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ISOMORPHIC ALGEBRAIC PRE-CLOSURES 
AND EQUIVALENT SET-SYSTEMS 

JAN CHVALINA, Brno 

(Received December 28, 1976) 

Theorem 1.1 in [3] chap. II says that each closure system ^ o n a given set S 
defines a closure operation on this set and conversely each closure operation on S 
defines a closure system on this set, thus there is given a one-to-one correspondence 
between all closure operations on S and all closure systems on this set. In the 
mentioned theorem this correspondence is expressed explicitely. From here it 
follows that the system of all closure operations on a given set S can be mapped 
injectively into the system exp exp S such that two closures are isomorphic if and 
only if the corresponding set-systems are equivalent (in the sense of paper [6]) i.e. 
S?t, S?2

 e exP exP S are equivalent if there exists a permutation/of the set S such 
that ^ 2 -= {/(X) : XeSft} orS^1 = {/(X) : Xe^2}. This equivalence is denoted 
by ~ . A natural question is whether the above described monorelational embedding 
is extendable onto a certain system of more general structures so called pre-closure 
operations. In paper [5] this problem is solved for topological closures and Cech's 
topologies. The aim of this paper is to show that there exists a system (closed with 
respect to isomorphisms) of the cardinality 2cafdS (for an infinite carrier set S) of 
algebraic pre-closure operations to which it is possible to extend the just mentioned 
embedding into (exp exp 5, ~ ) . Terms and notations concerning algebraic closure 
operations are taken from papers [2], [3]. 

Let S be a set, C be a map of exp S into itself and n be a positive integer. By 
Cn will be denoted the n-fold composition of C with itself. A mapping C: exp S -> 
-• exp S is a pre-closure if for any P c .Sand Q c S these conditions are satisfied: 

P c C(P) and P c Q implies C(P) c C(Q). 

A pre-closure C which satisfies C2(P) c C(P) for all P contained in S is a closure. 
A pre-closure (or closure) which satisfies the compactness condition, 

for any P c S and for any x e C(P) there is a finite set Q c P such that x e C(Q\ 
will be called algebraic. This condition is equivalent to the condition: C(P) = 
*= U {C(Q) *Q<=P, card Q < K0} for each P c S. 

By a pre-closure (closure) space we mean an ordered pair (S, C), where C is a pre-
closure (closure) on the set S. A set P is said to be closed in the space (S, C) or 
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C-closed if C(P) = P. The system of all closures on the set S will be denoted by 
^(S). Let pre-closure spaces (S t , Ct), (S2, C2) and a mapping f:S1->S2 be 
given. The mapping / i s said to be an isomorphism of the space (S l 5 Cx) onto the 
space (S2, C2) if / is bijective and f(Ct(P)) = C2(f(P)) for each set P c S t . 
If Sx -=- S2 == S, pre-closure spaces (S, Cx)9 (S, C2) are isomorphic, we say that 
pre-closures Ct, C2 are isomorphic and we write Cx s C2. A system 58f of pre-
closures on a set S is said to be closed with respect to closure isomorphisms if 
C e f , Ct € ^(S), C ^ Ct implies that Q e # . A pre closure C will be called 
n-iterable if n is the least positive integer such that Cn is a closure. 

Let T be a non-empty subset of S. A decomposition of the set T determines 
a decomposition in the set S (in the sense of [1] chap. I). This decomposition will 
be denoted by Tin accordance with [1]. A kernel of a set P c S (denoted by [P]) 
in the decomposition T (where T c S, T ^ id) is a union of all the blocks of T 
which are subsets of the set P. 

In what follows we suppose that S is an infinite set. Consider a system of triads 
of the form {T9 T9 A}9 where Fis a non-void subset of S satisfying conditions card 
T = 2, card (S - T) = X0, T is a decomposition of T such that XeT implies 
card X < K0 and A is a finite subset of S, lineary ordered, disjoint with T. We 
assign to every such a triad a mapping C: exp S -• exp S which is defined as follows: 

Let A = {ax, a2, ..., an} and the ordering of A be given by the n-tuple of indices 
{1, 2 , . . . , n}. For X c S such that Xn ^ c {aj and [X] = 0 (i.e. X does not 
contain as a subset any element of T)9 we put C(X) = X. If X n A = {ah,..., afJ, 
/fc :g «, then C(X) = Xu {afl + 1 , . . . , aik + 1} u X0, where we put an+1 = an and 
X0 = {a0} if [X] T* 0 and X0 = 0 otherwise. A triad {T9 T9 A} corresponding to 
the mapping C will be denoted by {TC9 TC9AC} or {TC,TC9 (AC9 <)} if ti is 
necessary to express the ordering of the set Ac. Finally, denote by <rfk(S) the system 
of mappings C of exp S into itself such that Ac = {a0, ax,..., ak} and put s/(S) = 

Lemma 1. ^ (S) is a system of algebraic pre-closures on S, closed with respect to 
closure-isomorphisms, such that jrf(S) n ^(S) = 0 and to each positive integer k 
there exists in sf(S) a k-iterable pre-closure. 

Proof. Let n be an arbitrary positive integer, Css/n(S). From the above 
construction it follows immediately that C is a pre-closure on S. Let P c S be 
a non-void set. If P n Ac c {an} and [P] = 0 (in the decomposition Tc) then the 
same holds for each finite Q c P, hence C(P) = U ( c ( 0 ) • 0 c ^ card Q < K0}. 
Let P n A = {ah9..., aik}9 ik g # and [P]c =5-= 0. Then by the construction of 
(S, C) we have C(P) = P u {a0, ah + l9..., a^+J. Let jce C(P) be an arbitrary 
point. If x — a09 then x e C(Y)9 where F e Tc is a finite subset of P. If x = ay, 
jefl! 4- 1,...?4 + 1}» t^1 1 ^eC{dj-i}, where aj^.1eP. If moreover xeP , 
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then clearly x e C{x}. In all the possible cases considered with respect to the set P 
we get in the similar way that x e C(P) is followed by x e C(Q) for a suitable finite 
subset Q a P. Thus (5, C) is an algebraic pre-c!osure space. Since for arbitrary 
XeTc there holds C(X) = Xu {a0} and C2(X) = Xu {a09 at} where ax # a09 

a1 $ X, the pre-closure C is not a closure and we get s/(S) n ^(S) = 0. Let D be 
a pre-closure isomorphic to C, / : (S, V) -> (S9 D) the corresponding closure-iso­
morphism. Put r =/(F c ) , T = {/(X) : Xe Tc}9 b( =/(a f) , / = 0, 1, ..., n and 
B = {b, : / = 0, 1, ..., n}. Since/is a permutation of the set 5, we have that there 
exists a closure, say Cl9 which corresponds to the triad {T, T9 B} in the above 
sense. Let P c S be an arbitrary set. If P n B c_ {bn} and P does not contain any 
element of Fi.e. [Pf = 0, then Q(P) =P. T h e n / ' V ) n A c {att} and [f""1^)]^ 
= 0 thus C(f-'(P)) = /" 1 (P ) . Hence D(P) =D(f(r\P))) =/(C ( / - J (P ) ) ) = 
= P = C!(P). Now, let P n i? = {b{1, ..., b,.J be valid with 4 =" n and [P] = 

r 

= U Xj9 where X,, X2,..., Xr are elements of T. Then/"1 (P) n A = {*,,,..., a<J, 

w h e r e / ^ ) = bil9 ...9f(aik) = bik and/_1(Xy), j = 1, 2 , . . . , rare all the elements 
of Tc contained i n / " 1 ^ ) - We have D(P) = D(f(f'1(P))) = f(C(f"'(P))) = 
= f(/"1(/>)u{a0,al.1 + 1 , . . . , a , k + 1}) = P u { b 0 , b f l + 1 , . . . , b i k + 1} =C , (P) . We 
get in this way that for each subset P of S there holds D(P) = Ci(P), thus D = Ct 

and we have that s#(S) is closed with respect to closure isomorphisms. Let k be 
a positive integer. Consider arbitrary Ces#k„1 (S). ThenC*+1(7") = Fu {a09al9..., 
ak„t} = C*+1(F)andCw(F) = Fu {a0, al9 ..., am_J c F u {a0, a,, ..., aw} = 
= Cm + 1(^) for m < k. Since C*(P) = C* + 1(P) for each P c 5, i.e. C* is a closure 
and Cw is not if m < k, we have that C is a k-iterable pre-closure, q.e.d. 

Now, put 3T(S) = %(S) u s#(S) and define a mapping F of /^"(S) into exp exp S 
by F(C) = {X: X c 5, C(X) = J } u U { I : I c . 5 , C*(X) * 5, C*+1 (X) = S} 

fc_i 

for every Ce,r(S). 

Lemma 2. 2>t C1? C2 e ^ (5 ) , Ct ^ C2. Then it holds F(Cx) ^ F(C2). 

Proof. Let {Tl9 Tl9 (Al9 <t)}9 {T29 Tl9 (Al9 <2) be triads corresponding to 
C!, C2 respectively, where Cx, C2 are arbitrary different pre-closures from $t(S)» 
Consider all possible cases: 

(1) Tt = T2, Tx = T29 (Al9 <t) # (A29 <2), 
(2) Tx =T29 Tx # T29 

(3) T1 * T2. 

Let the case (1) occur. Suppose A1 ^ A2 and put P = I \ u ^ t = T2 u Al^ 
Q = F! u A! u A[2 = F2 u A! u A2. Since Tt n Ax = 7^ n A2 = 0, it holds 
P T* Q. Further C^P) = P thus PeF(Ct) and C2(P) = 0, C1(P) = C2(g) = 
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2> « Q # S for card (S - T{) \> K0, i = 1, 2. Thus P$F(C2). Let ^ = A_. 
<i * <2* ? u t {#o»ai> •••»*»} = ^i» {&o>*i> •••-*«} = Al2. There exists a pair 
of indices ij such that at~bj9i # j. Let / e {0, 1, 2, ...,/*} be the greatest non-
negative integer with the property at * 6 p where y < /. Put P = {ai9 ai+l9...9 an}. 
There is Ct(P) = P but C2(P) # P and C2(P) # 5 for every fc. Hence Pe F(CX)9 

P$F(C2) and we have F(Ct) # F(C2) in the case (1). 
Let the case (2) occur. There exists a block Xe Tt which does not belong to T2. 

If [X]2 = 0 , then the set X is C2-closed thus XeF(C2) whereas X$F(CX). If 
[X]2 # 0, there exists a block Fe T2 contained as a subset in X. Then [Y]t = 0 
and thus Y is a enclosed set i.e. YeF(Cx) but Y£F(C2), thus F(CX) ^ F(C2) 
again. 

Suppose now that (3) holds, i.e. Txj*T2. Admit first that (Al9 <x) = 
*= (^2» <i)» Without loss of generality it can be supposed Tx — T2 ^ 0. Let 
xe Tx - Tl9 XE Tt be such a block that J C G ! Let [X]2 = 0. Then X<£ F(Cx), 
Xe F(C2) since C2(X) = X. If [X]2 # 0, then there exists a set Ye T2 with Y c X. 
Then [Y]x = 0 thus C^Y) = Yand we have Ye F(CX)9 Y$ F(C2). Now, consider 
the case (Ai9 <x) # (A29 <2). If Ax = Af2, <x # < 2 , then we get in the same 
way as in the case (1) that there exists a s e t P c S with P e F(CX)9 P $ F(C2). Let 
Ax # A2, Ax = {a09ai9 . . . ,a„}, _42 = {b09 bl9..., * m } . If there exists ate 
€ At — A2 with / < n then C2{a,} = {aj for card X = 2 whenever XG T2 and 
thus {aj e F(C2) but {aj £ F(Cj). Let at e Ax — A2 implies i = n. If there exists 
bj eA2 - Ax with j < m, then similarly as above {bj} e F(CJ but {£,} £ F(C2). 
If bje A2 ~ ^ implies j = m, and a{e Ax — ^ 2 is followed by i = n, then we 
have {a„-l9 an} e F(Cj) and {#„-!, an} $ F(C2). Now, consider the case A A — A2 = 
= {aw}. Then there exist positive integers i9j with i <n9 j < n9 i ^ j such that 
bm-x = at, fem = a j and thus {6W-1? ftw} is a C2-closed set, i.e. {bm„l9 bm} e F(C2) 
but {6W-!, bm} $F(Ct). Therefore F(Ct) # F(C2) in the case (3) and we have 
that the mapping F restricted onto the system sf(S) is injective. 

Lemma 3. Let Ci9C2e F(S). Then Ct £ C2 if and only if F(Ct) ~ F(C2). 

Proof. If Ci9 C2 are closure operations i.e. Ci9C2e <£(S)9 then F(CX)9 F(C2) 
are systems of all Ct-closed, C2-closed sets respectively, thus Cx £ C2 if and only 
if F(CX) ~ F(C2). This is the well-known assertion. Suppose that Ct e jtf(S) — 
- #(S), C2esf(S) - #(S) are isomorphic pre-closures. Denote by { F ^ T j , 
(^l1} <i)}, {Tl9T29(Al9 <2)} triads corresponding to Ci9C2 respectively. It 
was shown in the proof of lemma 1 that if Cx £ C2, then there exists a permutation 
/ o f the set S such that T2 = / (F 1 ) , -T2 - {/(-*) - Xe Tx} and (^2, <2) is order-
isomorphic to (Ai9 <t) with the isomorphism / . Let Ax = {a0,ai9 ...9 an}> 
A2 = {b0, * x , . . . , ftn}. Let P be a C2-closed set and put Q = / " * (P). The following 
three cases are possible: 

(1) P n _42 c {&„} and [P n F2]2 = 0, 
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(2) bt<=P r\A29 i < n implies bi+teP n A2 and [P n r 2 ] 2 « 0, 
(3) [P n T2]2 # 0 and A2 a P. 

Considering the properties of the mapping/we get that Q c {aH} and [Q n Tt]x = 
= 0 in the case (1). Similarly, at e Q n At9 i < n implies a l+1 e Q n At and 
[Q r\ Tt]t = 0 if the case (2) occurs and [Q n Tt]t ¥* ®, At cz Q in the case (3). 
Thus Q =rx(P) is a Crclosed set. Now, let P e F(C2) be such a set that C2(P) # 
# 5, C^+1(P) = 5, where H » - l . Then P = S - {*0, ft1$..., **} hence 

/ "HP ) = S - { a 0 , a 1 , . . . , a J k } and thus f'1(P)eF(Ct). Therefore F(C2) c 
c {/(X): Xe F(Ct)}. If P is a set of the form P =/(£?), where g is a suitable set 
belonging to F(Ct)9 we get, similarly as above, considering all possible cases with 
respect to the set Q that the inclusion F(C2) z> {/(X) : XeF(Ct)} holds. Thus we 
have F(Ct) ~ F(C2). 

Now, suppose F(Ct) ~ F(C2) for Ct9C2e st(S). There exists a permutation/ 
of the set S such that F(C2) = {/(X) : Xe F(Ct)}. Put J ~f(Tt)9 T = {/(X) : Xe 
e f j . Let (Al, <) be a chain such t h a t / : (A^, <j) -» (A[, <) is an order-iso­
morphism of At onto .A. Denote by C a pre-closure on S determined by {T9 T9 

(A, <)}. As it was shown in the proof of lemma 1, the pre-closure Cis isomorphic 
to the pre-closure Ct. Further, it is easy to see that F(C) = {/(X) :XeF(Ct)}> 
thus we have F(C) = {/(X) : Xe F(Ct)} = F(C2) and by lemma 2 it holds 
C = Cl9 hence pre-closures Ct, C2 are isomorphic. Finally, let Ct e s/(S)9 

C2e<g(S)9 i.e. Ct non s C2. We are going to show that F(C t) non ~ P(C2). 
Admit on the contrary that there exists a permutation/of the set S with F(C2) = 
= {/(X) :XeF(Ct)}. Let .A, = {a0, at,..., a„}, Since Cj(S - {a09at}) = 
= 5 - {a j , Cf(5 - {a0, at}) = C,(5 - {aj) = S thus 5 - {a09 at}e F(Ct)9 

we have S - {/(a0), /(a t)} e F(C2). Further C ^ u .Ax) = Tt u ^ l 5 hence the 
set f(Tt) Kjf(At) is C2-closed. Then also f(Tt) u {f(a2)9 ...,/(*„)} == [S -
- {/(tfoX/fai)}] n- ( / ( r j u / ( ^ i ) ) is a C2-closed set. From here Tt u {a2, . . . , 
«„} = / ~ 1 / ( r 1 <j {a2,..., a„}) e F(Ct)9 which contradicts the definition of F(Ct). 
Hence F(Ct) non ~ F(C2). The proof is complete. 

Lemma 4. Let C l5 C2eF(S)9 Ct ± C2. TAen F(Cx) # P(C2). 

Proof. If C l5 C2 e<^(S), then ^ ( C J , P(C2) are systems of all closed sets in 
corresponding closure spaces, thus Ct # C2 implies F(Ct) ^ F(C2). If C l 9 C2 e 
e ^ (S) , Ct * C2, then F(Cx) ^ F(C2) by lemma 2. If Ct e tf(S)9 C2 e <$(S)9 

then with respect to lemma 3 F(Ct) = F(C2) is followed by Ct ^ C2 which is 
a contradiction, thus F(Ct) ^ F(C2). 

LemmaS. It holds: cards/(S) = 2cards,card [^(S)j^ ]-= c a r d S W ^ e ^ ( S ) / ^ 
implies card $* ^ card 5. 

Proof. Let r c 5 be a set of an infinite cardinality tn. The system of all such 
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decompositions of the set T blocks of which have finitely many elements has the 
cardinality m. Denote by & the system of triads {T, T, A} satisfying the above 
conditions, namely N0 = card T, card (S - T) = K0, Xe Timplies 2 = card X < 
< K0, 2 = card A < K0 and A n T = 0. Clearly, card «T = 2cards because there 
is at least 2cards different sets T satisfying the just mentioned conditions. On the 
other hand card 3F = 2cardS. card S . K0 = 2cardS. From the equality card & = 
= card*fi/(S) it follows the first assertion. Consider the decomposition «af(S)/ = . 
Denoting by & a decomposition of #" such that {Tx, Tl,Al}e^ and {T2, T2, 
A2} e & belong to the same block of #" if there exists a permutation/of the set S 
with T2 =f(Tt), T2 = {/(X) : Xe Tt}, A2 ~f(At), we have card j*(.S)/£ = 
= card *F « card S . card S . K0 = cdrd S. Let 3T € s/(S)/^. Denote by # the 

corresponding block of P. Let {T, T, A} e ^ . Consider these two possible cases: 
(1) card (S - T) = card S, (2) K0 = card (S - T) < card S. In case (1) we 
chose an arbitrary element ae T and assign to every element xe S — (T v A) 
a triad {Tx, Tx, Ax}, where Tx ~fx(T), Tx = {fx(X) : Xe T}, Ax = A and fx is 
a permutation of the set S defined by :fx(s) = s for s e S, x ?- S # a and/*(a) = x, 
/-(*) = AT. Evidently card S ^ card ^ . Let case (2) occur. We construct other triads 
from {T, T, A} in the following way. Let X, Ye T, X ^ Y, aeX, beY. Put 
Tx = T, A, = A, Xt = (X - {A}) u {£}, y t = (Y - {6}) u {a} and finally 
Tt = ( r - {X, K}) u {Xl9 Yx}. If C, Cx are corresponding pre-closures, then it 
holds C(X%) = X! ?* Xx u {a0} = C^X^ and C ^ Ct. Since card T = card T = 
= card S, we get again card S = card ^ . Hence card S = card $", q.e.d. 

As in § 4 of [5] we use, for the sake of brevity, the following notions. If P, Q 
are sets and g, a binary relations on P, Q respectively, then the mapping/: P -+ Q 
is called an embedding of the monorelational system (P, Q) into the monorelational 
system (Q, a) if/ is injective and for every pair of elements aeP, b e Q it holds 
aqb if and only if f(a) af(b). 

We summarize the obtained results in the following theorem. Notice that we 
have proved in fact a stronger assertion because the below described system of 
pre-closures was explicitely constructed. 

Theorem. Let S be an infinite set. There exist a system &"(S) of pre-closures on S 
containing #(S), closed with respect to closure-isomorphisms, and a mapping F of 
&~(S) into exp exp S, such that it holds: 

1° Each element of ^(S)—#(S) is an algebraic pre-closure on S and to every 
positive integer n there exists an n-iterable pre-closure contained in &~(S) —- ^(S). 

2° card [P(S) - V(S)] = 2cardS, card [(«T(S) - ^(S))/^] = card S and® e 
e [F(S) - «(5)]/S implies card X = card S. 

3° F : &~(S) -• exp exp S is an embedding of the monorelational system (&~(S), = ) 
into the monorelational system (exp exp S, ~ ) and for every closure Ce(i(S) ** 
holds F(C) = { I c S : C(X) = X}. 

146 



Proof follows from lemmas 1,3,4 and 5. 
The paper [5], mentioned in the introduction, contains the following incorrect­

ness. The system &A(P\ defined in § 3 p. 108 —109 is not a system of A-topologies 
and thus final system 3~(P) does not contain any A-topology. All lemmas and 
especially the main theorem of the paper [5] are valid, however for their proofs it 
is necessary to change the definition of 2TA(P) as follows: 

Denote by s4\(P) a system of all A-topologies on P satisfying the following 
condition. There exists a pair Xx, X2 c P of non-void sets with Xt u X2 # P, 
card (Xt n X2) = 1 such that if X c P then uX = Xu Y, where 

(i) Y = 0 if X n Xt = 0 = X n X2, 

(ii) Y = Xi9/e{l,2} if XnXf * 0 and X n Xj = 0 for fe {1, 2} , j # /, 

(iii) Y = X! u X2 i f Xn Xx * 0 * Xn X2. 

To every A-topology u from the system s/t(P) there is assigned a pair of sets 
Xj, X2 with the above described properties. We shall denote these sets by Lt(u), 
L2(u) respectively. Put $~A(P) = {uesfx(P) : cardL^w) ^ 2, cardL2(w) = 2, 
card (Lx(u) n L2(u)) = 1 and /^(w) u L2(w) ?-P}. It was proved by Vladimir 
Tichy that all assertions concerning STA(P) from paper [5] are true after the above 
change of the definition of the system & A(P). 
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