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Higher monotonicity properties 
of special functions: 

application on Bessel case \v\ < \ 

' ZUZANA DO§LA 

Abstract. Suppose that the function q(t) in the differential equation 

(*) y" + q(i)y = o 

is decreasing on (0, oo). We give conditions on q which ensure that (*) has a pair of solutions 
yi(t), yi(t) such that the n-th derivative (n > 1) of the function p(t) = y\(t)+y\(t) has the 
sign (—l)n+1 for sufficiently large t, and that the higher differences of sequences related to 
zeros of solutions of (*) are ultimately monotonic. In particular, we prove the conjecture 
of [5] for sufficiently large t. 

Keywords: Higher monotonicity properties, ultimate monotonicity, Bessel functions 

Classification: 34A40, 34C10 

1. INTRODUCTION 

The aim of the present paper is to study monotonicity properties of solutions of 
the second order equation 

(1) ' y" + q(t)y = 0 

with the function q decreasing to a positive constant. In general, q is n-time mono-
tonic function, i.e. sgn q^(t) = (—1)*, k = 0 , . . . ,n on (a, oo). This investigation 
is motivated by the following conjecture of L. Lorch and P. Szego [5, p. 51] given 
on the basis of the numerical evidence and the Sturm comparison theorem. 

Conjecture. Let cuk denote k-th positive zeros of any Bessel function Cv of order 
\v\<\. Then 

(2) (-Í)nAncuk > 0 n = 2 , 3 , . . . * = 1 ,2 . . . *) 

If n-th differences have the constant sign and (2) holds for all n or n up to N, we 
say that the sequence is completely monotonic or N-time monotonic, respectively. 

M. Muldoon [8] proved the validity of (2) for | < \v\ < | but the method used 
there cannot be applied to the range \v\ < | . We are successful in proving (2) for 
\u\ < | in the sense of ultimate monotonicity, i.e., for each n fixed, (2) holds for all 
Cyk, k = ln, ln + 1 , . . . (/n integer) or, by other words, a finite number (depending 

*^The symbol Awtfc means, as usual, the n-th (forward) differences of the sequence {tk}, i.e. 
A°tk = tki Atk = <jb+1 - <*, Antk = A(An~Hk). 
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on n) of the first members of the sequence {c„*}Jg_0 must be omitted in (2) (see 
Corollary 2). 

Our approach is based on the following ideas: 
(i) to study monotonicity properties of the function p(t) = y\(t) -f- yf(*)> where 

yi» y% are suitable linearly independent solutions of (1). As was showed in [5,8], this 
is closely related to the monotonicity properties, e.g. higher differences of zeros, of 
any solution of (1); 

(ii) to investigate certain differential operators on the half-line (a, oo) for using 
[1, Theorem 22.1 n] and [8, Theorem 2.1]. To this end we make some constructions 
about the signs and asymptotics of monotonic functions and their quasiderivatives; 

(iii) to investigate Bessel functions of order \v\ < | and other Sturm-Liouville 
functions as solutions of the differential equation of the form (1). 

Originally, the idea to study n-time monotonic functions and sequences (as the 
spacing of zeros of special functions) in the theory of ordinary differential equations, 
was used in [1] and [5] for the case of q(t) increasing (and in general, q' is n-time 
monotonic) with applications on Bessel functions of order \v\ > | . These results 
were followed by a lot of papers and this case was in detail resolved, e.g. [6, 7, 8, 
9, 10]. It is worth to note that the "nonsymmetry" of both cases of monotonicity 
q and q' is caused by the properties of the composition of monotonic functions and 
sequences. 

Our method and results cover the case q converging to a positive constant with 
just the order *€, as it corresponds to the Bessel functions. The case q converging 
"slowly" to a non-negative constant will be solved in [12]. 

2. STATEMENT OF RESULTS. 

Let us define the sequence {M,}g 0 by 

r<.+i 

(з) Mi = Jt' mПWГdt . = 0,1...., 
where y(t) is an arbitrary (non-trivial) solution of (1), {t»}J^0 denotes any sequence 
of consecutive zeros of any solution z(t) of (1) which may or may not be linearly 
independent of y(£), p(t) = yf(t) + y|( t) and yi(t), y2(t) are linearly independent 
solutions of (1), A > — 1 and a < 1 -f | . 

By a special choice of numbers A, a we get quantities of various geometrical 
meaning and describing oscillatory properties of any solution of (1), e.g. if a = A = 0 
then Mi = At, = tj+i — tj . 

Agreement. Throughout this paper, the symbol / = 0(t~~a) for t —• oo means 
the order properties of the best estimation, i.e. we write / = 0(t~a) t -+ oo if 

i) lim supped / ( t ) \ t a < oo, i.e. / = 0(t~a), 
ii) limt-oo 1/(0 \ta+* = oo for every £ > 0. 

Theorem. Let n > 0 be a fixed integer. Let the function q in (1) satisfy q(oo) > 0 
and for k = 0, 1 , . . . , n + 2 

(4) (~1) Y*>(t) > 0, 0 < t < oo 

(5) <?<*> = # ( r - ( * + < ) ) * ->oo, € > 0 . 
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Then (2) has a pair of solutions y\(t), y2(t) such that the function p(t) = y\(t) + 
y\(t) satisfies p(t) —> 1 for t —• oo. 

(6) ( - l )V t + I ) (< ) > 0, fik<t <oo, * = 0, l , . . . ,n , 

where {fik}i *-* a nondecreasing sequence and fik = lifc+i only if fik = 0; 

(7) p(*> = 0 ( t " ( * + € ) ) t - f o o , n > 4 , k = l , 2 , . . . , n - 3 

ana* the corresponding quantities Mi defined by (3) satisfy 

(8) (-1)*A*+1M, > 0 k = 0 , . . . , n - 3 , i = /fc, /fc + 1 , . . . , 

where Ik = /(&) w integer, 0 = lo < l\ < • • • < /n_3 and /* = lk+i only if Ik = 0 . 
In particular, we have for the sequence {ti}^luk\ of positive zeros of any solution 

of(l) 

( - l ) * A * + 2 t i > 0 k = 0 , . . . , n - 3 , n > 3 , i = /fc, /fc + 1,... 

R e m a r k 1. If the function q satisfies (4) (i.e. q is monotonic of order n + 2), then 
q(k) = 0(£"~*), k = l , . . . , n + 1 (see [11]), but (5) need not hold. For example 
h(t) = 1 + l/lgt is completely monotonic (i.e. (4) holds for k = 0 ,1 , . . . ) and 
lim^oo /i't1+€ = — oo for any e > 0. 

A typical example where our theorem is applicable, yields the equation 

(9) y" + [l + /5r^]y = 0, /?, 7 > 0. 

P. Hartman [2, Theorem 11.2] proved that (9) has the solutions yi(t), y^(t) such 
that p(t) = y f + y ! — » l a s t — » 00 and 

(10) ( - l )V* + 1 ) ( t ) > 0 k = 0, 1,.. . 

for 0 < 7 < 1 and 7 = 2 (the case of Bessel functions), p' is not completely 
monotonic on (0,00) for 7 > 2 (i.e. (10) does not hold) and the case 1 < 7 < 2 is 
not completely settled. Therefore this result of Hartman is partially completed by 
the following 

Corollary 1. Equation (9) has a pair of solutions yi(t), y2(t) such that p(t) = 
y\ + y\ —• 1 as t —* 00 and 

l Џk < t < 

0 < t < oo for 0 < 7 < 1 or 7 = 

00 otherwise 

where {lik)kL\ *5 a nondecreasing sequence and f*k = /ik+i only if /ifc = 0. In 
particular, 

[0(97- 2 ) 1 1 

p' > 0 and p" < 0 fort> 
7 + 2 
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Moreover, for the sequence {U}Zuk) of zeros of any solution of (9), the result (8) 
holds. 

In the sequel, we adopt the usual notation for Bessel functions Cy(t) = AJv(t) + 
BYv(t) and its positive zeros c„* (k = 1 ,2 , . . . ) . 

If we consider the generalized Airy equation (cf. [8]) 

(11) ^ ^ 8 « (J-2^) 
having a pair of solutions w(t) = t1/2J„(2i/t1'<2l'>), tll2Yv(2utlK2v>>), then the 
derivative of the carrier T^rvt""2 of (11) is completely monotonic for f < u < | . 

If we reduce the Bessel equation 

y" + ìy' + (l-£)y = 0 
to the equation 

(12) 
\-vг 

г " + ( l + ^ - 2 — ) - = 0 

having a pair of solutions z(t) = tll2Jv(t), tll2Yv(t) then the carrier of (12) is 
completely monotonic for \u\ < | . Thus Theorem can be applied and the conjecture 
(2) is proved in the case of ultimate monotonicity. 

Corollary 2. If X > - 1 and \u\ < \, then 

(13) (~irAn ( ^ * + 1 Î C.W^ciA > 0 n = 0,l,...; * =/n, /n + l,... . 

In particular, (2) holds for fixed n > 2 and k = ln, ln + 1, . . . , where {/n}JJL2 *s 

a nondecreasing sequence of integer numbers and ln = / n +i only if ln = 0. 

Remark 2. If f < u < f, - 1 < A < 2, then (13) holds for k = 1, 2 , . . . (see 
Corollary 4.2.[8]). 

3. O N DIFFERENTIAL OPERATORS: SIGNS AND ASYMPTOTICS. 

We start with additivity of ©-symbols. 

Lemma 1. Let / = /i + f2, h = 0(t~a), f2 = O(t~0), a<$. Then there exists 
T such that sgnf(t) = sgnfx(t) fort>T and f = 0(t"a) for t -» oo. 

PROOF : It holds 

sgn/ = sm[r\htat^a + fa')) = sga(ftt
at^a + f2t*>) = sgn/i, 

since fi > a > 0 and thus fitatp"a -> oo and f2t
p < oo. Further, / = 0(t"a) and 

for 0 < i < p - a Hm^oo 1/1*°+* > Hm^ood/iN^^ - IM*"**) = oo. • 
In what follows, we describe the sign and asymptotics of quasiderivatives of two 

functions. Note that this does not hold for c = S = 0, corresponding to a slow 
convergence of lim^o© q(t) in (1). 

The notation (fD)k(g) means that the differential operator f(t)-jfe is applied k-
tim.es. 
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Lemma 2. Let n > 1 be a fixed integer. Let the functions / , g be such that f(t) > 0, 
/<*> = 0(t-<*+€>), g<*> = 0(t~<*+*>) as t -> oo, e > 0, 6 > 0, k = l , . . . , n . T&en 
(fD)k(g) = 0(t~"<*+*>) ana* t&ere eaiMt̂  a nondecreasing sequence {T*}"* auc/i t&at 
Tk = T/b+i onfy */Tfc = 0 ana1 sgn(fD)k(g) = ^ng<*> on (T*,oo). 

PROOF : Note that / ' = (9(t"~<1+€>) implies / bounded and the conclusion for 
n = 1 is obvious. 

Let n > 2. By [5, pp.57-58] it holds for k = 1 , . . . ,n 

(14) (fD)k(g) = /V*> + £» (M)* ( / V, 

where #(k , t) is a homogeneous form in / ' , . . . , /<*~1> whose typical term is 

(15) c o n s ^ / ' ) 0 1 . . . ^ " " ^ ) " * - 1 

with 1 < a i , /3,7 < k-1, Ei"*1 *<**+,# = & and 0 < a* < k-i for t = 2 , . . . , k-i+1. 
Let us investigate asymptotic properties of functions in the right-hand side of (14). 

Since (f{i))ai = <?(*-*«<»+«>) and E*"*1«. > 1, we have (fD)k(g) = 0(t~-<*+6>) + 

0(r»\ where/* = Ei""1 *«.'+€ E l " 1 <*.+/?+£ = Ar+cEf"*1 <*.'+* > *+«+* > *+*. 
Hence, applying Lemma 1 in (14), we get the existence of a sequence {7*}"* such 

that 8gn(fD)k(g) = sgn#<*> on (T*,oo). 
Note that if the function g is n-times monotonic on (0, oo) and g ^ const, then 

0<*>(t) ^ 0 for t € (0, oo), k = 1 , . . . , n - 1 (see e.g. [9, Lemma 0.3]). 
Let 

Tk = min{T : 8ga(fD)k(g(t)) = sgng<*>(t) for t > T}, k = 1 , . . . , n. 

Suppose, by contradiction, that there exists k € { 1 , . . . , n — 1} such that Tfc+i > Tk 
or Tk = Tjb+i > 0. Without loss of generality suppose $r(*+1)(t) < 0 and £(*>(t) > 0 
for t € (0,oo), fc = l , . . . , n - 2 . Putting Fk =(fD)k(g), k = l , . . . , n - 1, we have 
Fjk+1 = fDFk. If k e { 1 , . . . ,n - 2} it holds 

DFk < 0 for t > T*+i, F* > 0 for t > T*. 

Thus with respect to the continuity of F* and definition of Tk we get Fk(Tk) = 0 
and Fk(t) is decreasing for t > Tk > T*+i, i.e., Fk(t) < 0 for t > T*, which is a 
contradiction with the definition of T*. 

Similarly, if k = n - 1, then Fn„i(Tn„t) = 0, F„_i(t) < 0 for t > Tw_i, 
DFn_i(t) > 0 for t > Tn > Tn - i , which is the same contradiction as above. • 

The last auxiliary result concerns the composition of monotonic functions, in 
particular, if / is an n-times monotonic function, then / A is ultimately monotonic. 
It should be compared with [3, Theorems 5 and 8]. 
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Lemma 3. Let n > 1 be an integer and A / 0 o real number. Let the function 
f(t) satisfy 0 < f(t) < oo and /(*> = 0 ( r ( * + € > ) as t -> oo, € > 0, k = 1 , . . . ,n . 
Then (/A)(*> = <9(t~*(*+€>), k = 1 , . . . ,n and tf&ere exists a non-decreasing sequence 
{Tk}? such that Tk = T*+i only if Tk = 0 and s.an[/A(t)](*> = »gnXsgnfW(t) for 
Tk<t<oo. 

PROOF : The statement obviously holds for n = 1. Let n > 2. We will prove by 
induction that for k = 1 , . . . , n 

(i6) (/A)(*> = xfx~ifw + £$(k,*xn 

holds, where 7 = A — 2, . . . ,A — k and $(k , t) is of the form (15) with 1 < o;i < k, 
£ i - 1 ten = k, 0 < a%;< k - i for i = 2 , . . . , k - i + 1. 

Suppose the validity of (16) for k. Then (/A)(*+1> = [(/A)(*>]' = A/A~7 (*+ 1> + 
A ( A - l ) / A - V 7 ( * > + 2 * ( ^ + l , 0 / 7 , w h c r e 7 = A - - 2 , . . . , A - k - l a n d # ( k + l , 0 
is a homogeneous form in / ' , . . . , /(*> whose typical term is const(f1)^1 . . . (/(*> Yk, 
where 1 < j3x < k, £ * t # = k + 1, 0 < ft < k - t + 1 for i = 2 , . . . , k - i + 1. Thus 
(16) holds for k + 1. 

Now according to (16) it holds (/A)(*> = <9(H*+€>) + 0(t-*>) where p = k + 
c S i "" 1 ai — ^ + ^€- (The equation ] d ~ *<*t = k shows that at least two of the OJ'S 
must be > 1.) Hence we can apply Lemma 1 to the right-hand side of (16). The 
rest of the proof is analogous to that one of Lemma 2. • 

4. PROOF OF THE THEOREM. 

The idea of the proof is based on Lemma 2 jointly with the following results 

Theorem A. [1, Theorem 22.1 n] Let n > 0. Let q(t) be non-increasing, q(oo) > 0 
and 

(17) (~l)k(q~lD)k(-2q'q-z) > 0 k = 0 , . . . , n + 1. 

Then (1) has a pair of solutions yi(t), 2/2(0 such that p(t) = yf + y | -+ 1 w < - > o o 
and 

(18) ( - l ) * ^ - 1 ^ ) V ) ^ °> * = 0 , 1 , . . . , n. 

T h e o r e m B . [8, Theorem 2.1 where W(t) = 1]. Let yi(t), t ^ M &e the independent 
solutions of (1) on (a, b) and p(t) = y\(t) + ylW- Suppose that for k -=- 0 ,1 , . . . , n 

(19) (pD )*(p 1 + i A - a ) 

Ztaj a constant sign ek (= ± 1 ^ on (a, 6), where A > — 1 , a < l + A/2. Then we have 
sgnAkMi = ek (k = 0 , l , . . . , n , i = 1 ,2 , . . . ) . 

PROOF of the Theorem in Section 2: consists of the following steps: 

(a) (6) (c) 
(4), (5) — (18) —> (6), (7) — (19) - (8) 
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Step (a) . Let the function q satisfy the assumptions of Theorem. Then by Lemma 3 
the functions / = q"~l, g = (q~~2)' -= — 2q'q"z satisfy the assumptions of Lemma 2, 
from where sgn(<jr-D)*(-2gV3) = sgn(~2<jV3)<*> = sgn[(<7~2)*+1] = 
= sgn(-<2<*+1>) = sgn</*> = ( -1)* on (T*,oo), Tk < T*+1 and Tk = Tk+l only if 
T* = 0. 

Hence, by applying Theorem A on (T*, oo) we get the validity of (18) on (Tk, oo). 

Step ( b ) . We use the result proved in (a) and show that (6) holds. Consider the 
functions v = fa qds = f(t) and p(v) = ft(f~l(v))y for which f'(t) = q(t) and 
p(v) is n-times monotonic function of t and v, respectively. By the rule for the 
composition of monotonic functions [6, pp. 1241-1242] it holds that p(f(t)) = p'(t) 
is the n-time monotonic function of t. 

We show next that for k = 1 , . . . , n — 3 

(20) lim |p<*>|t*+€<oo, 
t—*oo . 

(21) lim |p(*>|**+c+* = oo for every £ > 0. 
t—+oo 

To this end, recall that the function p satisfies the Appell equation 

(22) p'"+4<2p' + 2g'p = 0. 

Since p '" > 0 for sufficiently large t, we get —q'p > 2qp' and in view of (5) (fc = 1) 
and the fact that p, q —* const, we have the validity of (20) for k = 1. Supposing 
the validity of (20) for k let us prove (20) for k + 1 . By differentiating (22) k-times, 
k < n — 2, we have 

pO+З) =-4 E (*V ťv*+1_i) - - E (*V + l v*_>) = 
ť=o ^ * ' j=o ^ l ' 

= - 4çp<*+1> - 4 £ ( f c V y * + 1 ~ ° - 29<*+1)p-
ťasl ^ ' 

- 2 g(-)^ 0 + 1 ) - ( t - ) -
It follows from the induction assumption and from (5) that 

k *-i 

£fl<V*+i-0 = 0(t~<*+1+2€>) = 5^g°#+1V*"i)-
t = l ja-0 

thufv 

(23) p<*+3> = ~4<2p<*+1) - 2<?<*+1)p + 0(t~<*+1+2€>). 
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Since g<fc+1>p = o(*-(*+i+0\ simn(t+3) (k+n , 
valid for * + l. 8gnp(*+» for sufficiently large t, (20) is 

Finally, if £ < «Un{2.e}, then multiplying (23) by tk+1+'+<, we get 

4 Bm *|p<-+->|t-+1+«+< = 2 Mm p|9<*+1>|<*+1+«+« -- «,, 

because 
Um sup|p<*+3>|<*+1+'+« < Hm SUp|p(*+3>|<*+3+« < oo. 

t—*oo i~*oo 

The proof is complete. 
Step (c). In applying Lemmas 2 and 3 to obtain the last conclusion, we set / = p 
(p(t) > 0), g = pa

y a > 0 real number. Then 

sgn(pP)*(pa) = sgn(pa)<*> = sgnp<*> = (~1)*+1 on fik < t < oo, 

and the sequence {/J/t}n is nondecreasing such that p,k = fik+i only if pk = 0. Let 
lk = l(k) be the smallest integer such that /*-th zero t^k) > fAk. Applying Theorem 
B on (/**, oo) we get sgnA*Mt = (-1)*+1 for k = 1, . . . ,n - 3, i = lkl lk + 1 , . . . and 
sgnM, = sgnp' = 1 for i = 0,1, The monotonicity property of {**}n~3 follows 
from that one of {/**}• 

If A = a = 0 then Mi = A*,. The proof is complete. • 
PROOF of Corollary 1: Let q(t) = 1 + £/t7, £ > 0 , 7 > 1, 7 ^ 2 (otherwise see 
Theorem 11.2 of [2]). By a routine computation we get from Theorem A, i = 1,2, 
3g'2 < qq" for P > P(2^ - l)/(j + 1) and I0q"q'q - 15g'3 - q,nq2 > 0 which is 
satisfied if 10gV - q"'q > 0. This inequality holds for f* > ^(97 - 2)/(7 + 2), hence 
the first one holds for the same *. Since £j=l < ^f^, we have the conclusion. • 

5. CONCLUDING REMARKS 

(i) We comment here our attempts to finish the proof of (2) on the whole interval 
(0,oo). 

The first one*> consists in investigating Ancyk as a function of order v for each 
fixed ifc, n = 1,2,... , as was done for \v\ > \ in [4]. As it has been emphasized 
in [4, p. 95], some "balancing" in differential expression for [f(g(t))]^ - similar 
to (14) - may still leave that expression of an appropriate sign without every term 
individually being of that sign. A similar idea was used de facto in Lemmas 2 and 
3 for sufficiently large t and leads to the ultimate monotonicity in the general case. 
This is the reason why we were not successful to resolve the whole interval (0,00) 
in the case of Bessel functions even if knowing here explicitly the function p(t) and 
the fact that p' is completely monotonic on (0,00). 

The second approach to the resolving (2) is based on the fact that every com
pletely monotonic function and sequence can be expressed in the form of Laplace-
Stieltjes integral (see e.g. [2, 3, 11]). Taking into account the properties of {nk}n 

*)proposed to the author by Professor L. Lorch under personal communication. 
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in Theorem and the result of [2]**) this may turn out to be useful in proving (19) 

on the whole (0, oo). 

(ii) We call attention to some further application of the method and results used 

in Section 3. In [5], in addition to the conjecture (2), conjectures concerning pos

itive zeros of Legendre polynomials Pn(cos0), Hermite and Laguerre polynomials 

are given by making numerical checks. In the same manner, by Theorem B and 

Lemma 2, similar results may be established for these conjectures - that all differ

ences of the zeros are non-negative. 

Acknowledgement. The author wishes to thank Professors L. Lorch and M. E. 

Muldoon for their helpful comments. 
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