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A note on flat modules 

LADISLAV BICAN, RENATA BINDEROVA 

Abttrad. The Chase's theorem on flatness of direct product of flat modules is generalised 
to the class of modules possessing a set of generators every element of which is anihilated 
by a given right ideal / such that the factormodule R/I is flat. 

Keywords: flat module, finite I - presentation 

Classification: 16A50 

Throughout this note R stands for associative ring with identity and all modules 
are unitary left or right modules. The terminology and notations will be as in [1] 
or [2]. The properties of fiat modules presented there are used without references. 

1 .Definition. Let I be a right ideal of a ring R and RL be a submodule of a free 
left module Rm. We say that L is finitely I - presented if there is an exact sequence 

(1) 0-*U-*R*l*L-+0 

of left modules such that the inverse image /~ 1 ( / m ) of the subgroup ImHL of L is 
of the form RZ + P, where RZ''is a finitely generated submodule oft)\ In this case 
the sequence (1) is said to be a finite I - presentation of L. 

2.Remark For I = 0 we clearly get the ordinary notion of a finitely presented 
module. It is well known that any rank finite free presentation of a finitely presented 
module is a finite presentation and so we are going to prove similar result for finitely 
J - presented modules. 

3.Lemma. Let I be a right ideal of R and RL be a finitely I - presented submodule 
of Rm. Then every rank finite free presentation of L is a finite I - presentation of 
L. 

PROOF : Let (1) be a finite I - presentation otLmdO-+V-+R*£+L-*0 

be another free presentation of L. For R* * © R*i MM* it* =- © Ryj define the 
im% >=-l 

homomorphism ^ : JP - • J? by setting $(zi) « wt* where /(*<) =- g(wi),i = 
l , . . . ,p. Choosing elements f,* € U* such that f(zj) = $r(lfj)t j = 1,...,?, we have 
g(i>(zj) - yj) m f(2j) - g(yj) m 0 and consequently $(*,) « y^ + VJ for some 
v, € V. By the hypothesis /""H-P*) m RZ + P where RZ = (zu...yzn). Setting 
K W « (#ri)»...»#**)» t>i,...,*#) we obviously have If C V aad so W + P C 
g~l( I**). Oa the other haad, for * € g~l(P*)* * =* £ ' « i riWt ** & / (j$mt r§z^ « 
g(x) € F* aad so y m J^m% r$Zj •» J^t SiZi + dfd € P. Summarizing we have 
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4.Definition. For a right ideal I of R define M(I) to be the class of all right R -
modules M having a set of generators {ma\a € A} such that I C(0 : ma) for each 
a€A. 

5.Theorem. The following conditions are equivalent for a right ideal I of R: 

(a) R/I is flat and if {Mc\c G C} C M(I) is arbitrary then ]J Mc is flat; 
c€C 

(b) For any collection {Bc\c € C} of sets the module ((R/I){Bc))c is flat; 
(c) For any set C the cartesian power (R/I)c is flat; 
(d) Every finitely generated left submodule of a free module of finite rank is 

finitely I - presented; 
(e) Every finitely generated left ideal of R is finitely I - presented. 

PROOF : The implications (a)=»(b):->(c) and (d)=>(e) are obvious. 
(b)=t>(a). Every Mc € M(I),c € C has a free presentation O -> Kc -+ (R/lfB^ -+ 
M c - + 0 for a suitable set Bc. Then we have the exact sequence O —• \\ Kc —• 

c€C 

((R/lfB^)c - • n Afc ~> O and it is easy to see that ( U Kc \ J = ( U %c) 0 
c€C \ceC J \c€C / 

((R/I)^Bc))cJ for every (finitely generated) left ideal / of R. 
(c)==j>(d). Let RL = ( u i , . . . , Up) be a finitely generated left submodule of J?m, u, = 

p 
(u,i , . . . ,u , m ) , t = l , . . . , p , F = © Rxi be a free left R - module and (1) be the 

t=i 

free presentation of L with / given by / (x , ) = u,-,t = 1,... ,p. Taking x € K = 
f~~"l(Im) arbitrarily, we have a unique expression x -= Ef=i ai(x)xi a^d s o a- € 
RK,i = 1 , . . . ,j>. Further, f(x) = £ £ , 1 a*(a,)tit- = (Ef=i a-(*)w-i)£.i> w n i c h y i e l d s 

Y%=*i ai(x)u*j € J for each j = l , . . . , m . Definning a, € (R/I)K naturally by 
a»(x) = a,(x) -f J we have Efsa &*(x)uij = 0 in (R/I)K for each j = 1 , . . . ,m. 
By flatness there are 6* 6 (R/I)K and r*,- € .R such that a, = E*=i ^*r*i *&& 
Ef=ir*tt*t; = 0 for all k = l , . . . , n , j = l , . . . , m . This yield Ef=.ir*tw» = 0 
for each k = 1 , . . . , n and af- = E*-si bkrk* + c,»* = !>•••>£» where &*(#) is any 
representative of bk(x) and c» € IK. Setting 

p 

(2) z* = £/*,*, €F 
t= i 

and H Z = (2 i , . . . , 2 n ) , we have .2" C 1/ since /(**) = Ef=ir*t«t = 0 and con­
sequently Z + IF C K. Conversely, for x € K we have ar = Ef=i <*.(-£)£. ^ 
Ef=i ( E L i M * > " + *(*))** = £ 2 . 1 6*(s)** + Ef=i c.(^)^- € Z + JF and (1) 
is a finite J - presentation of J*. 
(c) => (6). Let v l f . . . , vp € ( ( i* /J) ( B c ) ) c be elements such that J X ^ viui = 0, u, € 
.R. Denote L = Ef=i ^ u t t n e - ^ -d e a- °-* -8 *-**-"-• (1) be its free presentation 

with F = © Jfcr,- and / (x t ) = u,. By the hypothesis L is finitely J - presented 
t= i 

and so by lemma 3 /"^(J) C RZ -f JF, where K £ = (* i , . . . , z n ) £ V and z* 
are of the form (2). Take c € C arbitrarily. Then v,(c) lies in (R/I)^Be^ and so 
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Vi(c) = (d«. + J) for some d% £ R,a £ -Bc, with d£ ^ J for a finite number of a's, 
only. So, let A C Bc be the finite set of all a E B c for which d£ £ / for gome 
t = 1 , . . . ,p . Now Ef=i «.-(c)ut. = ( E L i * > « + J) a = 0 and so Y,U * > . € J for 
each a € A, Consequently Ef=i ^cixi € /~1(I) -° r e a c n o; € A and we can write 
E L i *2i*i = E L i «?*** + E L i *S*< with fcj € L Using (2) we get E L i * > , = 
E L i Ef=i 9cV*.*. + E L i *S*< and consequently dg = ^ L i ScV*« + fc«.,a € 
A, * = 1 , . . . ,p. For every k = 1 , . . . , n set u>£(c) = g^ + J if a € A and w%(c) = J 
otherwise. Then w%(c) £ (R/I)(Bc) and since E L i ">*(c)r*« = E*=i(?dfe + i > * i = 
d% + J for each a £ A and Efc=i u;?(c)r*t = J for a € £ c \ A, we see that 
E L i wk(c)rki = *>«(c) and hence E L i wtrki = «•>« = 1, • - • >P- Moreover, by (2) 
it is £ ? = 1 rjkiWi = /(**) = 0 which shows that ((R/I)^B^)C is flat and the proof is 
complete. • 

At the end of this note we list some conditions equivalent to the flatness of a 
homomorphic image of a given cyclic flat right R « module. 

6.Proposition. Let I C J be right ideals of R, R/I flat. The following conditions 
are equivalent: 

(a) R/J is flat; 
(b) For every left ideal L of R the equality JL + J = ( J n £ ) + J holds; 
(c) For each v £ J there are y £ J and u £ I with v = yv + u; 
(d) For each v £ J there exists a homomorphism f : R —> J with f(v) = t; + u 

for some u £ I; 
(e) For any elements vy,..., vn £ J there exists a homomorphism f : R —* J 

with f(vi) = Vi + Ui for some Ui £ J, t = 1 , . . . , n; 
(f) For all elements a%,qi £ H,t = l , . . . , m with E 2 . i a«# ^ J there exist 

elements pi £ R such that pi —a, € J for each i = 1 , . . . , n and E £ a P«tf« € I; 
(g) For all elements a^qij € -R,i = l , . . . , m , , ; = l , . . . , n with E£Li a«0«i € J 

*&ere cxw< elements pi £ R such thai pi — a{ £ J for each i = 1 , . . . ,m and 
E£=i PiQij € J /or eacfc,;' = 1 , . . . , n. 

PROOF : (a) =1> (6). Obvious. 
(b) => (c). Setting L = Rv for v £ J we have u € / f l I C J I + I, so that 
v = E*=i i*r*v + u where u € J and y = E L i i*r* € « * * 
(c) =t> (d). Definning / : R -* J by / ( l ) = y we have / (v ) = yv = v — u. 
(d) ==> (e). The case m = 1 is clear and we shall induct on m. Taking g : R —> J 
with5f(vm+i) = t?m + i -3m + i ,3T O + i € J,wehave^(vi) = t;i-5<,3t- € «/,* = l , . . . , m . 
There is t: .R —• J with <(sm+i) = s m + i , .R/J being flat. Setting *, = (1 -*)(<*,), the 
induction hypothesis gives the existence of h : R —• J with &(-?,-) — 2?| 6 J. An easy 
computation now shows that / = 1 — (1 — h)(l —t)(l — g) has all desired properties. 
(e) =t> (g). There is / : R -+ J with / ( Z Z i « « « ) * E £ i a«tt; - "i»"; € IJ = 
1 , . . . , n. Now the elements pi = a< — /(a*), t = 1 , . . . , m, have desired properties. 
(9) => (/)• Obvious. 
( /) =* (&)• For l.v € / H I there is p £ R with 1 - p € J and jw € J showing that 
t; = (1 - p)v + pv £ JL + J. 
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(b) => (a). Every element v£JOLCJL-\-I can be written in the form v = 
x + *, -c € J£, * 6 J. But then i = t > - : r 6 J n L n J = J n . £ = J L C J I , gives 
v€ JL. m 

7.Corollary. Let I be a two-sided ideal of R, R/I right flat. The following condi­
tions for a right ideal J of R containing I are equivalent: 

(a) R/J is a flat R-module; 
(b) For each v € J there is a homomorphism f : R/I —• J/1 with / ( v + J ) = t>+J; 
(c) R/J is a flat R/I - module; 
(d) For each left ideal L of R containing I it holds Jf)L = JL + L 

PROOF : (a) => (6). By proposition 6 there is / : R —• J with f(v) = v + u for 
some u € J. Since f(I) C I , / induces naturally / : R/I —• J/J which has the 
desidered property. 
(b) => (a). Let / ( l + I) = y + J. Definning / : fi - i J by / ( l ) = y we have 
/(t;) = v + u,u € J, and proposition 6 applies. 

The equivalence of the conditions (b) and (c) is well-known. Assuming (d) we 
have J/LL/I = (JL +1) /1 = (J n L)/I = (J/1) f» (1/J) which is equivalent to (c) 
while the converse implication follows by proposition 6.(b). • 
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