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A posteriori error estimate of approximate solutions to a 
mildly nonlinear elliptic boundary value problem 

JURAJ WEISZ 

A bstraci. The paper deals with a computable a posteriori error estimate of the approximate 
solution to a mildly nonlinear elliptic boundary value problem with Dirichlet boundary 
condition. The convergence of the presented error estimate to the true error is proved. 
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Classification: 65G99, 65N15 

INTRODUCTION 

This paper deals with an a posteriori error estimate of the error of the approximate 
solution to a mildly nonlinear elliptic boundary value problem with homogeneous 
Dirichlet boundary condition 

—Aii + g(u) = / in 0 , 

(1) 

u\asi = 0 • 

The main idea consists in the construction of convergent lower estimates for the 
potential of problem (1). A posteriori error estimates for linear problems (cases 
g = 0 resp. g = Aw, A > 0) have been studied in [HK], [HH], [K] resp. [A], [AB], 
[V]. A generalization of our approach for problems more general then (1) is sketched 
in Remark 4. 

In the sequel we shall adopt the following notations: O C R2 denotes a simply 
connected, bounded domain with polygonal boundary 5fi, V denotes the Sobolev 
space PVo'^Q) endowed with the inner product 

<*> «-»- X ££.£-• 
and the norm ||w|| = ((u^u))1/2. If B is a Banach space B' denotes its dual and 
< .,. >B denotes the duality pairing between B' and B. If B : B —* R is a 
functional then B* : B' —* R denotes its conjugate functional 

(3) B*(V) = sup{< b',b>B~B(b)}. 
] b€B 

If B and C are Banach spaces, L(B, C) denotes the space of all linear bounded 
operators from B to C, and if A G L(B>C) then A' € L(C',B') denotes its 
transpose defined by < A'c',6 > # = < c',Ab >c for 6 G B,c' € C. 
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We suppose that g : R —* R is a surjective increasing continuous function sat
isfying <7(0) = 0 and that for some c > 0 , / ? > 0 , d > 0 the following inequality 
holds 

(4) \g(t)\ < c + dl*!* t€R. 

Further let / € V\ f = /o 4- f £ + § £ , h € -L2(0), i = 0,1,2. (§£ are distributive 
derivatives of /», t -= 1,2.) 

Under conditions stated above we can consider (using Sobolev's imbedding the
orem) the weak formulation of (1): Find u € V, such that 

(5) / gradu.gradvckr + / g(u)vdx = < / , v > v £V 
Ju Jn 

and define its potential T : V —• R 

(6) r(v)=\\\vf-<f,v>v+j(v) 

with convex continuous G-differentiable functional j : V —* R 

(7) j(v) = / f X g(t)dtdx. 
JnJo 

It is well known (e.g.[KF]) that unique solution u to problem (5) exists and that 
problem (5) is equivalent to problem Find u € V, such, that 

(8) T(u)=MT(v). 
vSV 

Functional T can be minimized e.g.by the Ritz method. If some lower estimate d 
for T(u) is known, then \\u — v\\ can be estimated for arbitrary v € V using the 
inequality 

?(v) -d> F(v) -T(u) = 

\\\vf~ <f,v>v +j(v) - \\\uf+ <f,u>v -j(u) > 

\\\vf+ <f,u-v>v -\\\uf + j g(u)(v - u)dx = 

\M2-\M2+ ((*,«-v))=\\\v~ «f, 

which follows from (5) and from properties of j . It is clear that if u„, n = 1,2,... 
is a minimizing sequence for T and if we can construct a sequence dn% n = 1,2,... 
of real numbers, which satisfies dn < .F(u), n = 1,2,... dn —• T(u) then 

\\\un-uf<F(un)-dn-+0. 

In what follows, such dns will be constructed. 
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DUAL PROBLEM FOR (5) 

Using duality theory [ET, Chapter III] we shall construct functional C which 
satisfies 

(9) sup£ = inf^. 

Values of this functional can be used as lower estimates of F(u). Setting F : V —> R, 
F(v) = f||t;||2- < f,v >,H = L2(il) with usual inner product, G : H -> R, 

G(p) = JQ JQ g(t)dtdx,A G L(VyH), Av = v, functional T can be written in the 
form 

T(v) = F(v) + G(Av). 

From [ET, Chapter III] it follows that for functional C:H* -+ R 

£(p') = - F * ( A V ) - G * ( - p ' ) 

holds 
sup C(p') < miT(v). 

p'£W v^v 

Later we shall see that (9) holds. C will be called dual functional to T and problem 

C(q') = sup £(p') 
Pf€H' 

will be called dual problem to (6). 
In what follows we shall identify Hilbert space H with its dual using Riesz rep

resentation. Thus C will be considered as C : H —> R 

£(p) = -F*(A'p)-G*(-p). 

Let us compute F*,G*. If we denote Z : V —* V the (Green's) operator defined by 

(10) ((Zv\v))=<v',v>v vev, 

then we can compute 

F > ' ) = 8UP{< v',v >v -F(v)} = sup -\\\v - Z(f + v')f + \\\Z(f + v')||2 

v£V v£V * * 

(11) F'(v,)=\\\Z(f + v')f 

FVom [GGZ, Theorem 111.4.8} follows that conjugate function to r : H —• R,r(s) = 
/ 0 g(t)dt is r*(s) = J0* g-"x(t)dt and from [ET, Theorem IX.2.1]we have G* : L2 -> R 

p(*) ŕ ŕPk*) 
G*(p) = / / g~x(t)dtdx 

JӣJo 
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Thus £ can be written in the form C : H -* R 

C(P) = -\\\Z(f + A'p)f-G*(-p). 

Since we are interested only in sup£ we shall use from now a slightly modified 
definition of £ 

C(p) = -\\\Z(f-A'pf-G*(p). 

Lemma 1. For v £ V it holds 

(13) G(v) + G*(g(v))~ f vg(v)dx. 
Jn 

PROOF : BVom [GGZ, Theorem III.4.8] it follows 

r(v(x)) + r*(g(v(x))) = v(x)g(v(x)). 

The assertion of Lemma 1 follows by integration of this equality in 0 . • 

Functional £ attains its supremum at point 

(14) q = g(u) 

because using (5),(10) and Lemma 1 we obtain 

C(9(u)) = -\\\Z(f - A'g(u)f - G'(g(u)) = -\\\uf - G*(g(u)) = 

-\\\uf + G(u) - J ug(u)dx = -\\\uf + G(u)- <f,u>v +\\uf = T(u). 

Thus (9) holds and the maximization of £ can be considered as searching for g(u). 
Taking into account (14) we can maximize £ on the set 

{p I P = d(v) f°r some v € V}. 

Hence instead of maximizing £ over H it suffices to solve the problem: 
Find heV such that 

(15) Q(h) = sup Q(v) 
v€V 

forQ:V-+R 

Q(v) = -\\\Z(f - A'g(v))f - G*(g(v)). 

Assertion 1. Let un,n = 1,2, . . . be a minimizing sequence for T. Then unin = 
1 ,2 , . . . w a maximizing sequence for Q. 

PROOF : un -+ u in V together with (4) implies g(un) —* g(u) in L2(0). Relation 
(13) implies G*(g(un)) - • G*(g(u)). The rest follows from the continuity of Z. • 

Remark 1. The sequence vn
 = : Z(f — Afg(un)) is a minimizing sequence for T 

too. 
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REALIZATION 

In the definition of the dual problem (12) resp. (15), there appears term of type 
— |||.Zi/||, where Z is defined by (10). These values cannot be computed explicitly 
(with the exception of very special cases). Problem (15) can be transformed in a 
saddle point problem 

sup inf S(v,w) 
V£Vtv€V 

for S : V x V -> R 

S(v,w) = i | H 2 - < / - A'(g(v)),w >v -<?(g(v)). 

The values of S can be computed explicitly. However this saddle point formulation 
cannot be used for our purposes, because usual saddle point methods (e.g. Uzawa 
type methods) do not produce lower estimates for inf T in general. In what follows, 
the values — | | |Zi/ | |2 will be approximated from below using the dual formulation 
of problem (1) for g = 0. 

Let H = (L2(Q))2 resp. U = {v € Wlt2(il) | jQ vdx = 0} are endowed with inner 
products (u, v) = JQ u.vdx resp. (2) and corresponding norms denoted by [.] resp. 
||.|| . H'will be again identified with H. Let K € L(V,H),L € 1(17, H), 

( dv dv dv dv 

Prom [H], [HK] follows that Iml = Kerif. This and [HH], [K], [HK] implies 

-\\\Zv'f = sup - i [ z f = sup -\{zf 
-- K'»=w' -̂  K'(»-w)=0 -* 

(16) -i | | .?v' | |2 = sup - l [w + Lv]2 

I V€U * 

where w € H satisfies K'w = v'. Let Z\ G L(U', U) be defined by 

((Zi v', t;)) = - < i>', v >u v£U 

Then (16) can be rewritten as 

(17) -5II.-VII- = i(sup - | |« - ^L'wH2 + II^I'wH2 - [w]2) 
I I V£U 

(18) -\\\Zv'\\* ^ImL'wf -{w}*) 

This value can be approximated from below by maximizing the quadratic functional 
V : U -> R 

2>(V) = ~|(|H|2 + 2tw,Lt;] + [w]2). 
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Let Uk, fc = 1,2. . . be a sequence of (finite dimensional) subspaces of U and 
P*, k = 1,2. . . be the sequence of corresponding orthogonal projectors P* : U —> 
(7fc, satisfying 

(19) lim ||v - Pkv\\ = 0 v € V. 

Then the Ritz approximation of (18) is (using (17)) 

| ( - | | P t Z , L ' w - ZxL'wH2 + | |Z,L'w||2 - [w]2). 

Let us return to problem (15). Let R : H —* H be the (continuous) operator 

Rl = (- [ * fo(t,x2)dt+ I XJ(t,Xi)dt-h, - /-) , 
JO Jo 

where /o = /o in 0 , /o = 0 in R2 — Q. ( / is defined analogously.) It holds K'Rl = 
/ - A'L From (19) it follows that for .5 : V -+ R 

s(v) = -\\\Z(f - A'g(v)\\2 - CT(g(v)) = ^L'Rg(v)\\2 - \[Rg(v))2 - <T(g(t>)) 

for its Ritz approximation 

'*(«) = - | | | f t Z , L ' i ^ ( t ; ) - Z,L'lfc(t;)||a + .,(») 

and for arbitrary minimizing sequence wn, n = 1,2... of T it holds 

lim lim 5jt(un) = s(u). 
n—>ooJfc-->oo 

Moreover it holds 

Theorem 1. Let un be a minimizing sequence for T, and Pk,Z\,L,R,s,$k are as 
defined above. Then 

lim sn(un) = s(u) = F(u). 
n—*oo 

PROOF : un - • u in V implies g(un) -> g(u),Rg(un) -> Bg(w),G*(flf(un)) -> 
G*(^(u)) ,Zi .L'^(t in) - • ZiI,Hflf(u). .From (19) an from property ||P*|| = l,Jb = 
1,2,. . . it follows 

WPnZtL'RgiUn) - Z i l ' ^ t i , ) ! ! < ^ ^ ' ( i ^ K ) - J&(t*))|| + 

| |PBZ,I/J&(«|) - Zi I # J^( t l ) | | + l l Z i X ' ^ u ) - Z1Z//k(tl l l)|| - . 0 . . 

Remark 2. If any tool for minimization of T is on hand then the Ritz solver of dual 
problem for (linear) Poisson equation is all what is needed for obtaining convergent 
a posteriori estimates of ||un — u\\. 
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Remark 3 . In practice, the convergence can be improved via solving linear prob
lems on finer grids (that is by computing s*(tin) for k > n). 

The use of the Ritz method for maximizing V (i.e for approximation of s(un) from 
below ) is not necessary. In general, arbitrary maximizing sequence of V can be used. 
If r*(un) are convergent lower approximations of s(un) then limn-*oolimfc-*oo **lk(un) 
= s(u). However rn(un) —> s(u) does not hold in general. Sufficient for it is the 
uniformity (in n) of the convergence rk(un) —* s(un). This (rather uncomfortable) 
condition can be avoided by the following way. 

Theorem 2. Let ak(un), k = 1,2.. . be a sequence of real numbers with the prop
erty 

lim aib(un)= inf Vn(v),ak(un) >infVnik = 1,2... 
k—+oo v£V 

for the quadratic functional Vn : V —• R 

Vn = \\\v\\2- < f - A'sK), v >v -<?•(<?(«„)) 

for n = 1,2, 
Then the sequence of real numbers dn,n = 1,2,... generated by the following 

procedure tends to s(u) from below. 
Step I e = 1, n = 1 
Step I I k = 1 
S tep III if ak(un) — r*(un) > c then k = k + 1 goto Step III 
ifak(un) - rk(un) < c then dn = rk(un),n = n + 1,€ = | c goto Step II. 

PROOF : For n fixed, Step III will be performed only finite number times, because 
ak(un) — rk(un) —* 0. The algorithm guarantees, that for better approximations 
s(un)o£ s(u), better approximations r*(un) of s(un) will be computed. • 

Remark 4 . Results analogous to those obtained in this paper can be obtained for 
the equation 

- 1 £<•«£>+.<«>-/. 
t,j=l J 

where at)J = ajti,i,j = 1,2, are bounded measurable functions, the matrix (aij) is 
uniformly elliptic in 12. 
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