sets O0, 0\ 
of $ such that F< C Oi (i = 0,1) and O0 U d = $ \ C. Then C = C n # is a 
zero-#et in $ an, a fortiori, of Y, so C = clxC. The inductive hypothesis yields 
Indo C S Indo C < n - 1. Furthermore, ${i C Ui and $ \ C = U0 U 17i, where 
Ili = Oj n #, i = 0,1. Consequently Indo $ S n* 

The reverse inequality Indo $ ^ Indo $ will be proved by induction on n = Ind0 $. 
Let F0 and Fi be disjoint zero-sets in $. Put #, = Fjn#, t = 0,1. Since Indo • = n, 
there exist a zero-set C in $ with Indo C7 < » — 1 and open disjoint sets £/0, Ui of 
$ such that #j C ll< (t = 0,1) and U* U 111 = # \ C. By Lemma 1(e), C = clxC is 
a zero-set in #, so the inductive hypothesis implies Indo C < n — 1. Obviously, UQ 
and U\ are cozero-sets in # (apply Lemma 7.2.12 of [0]), and hence one can find a 
continuous real-valued function / on # such that C = /"^(O), UQ = /"*1(R«) and 
U% = /""1(R+)» where R- = {r € Rĵ r < 0} and R+ = {r € R : r > 0}. Extend 
/ to a continuous function § over # (Lemma 1(d)) and define VQ = ^ ( R - ) , 
Vi ^j"l(H^). The Ho-density of Y in .X" implies that C = ^(O)- ^ i s c l e a r 

that $ \ C = V0 U Vi and Fi C V5 (i = 0,1), so Indo J ^ n . Thus, the equality 
Indo $ = k-do $ is proved. 

The proof of the equality ind# = ind# is almost identical to that just carried 
out. We should mention only that one can use the following easy observation. If 
U is an open subset of $, then the set £/0 = Int*cl*£l satisfies the conditions 
U £ Clo «*«- Fr*U<> £ Rr*tf (so ind FV#ll© < ind fV#£l). Moreover, Fr#ll0 = 
cl#Clo n cl#(# \ cl#Clo)is * zero-set in # and in Y (Lemma l(c)).The same is true 
lor open subsets of #. 

Let X be normal. Since each zero-subset of X is perfectly fc-normal (apply 
Lemma 1(c) with Y = X), the space X is hereditarily perfectly fc-normal in the 
sense of V.V.Iedor&ik [7]. Now, Indo $ -= Ind$ follows from [7, Proposition 1]. • 
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Let V be the family of aU normal closed subgroups of G, which have the type 
G$ in G and are contained in the compact neighborhood clgVo of the identity. The 
foUowing lemma has weU-known spectral analogues [11,12]. 

Lemma 3 . The quotient space G/K has a a-lattice M consisting of open mappings 
onto second-countable spaces. 

P R O O F : By Remark 1, the locaUy compact group G is generated by compact set 
cl^Vo; hence G has Souslin property [14, CoroUary 2]. For every N € V let Ajy be 
the quotient mapping of G onto G/KN. The group KN is closed in G, consequently 
there exists a natural mapping WN ' G/K —• G/KN such that Ajy = WN O p. The 
local compactness and the Souslin property of G together imply that the family 
M = {WN •* N € V} is as required. • 

By Theorem 6 in [2], the space B = G/K is C*-embedded in B, i.e., &B = 0 . 
Using local pseudocompactness of B, we can conclude that B is C-embedded in B. 
Consequently, B is a subspace of the Hewitt realcompactification vB of B; hence B 
is No-dense in B [8]. For each N € V let wN =- WN\B and M = {WN : N € 7>). Then 
the <x-lattice M for B has the factorization property (see Lemma 3 and Theorem 1 
in [15]). 

Lemma 4. Suppose there exists a zero-set $ in B which has a finite dimension 
(in the sense of dim, ind or Ind©,). Then one can find N EV so that ind p(N) = 0. 

P R O O F : Since M has the factorization property, there exist No 6 V and a closed 
subset F of WN0(B) such that # = «;^(F) . AU fibers of the mapping u>0 = U>N0 

are homeomorphic to the set P = p(No) 0 B. Hence w0
 1(X) =* P C * for each 

x G F. The fact that * is C-embedded in $ = c lg* (Lemmas 3 and 1(d)) implies 
dim $ = dim * and Lemma 2 yields Ind© * = Ind0 * =-= Ind $. Here Theorem 7.1.8 
of [6] and the normality of B are used. 

Assume that d im# < oo. Since B is normal and j5(No) £ $ , the inequality 
dimp(No) £ d im$ holds [6, Theorem 7.1.8]. Clearly p(No) is homeomorphic to 
the quotient space KN0/K of a closed subgroup K in locaUy compact group JCNo; 
hence there exists a compact normal subgroup R of type Gs in KNo such that 
R C No and p(R) is zero-dimensional [12, Theorem 1]. Let x be the quotient 
mapping of G onto G/NQ. The obvious equality KNo = w~~l*(K) implies that 
KNo is a closed G^-subgroup of G (note that ?r is a perfect mapping onto second-
countable space G/No). Therefore R is of type Gs in G. There exists N € V such 
that N C No n R. It is clear that p(N) C p(R); hence dimp(N) = 0. 

Now assume that ind# < oo. One can find N* € V so that ind(p(N*) ft B) = 0 
Indeed, if ind* = 0 t then the inequality indP < ind* (see [6, Theorem 7.LI]) 
implies the above assertion. Otherwise we can apply induction on ind* together 
with Lemmas 3 and 1(c). It remains to show that if N € V% P = p(N) H B and 
ind.P = 0, then indp(N) = 0. Obviously P = tfljj1 Ajv(e)> where e is the identity 
of G. Consequently, P is a zero-set in B and P is C-embedded in P = p(N) by 
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Lemma 1(d). Let B be a base of P at the point p(e) consisting of clopen subsets 
of P. Then the closures in P of elements of B are also clopen and constitute a base 
of P at p(e). Hence ind (p(e), P) = 0. However, being a quotient space of the group 
KN, P is homogeneous. Thus, i n d P = 0. 

The case Indo # < oo is trivial: an easy induction with the help of Lemmas 
1 and 3 gives the inequality ind $ < Indo $ and the fact just proved implies an 
existence of N € V as required. • 

PROOF of Theorem 1: By Lemma 3, the space B = G/K has a <r-lattice of open 
mappings' onto second-countable spaces. Therefore Lemmas 2 and 1 together imply 
the equaUties i n d # = ind# and Indo $ = Indo $ for each zero-set # in B , where 
$ = cl j>$. The quotient space B = G/K is normal because the group G is locally 
compact (see [12]). Hence Lemma 2 impUes Indo $ = I nd$ . Since $ is dense and 
C-embedded in # (Lemma 1(b)), CoroUary 7.1.18 in [6] implies that d im# = d im$ . 
It remains to note that # is a zero-set in B (Lemma 1(e)), and to apply the equality 
d i m $ as i n d # = Ind$ , which be proved below (informally, it is contained in [12]). 

Assume that one of the numbers d im$ , i n d # is finite. Since d i m $ = d i m $ and 
ind $ = ind $ , Lemma 4 implies that there exists a closed normal subgroup N* G V 
of G such that ind p(N*) = 0, where p : G —> G/K is the quotient mapping. One 
can assume that G is a projective—Lie group in the sense of [9], because every 
locaUy compact group contains an open projective—Lie subgroup (see [16]). By 
Theorem 1 of [12] the space B = G/K is the limit of a well-ordered spectrum 
S = {Ba,<p0>a : a < f3 < r } , where mappings 9^,a 's are open and "onto", a 
mapping ¥*«+i,a is a locaUy trivial fibering with a fiber M a +i , a compact manifold 
(a < r ) , and Bo is a second-countable manifold. An existence of an N* € V with 
indp(N*) s=s 0 implies that the spectrum S can be chosen so that all fibers Ma+iys 
are zero-dimensional, i.e., finite. The proof of Theorem 2 of [12] impUes that the 
Umit projection y>o - B —• Bo is a locaUy trivial fibering with fibers homeomorphic 
to the Cantor cube Dr. Since # is a zero-set in B, the same is true for $o -= p"* 1^) 
in G. Consequently there exists No € V such that No C N* and $o =- n*o~l7ro($o), 
where KQ : G --»• G/NQ. One can start a "decomposition of B into the spectrum 5" 
with quotient space Bo = G/NQK. Then the limit projection v?o ' G/K ~+ G/NQK 
has the property i = t/>0~

1^o(^)« Thus, the restriction of <pQ to i is a locally 
trivial fibering over a locaUy compact second-countable space F = ¥>o(^) with 
fibers homeomorphic to DT. Now the equaUty d i m # = ind# = I n d $ follows from 
Lemma 6 of [12]. • 

Corollary 1. dimG as indG = Ind 0G = dimG for each locally pseudocompact 
group G. 

Remark 2. The conclusion of CoroUary 1 cannot be extended to aU closed subsets 
of G even if G is pseudocompact. Indeed, every lychonoff space embeds in a pseu
docompact topological group as a closed subspace. It is also useful to remember that 
every precompact group embeds into a pseudocompact group as a closed subgroup 
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(apply the construction given in the proof of Theorem 2.4 of [5]). Consequently, 
a closed subgroup of a pseudocompact group need not be pseudocompact. 

Theorem 2. Let K be a closed subgroup of a locally pseudocompact group G. Then 
dim G = d imK -f dim G/K , where K is the completion of the group K. 

PROOF : The completion G of the group G is locally compact, whence follows 
the equality dimG = d imK -f dim G/K (see [10,17]). Theorem 1 and Corollary 1 
together imply dim G = dim G and dim G/K = dim G/K , so we are done. • 

Corollary 2. The dimension of a quotient space of a locally pseudocompact group 
G does not exceed the dimension of G. Furthermore, if K,H are closed subgroups 
of G andKC H, then dimG/Jf £ dim G/K . 

Corollary 3 . A quotient space of a zero-dimensional pseudocompact group is zero-
dimensional. 

Let K be a closed subgroup of a pseudocompact group G. By Theorem 6 in [3] 
the Cech-Stone compactification of the quotient space G/K is homeomorphic to 
the quotient homogeneous space G/K, where G and K are the completions of G 
and K resp., K -= cl^K. On the other hand, no infinite extremally disconnected 
compact space is homogeneous (see [1] or [4,p.69]). Since extremal disconnectedness 
is preserved when passing to the Cech-Stone compactification, we have proved the 
following. 

Theorem 3 . An extremally disconnected quotient space of a pseudocompact group 
is finite. 

The author wishes to thank Professor A.V.ArhangePskii for putting questions 
and helpful comments. 
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