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On rings with zero divisors. Strong V-groups 

THOMAS VOUGIOUKLIS 

Abstract. The strong V-groups are groups with elements zero divisors of a ring. Using 
the above groups on matrices a more refinement inequality than a known one is proved. 
Moreover, a construction of hyperrings is given. 

Keywords: Strong V-group, hyperring 

Classification: 16A42, 16A78, 20N99 

1. A large class of rings with zero divisors contains strong V-groups which are 
defined in [5] as follows: 

Definition. An additive subgroup M ^ {0} of a ring R, with zero divisors, is 
called a strong V-group (sV-group) if: 

rm = mr = 0, Vm 6 M iff r € M. 

One can see that in a ring R with the property (Z) (see [2]), the set of all zero 
divisors is an .s V-group. In this case R is a completely primary ring [1]. Of course, 
we have rings containing an sV-group which are not rings with the property (Z). 

In this paper, we firstly find all sV-groups in Zm = Z/mZ. Secondly, we introduce 
an .s V-group in the ring of square matrices, a special case of which can be used to 
obtain a more refinement inequality than the one appeared in [3]. Finally, we use 
the V-groups to construct a class of hyperrings. 

2. In this paragraph, we fix a non-zero natural number m, we consider the set Zm 

and denote the mod m class of the integer n by n = n + mZ. 

Theorem 1. The ring Zm has an sV-group iff m = m\,mt € Z. In this case there 
exists only one sV-group which is the ideal generated by the element mt ofZm. 

PROOF : We write the integer m in the form 

m = pj lp%*...p*B, where pi < P2 < ••• < Pn are primes and a,- > 0. 

According to the Chinese remainder theorem the ring Zm is isomorphic to the direct 
product of Zma and Zmo, where m\ is the product of those p"* 's, where a, is an 
even number and mo = Pvl1 • • • Pvv/» where aVj = 2k j + 1, 7 = 1 , . . . , s are all odd 
exponents. Thus 

We shall prove that the component Zmo does not appear iff Zm has an $V-group. 
An element a mod m, in order to be an element of some .sV-group, must contain 
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the factor n = m epjj+ 1 . . . p j j + 1 because we must have a2 = 0 mod m. There
fore, from the definition, any aV-group must contain the ideal J generated by the 
element n. Therefore, any sV-group must be equal to the ideal J. Now we ob
serve that if m = m2 then J is an sV-group. If one of the factors pv/ appears, 
then the element x = m e pj j . . .p*; has the property xJ = 0 mod m, but x2 ^ 
0 mod m, thus J is not an sV-group. Therefore Zm has an .sV-group, unique, iff 
J = [fhe]. m 

3. Let us denote by Fn the ring o f n x n matrices over the finite field F, with 
characteristic ^ 2, with # elements, i.e. \F\ = g. Let S*y be the set of xy-symmetric 
ft x n matrices [5] _4 = (ai>), where 

(I) a i i = a n + 1 ^ i i 1 r it • • i 
> for all t , ; = l , . . . , n . 

(II) a t i = - a i , w + w } 

The set 5*y is an sV-group in Fn. One can notice that 

\S*y\ = qn / 4 when n is even number, and 

|S*»| = g<n2~1>/4 when n is odd number. 

Theorem 2. The following relation is valid for n > 2; 

|F„| < *(i?»)K»|4/(" ,-1) < 5(F„)1 + 1 / ( n ( n-1 ) ) , 

to&ere <s(Pn) w t&e wwrnfter of singular matrices in Fn. 

PROOF : For n even or odd number, we have respectively 

|5x»|4n/(n+l) = gn8 /(n+l) < g n>- l Qr | ^ | 4 n / ( n + l ) = qn*-n < ^n 2 - l 

Therefore for every n we have 

|5*y|4n/(n+l) < g*»2~l 

But according to the lemma in [3], we have q^"1 < s(Fn) so |3j*|«W(»+-) < s(pn) 
and 

3 (F„) |< , ' | 4 / ( n ' - 1 ) = S ( f T , ) ( K » | 4 n / ( n + 1 ) ) 1 / ( n ( n - 1 ) ) < s (F„) 1 + 1 / ( n ( n - 1 ) ) . 

On the other hand, using the same lemma, we have for n even or odd respectively 

s(Fn)\Sx
n'\4^7-^ > , » ' - i .9(«V4)(*/(»'-D) > q»' = |F„| 

• (F, , ) |5 i - | 4 / (" , - 1 ) > j - 1 - ! . í«» ,-i>/«И«/(- ł- i)) = «"* = |F„|. 

4. The P-hypergroups, introduced in [6] and generalized in [7], also cf. [8], is 
a large class of hypergroups of Marty defined on semigroups with a given subset P. 
One can also define P-hyperoperations whenever there are structures with more 
than one associative operation, see [4]. In the following, we give such a construction 
on rings with sV-groups. 
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Theorem 3. Let M be an sV-group of the ring R and P C M. We consider the 
following two P-hyperoperations: 

M* : xM*y = x + M + y addition, 

P* : xP*y = xPy multiplication. 

Then (R, M*,P*) is a hyperring. 

PROOF : Both hyperoperations M*, P* are associative. Moreover, for every x, y, z 
of R we have, since P C M and M is an sV-group, 

xP*(yM*z) = xP(y + M + z) C xPy + xPM + xPz = xPy + xPz. 

On the other hand, we have 

(xP*y)M*(xP*z) = xPy + M + zP*. 

Therefore, since 0 € M, the hyperoperation P* is distributive, not strong, with 
respect to M. So (#, M*,P*) is a hyperring. • 

Remark . If M is an ideal of R, then for every PC-R the hyperstructure {JR, M*, P*) 
is a hyperring. This remark can be applied to Z m , m = ml, see Theorem 1, but not 
in the general case of xy-symmetric matrices, since in this case s*y is not an ideal. 
We notice that here M is not necessarily an .sF-group but an ideal of R. For an 
analogous construction see also [4]. 
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