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A note on flat modules

LADISLAV BICAN, RENATA BINDEROVA

Abstract. The Chase’s theorem on flatness of direct product of flat modules is generalized
to the class of modules possessing a set of generators every element of which is anihilated
by a given right ideal I such that the factormodule R/I is flat.

Keywords: flat module, finite I - presentation
Classification: 16A50

Throughout this note R stands for associative ring with identity and all modules
are unitary left or right modules. The terminology and notations will be as in [1]
or [2]. The properties of flat modules presented there are used without references.

1.Definition. Let I be a right ideal of a ring R and prL be a submodule of a free
left module R™. We say that L is finitely I - presented if there is an ezact sequence

1) 0-U-RLL-0

of left modules such that the inverse image f~1(I™) of the subgroup I™ NL of L is
of the form rZ + IP, where RZ is a finitely generated submodule of U. In this case
the sequence (1) is said to be a finite I - presentation of L.

2.Remark For I = 0 we clearly get the ordinary notion of a finitely presented
module. It is well known that any rank finite free presentation of a finitely presented

module is a finite presentation and so we are going to prove similar result for finitely
I - presented modules.

3.Lemma. Let I be o right ideal of R and rL be a finitely I - presented submodule
of R™. Then every rank finite free presentation of L is a finite I - presentation of
L.

PROOF : Let (1) be a finite I - presentationof Land 0 =V - R* 5 L — 0
be another free presentation of L. ForR’-—éRz.a.ndR' éRy,deﬁnethe
homomorphum % : R? = R! by setting ¢(z.) w; where f(z.) = g(w;),i =
.., p. Choosing elements #; € R? such that f(%;) = ¢(y;),j = 1,...,4, we have
y(tb(':) ¥5) = f(Z;) - 9(y;) = O and consequently $(%;) = y; +v; for some
v, € V. By the hypothesis f~}(I™) = pZ + I” where pZ = (z;,...,2,). Setting
= ($(21)-.,¥(2n),v1,...,v,) We obviously have W C V and so W + I C
"(I"‘) On the other hand, for z € g~}(I™), z = L1, rjuj» it is f (E,-x r,z,) =
9(z) € ™ and soy = T, rjj = Lo, 8i% + d,d € I’. Summarizing we have
z=P(y) = Tl T35 = E‘-x 8i%(2) — Lfuy 505 + $(d) € W + I? as desired. . ®
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4.Definition. For a right ideal I of R define M(I) to be the class of all right R -
modules M having a set of generators {mqy|a € A} such that I C (O : mq) for each
a € A.

5.Theorem. The following conditions are equivalent for a right ideal I of R:
(a) R/I is flat and if {M,|c € C} C M(I) is arbitrary then [] M. is flat;
ceC
(b) For any collection {B.|c € C} of sets the module (R/I)(B))C is flat;
(c) For any set C the cartesian power (R/I)C is flat;
(d) Every finitely generated left submodule of a free module of finite rank is
finitely I - presented;
(e) Every finitely generated left ideal of R is finitely I - presented.

PRrOOF : The implications (a)=>(b)=>(c) and (d)=>(e) are obvious.
(b)=>(a). Every M, € M(I),c € C has a free presentation O — K. — (R/I)(B) —
M, — O for a suitable set B.. Then we have the exact sequence O — [] K. —

ceC
((R/I)BNC — [] M. — O and it is easy to see that (H Kc) J= (H Kc) n
ceC

ceC ceC
((R/I)BNCJ for every (finitely generated) left ideal J of R.
(c)=>(d). Let rL = (uy,...,up) be a finitely generated left submodule of R™

(%i1y- -y uimht = 1,...,p, F = G)Rz. be a free left R - module and (1) be the

free presentation of L with f ngexi by f(z;) = u;,i = 1,...,p. Takingz € K =
F~1(I™) arbitrarily, we have a unique expression z = E” a.(z)z, and so a; €
RK i =1,...,p. Further, f(z) = 37, ai(z)u; = (XL, a.(a:)u,,)’_l, which yields
P 1 a.(z)u,, € I for each j = 1,...,m. Definning a; € (R/I)¥ naturally by
ai(z) = ai(z) + I we have 37, a.(a:)u., = 0 in (R/I)X for each j = 1,.
By flatness there are by € (R/I)X and ri; € R such that a; = Y ;_, b;,rk, and
Ei";l Thili; = 0 for all £k = 1,...,n,j = 1,...,m. This y:eld 2€=1 rriu; = 0
for each k = 1,...,n and a; = Y p_, barsi + ¢i,¢ = 1,...,p, where bi(z) is any
representative of bx(z) and ¢; € TX. Setting

P
(2) 2k = zrh-z.' eEF

=1

and rZ = (z1,...,2n), we have Z C U since f(zx) = Y.f_, rriui = 0 and con-
sequently Z + IF C K. Conversely, for z € K we have z = }F_ ai(z)z; =
T, (S 8(@)rks + i(2)) i = Ty bh(2)2 + Ty ci@)as € Z £ IF and (1)
is a finite I - presentation of L

(e) = (b). Let vy,.. v € ((R/I )(B))C be elements such that 3°2_ v;u; = 0,u; €
R. Denote L = Y7, Ru; the left ideal of R and (1) be its free presentation

with F = éle; and f(z;) = u;. By the hypothesis L is finitely I - presented
=

and so by lemma 3 f~(I) C grZ + IF, where RZ = (z,...,2,) € V and z
are of the form (2). Take ¢ € C arbitrarily. Then v;(c) lies in (R/I)(B<) and so
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vi(€) = (d% + I) for some d2; € R,a € B., with d% ¢ I for a finite number of a’s,
only. So, let A C B, be the finite set of all @ € B, for which d% ¢ I for some
i=1,...,p. Now 3F_ vi(c)y; = (E.-l “u; + 1), = 0and so Y F_, d%u; € I for
each a E A. Consequently Y7 d%z; € f 'l(I ) for each a € A and we can write
E,_, d%z; = Ek__l qckz,,+ S, h&z; with A € I. Using (2) we get 3 _, d%z; =
Ek_l E‘__l 9% TkiTi + Y orey RET; and consequently % = Y b %k + h,_.,,a €
Aji=1,...,p. Forevery k=1,...,n set w(c) =q% +Iifa € A and w§(c) =

otherwise. Then wg(c) € (R/I){B<) and since ¥p_, wl(c)rai = Sy (9% +Drai =
d% + I for each @ € A and Y ;_, wg(c)rei = I for a € B, \ A, we see that
Yokeq wE(C)rai = vi(c) and hence Y p_, w¥ry; = v;,i = 1,...,p. Moreover, by (2)
it is 3°7_, resu; = f(2k) = 0 which shows that ((R/I)(B))C is flat and the proof is
complete. |

At the end of this note we list some conditions equivalent to the flatness of a
homomorphic image of a given cyclic flat right R - module.

6.Proposition. Let I C J be right ideals of R, R/I flat. The following conditian:s
are equsvalent:

(a) R/J is flat;

(b) For every left ideal L of R the equality JL+ I = (J N L)+ 1 holds;

(c) For each v € J there are y € J and u € I with v = yv +u;

(d) For each v € J there ezists a homomorphism f: R — J with f(v) =v+u
for some u € I; .

(e) For any elements vy,...,v, € J there ezists a homomorphism f : R — J
with f(v;) = v; + u; for some u; € I,i=1,...,n;

(f) For all elements a;,q¢i € R,i = 1,...,m with Y" aiq;i € J there enst
elements p; € R such that p;—a; € J for eachi=1,...,n and Y-, pigi € I;

(g) For all elements ai,qij € R,i =1,...,m,j =1,...,n with }I_ aigij € J
there ezist elements p; € R such that p; —a; € J for eachi =1,...,m and
Yo pigij €I for each j=1,...,n

PROOF : (a) = (b). Obvious.

(b) = (c). Setting L = Rv for v € J we have v € JNL C JL + I, so that
v=3) )  Jirkv+uwhereu€Tandy=Y |_,jxrx € J.

(c) = (d). Definning f: R — J by f(1) = y we have f(v)=yv=v—u.

(d) = (e). The case m = 1 is clear and we shall induct on m. Taking g: R — J
with g(vm+1) = Ym+1—Sm+1,Sm+1 € I, we have g(v;) = v;—s;,s; € Ji=1,...,m.
Thereist: R — I with ¢(8;m41) = Sm41, R/I being flat. Setting z; = (1—t)(s:), the
induction hypothesis gives the existence of & : R — J with h(z;) — 2; € I. An easy
computation now shows that f =1~ (1—A)(1 ~t)(1 - g) has all desired properties.
(¢) = (9)- Thereis f: R — J with f (T2, 6igij) = LiZ, 0igij — uj,u; € L,j =
1,...,n. Now the elements p; = a; — f(a;),¢ =1,...,m, have desired properties.
(g9) = (f). Obvious.

(f) = (b). For 1.v € JN L there is p € R with 1 — p € J and pv € I showing that
v=_Q-plv+pveJL+1I.
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(b) = (a). Every element v € JNL C JL + I can be written in the form v =
z+i,z € JL,i€l Buttheni=v—ze€eJNLNI=INL =1L C JL gives
veJL. ]

7.Corollary. Let I be a two-sided ideal of R,R/I right flat. The following cond:-
tions for a right ideal J of R containing I are equivalent:
(a) R/J is a flat R-module;
(b) For each v € J there is a homomorphism f : R/I — J/I with f(v+I) = v+I;
(c) R/J is a flat R/I - module;
(d) For each left ideal L of R containing I it holds JNL = JL + I.

PROOF : (a) = (b). By proposition 6 there is f : R — J with f(v) = v+ u for
some u € I. Since f(I) C I, f induces naturally f : R/I — J/I which has the
desidered property.
(3) = (a). Let f(1+1I) = y+ 1. Definning f : R — J by f(1) = y we have
f(v) = v+ u,u € I, and proposition 6 applies.

The equivalence of the conditions (b) and (c) is well-known. Assuming (d) we
have J/I.L/I = (JL+I)/I =(JNL)/I=(J/I)N(L/I) which is equivalent to (c)
while the converse implication follows by proposition 6.(b). ]
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