Archivum Mathematicum

Jan Chvalina

Isomorphic algebraic pre-closures and equivalent set-systems

Archivum Mathematicum, Vol. 13 (1977), No. 3, 141--147

Persistent URL: http://dml.cz/dmlcz/106970

Terms of use:

© Masaryk University, 1977
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

ISOMORPHIC ALGEBRAIC PRE-CLOSURES AND EQUIVALENT SET-SYSTEMS

JAN CHVALINA, Brno

(Received December 28, 1976)

Theorem 1.1 in [3] chap. II says that each closure system \mathscr{S} on a given set S defines a closure operation on this set and conversely each closure operation on S defines a closure system on this set, thus there is given a one-to-one correspondence between all closure operations on S and all closure systems on this set. In the mentioned theorem this correspondence is expressed explicitely. From here it follows that the system of all closure operations on a given set S can be mapped injectively into the system $\exp \exp S$ such that two closures are isomorphic if and only if the corresponding set-systems are equivalent (in the sense of paper [6]) i.e. $\mathscr{S}_{1}, \mathscr{S}_{2} \in \exp \exp S$ are equivalent if there exists a permutation f of the set S such that $\mathscr{S}_{2}=\left\{f(X): X \in \mathscr{S}_{1}\right\}$ or $\mathscr{S}_{1}=\left\{f(X): X \in \mathscr{S}_{2}\right\}$. This equivalence is denoted by \sim. A natural question is whether the above described monorelational embedding is extendable onto a certain system of more general structures so called pre-closure operations. In paper [5] this problem is solved for topological closures and Cech's topologies. The aim of this paper is to show that there exists a system (closed with respect to isomorphisms) of the cardinality $2^{\text {card } S}$ (for an infinite carrier set S) of algebraic pre-closure operations to which it is possible to extend the just mentioned embedding into ($\exp \exp S, \sim$). Terms and notations concerning algebraic closure operations are taken from papers [2], [3].

Let S be a set, C be a map of $\exp S$ into itself and n be a positive integer. By C^{n} will be denoted the n-fold composition of C with itself. A mapping $C: \exp S \rightarrow$ $\rightarrow \exp S$ is a pre-closure if for any $P \subset S$ and $Q \subset S$ these conditions are satisfied:

$$
P \subset C(P) \text { and } P \subset Q \text { implies } C(P) \subset C(Q)
$$

A pre-closure C which satisfies $C^{2}(P) \subset C(P)$ for all P contained in S is a closure. A pre-closure (or closure) which satisfies the compactness condition,
for any $P \subset S$ and for any $x \in C(P)$ there is a finite set $Q \subset P$ such that $x \in C(Q)$, will be called algebraic. This condition is equivalent to the condition: $C(P)=$ $=\bigcup\left\{C(Q): Q \subset P\right.$, card $\left.Q<\aleph_{0}\right\}$ for each $P \subset S$.

By a pre-closure (closure) space we mean an ordered pair (S, C), where C is a preclosure (closure) on the set S. A set P is said to be closed in the space (S, C) or
C-closed if $C(P)=P$. The system of all closures on the set S will be denoted by $\mathscr{C}(S)$. Let pre-closure spaces $\left(S_{1}, C_{1}\right),\left(S_{2}, C_{2}\right)$ and a mapping $f: S_{1} \rightarrow S_{2}$ be given. The mapping f is said to be an isomorphism of the space (S_{1}, C_{1}) onto the space $\left(S_{2}, C_{2}\right)$ if f is bijective and $f\left(C_{1}(P)\right)=C_{2}(f(P))$ for each set $P \subset S_{1}$. If $S_{1}=S_{2}=S$, pre-closure spaces $\left(S, C_{1}\right),\left(S, C_{2}\right)$ are isomorphic, we say that pre-closures C_{1}, C_{2} are isomorphic and we write $C_{1} \cong C_{2}$. A system \mathscr{X} of preclosures on a set S is said to be closed with respect to closure isomorphisms if $C \in \mathscr{X}, C_{1} \in \mathscr{C}(S), C \cong C_{1}$ implies that $C_{1} \in \mathscr{X}$. A pre closure C will be called n-iterable if n is the least positive integer such that C^{n} is a closure.

Let T be a non-empty subset of S. A decomposition of the set T determines a decomposition in the set S (in the sense of [1] chap. I). This decomposition will be denoted by T in accordance with [1]. A kernel of a set $P \subset S$ (denoted by [P]) in the decomposition T (where $T \subset S, T \neq \varnothing$) is a union of all the blocks of \bar{T} which are subsets of the set P.

In what follows we suppose that S is an infinite set. Consider a system of triads of the form $\{T, T, A\}$, where T is a non-void subset of S satisfying conditions card $T \geqq 2$, card $(S-T) \geqq \aleph_{0}, T$ is a decomposition of T such that $X \in \bar{T}$ implies card $X<\aleph_{0}$ and A is a finite subset of S, lineary ordered, disjoint with T. We assign to every such a triad a mapping $C: \exp S \rightarrow \exp S$ which is defined as follows:

Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and the ordering of A be given by the n-tuple of indices $\{1,2, \ldots, n\}$. For $X \subset S$ such that $X \cap A \subset\left\{a_{n}\right\}$ and $[X]=\emptyset$ (i.e. X does not contain as a subset any element of \bar{T}), we put $C(X)=X$. If $X \cap A=\left\{a_{i_{1}}, \ldots, a_{i_{k}}\right\}$, $i_{k} \leqq n$, then $C(X)=X \cup\left\{a_{i_{1}+1}, \ldots, a_{i_{k}+1}\right\} \cup X_{0}$, where we put $a_{n+1}=a_{n}$ and $X_{0}=\left\{a_{0}\right\}$ if $[X] \neq \emptyset$ and $X_{0}=\emptyset$ otherwise. A triad $\{T, T, A\}$ corresponding to the mapping C will be denoted by $\left\{T_{C}, T_{C}, A_{C}\right\}$ or $\left\{T_{C}, \bar{T}_{C},\left(A_{C},<\right)\right\}$ if ti is necessary to express the ordering of the set A_{C}. Finally, denote by $\mathscr{A}_{k}(S)$ the system of mappings C of $\exp S$ into itself such that $A_{C}=\left\{a_{0}, a_{1}, \ldots, a_{k}\right\}$ and put $\mathscr{A}(S)=$ $=\bigcup_{k \geqq 1} \mathscr{A}_{k}(S)$.

Lemma 1. $\mathscr{A}(S)$ is a system of algebraic pre-closures on S, closed with respect to closure-isomorphisms, such that $\mathscr{A}(S) \cap \mathscr{C}(S)=\emptyset$ and to each positive integer k there exists in $\mathscr{A}(S)$ a k-iterable pre-closure.

Proof. Let n be an arbitrary positive integer, $C \in \mathscr{A}_{n}(S)$. From the above construction it follows immediately that C is a pre-closure on S. Let $P \subset S$ be a non-void set. If $P \cap A_{C} \subset\left\{a_{n}\right\}$ and $[P]=\emptyset$ (in the decomposition \bar{T}_{c}) then the same holds for each finite $Q \subset P$, hence $C(P)=\bigcup\left\{C(Q): Q \subset P\right.$, card $\left.Q<\aleph_{0}\right\}$. Let $P \cap A=\left\{a_{i_{1}}, \ldots, a_{i_{k}}\right\}, i_{k} \leqq n$ and $[P]_{C} \neq \emptyset$. Then by the construction of (S, C) we have $C(P)=P \cup\left\{a_{0}, a_{i_{1}+1}, \ldots, a_{i_{k}+1}\right\}$. Let $x \in C(P)$ be an arbitrary point. If $x=a_{0}$, then $x \in C(Y)$, where $Y \in \bar{T}_{C}$ is a finite subset of P. If $x=a_{j}$, $j \in\left\{i_{1}+1, \ldots, i_{k}+1\right\}$, then $x \in C\left\{a_{j-1}\right\}$, where $a_{j-1} \in P$. If moreover $x \in P$,
then clearly $x \in C\{x\}$. In all the possible cases considered with respect to the set P we get in the similar way that $x \in C(P)$ is followed by $x \in C(Q)$ for a suitable finite subset $Q \subset P$. Thus (S, C) is an algebraic pre-closure space. Since for arbitrary $X \in \bar{T}_{C}$ there holds $C(X)=X \cup\left\{a_{0}\right\}$ and $C^{2}(X)=X \cup\left\{a_{0}, a_{1}\right\}$ where $a_{1} \neq a_{0}$, $a_{1} \notin X$, the pre-closure C is not a closure and we get $\mathscr{A}(S) \cap \mathscr{C}(S)=\varnothing$. Let D be a pre-closure isomorphic to $C, f:(S, C) \rightarrow(S, D)$ the corresponding closure-isomorphism. Put $T^{\prime}=f\left(T_{C}\right), \bar{T}^{\prime}=\left\{f(X): X \in T_{C}\right\}, b_{i}=f\left(a_{i}\right), i=0,1, \ldots, n$ and $B=\left\{b_{i}: i=0,1, \ldots, n\right\}$. Since f is a permutation of the set S, we have that there exists a closure, say C_{1}, which corresponds to the triad $\left\{T^{\prime}, \bar{T}^{\prime}, B\right\}$ in the above sense. Let $P \subset S$ be an arbitrary set. If $P \cap B \subset\left\{b_{n}\right\}$ and P does not contain any element of T i.e. $[P]^{\prime}=\emptyset$, then $C_{1}(P)=P$. Then $f^{-1}(P) \cap A \subset\left\{a_{n}\right\}$ and $\left[f^{-1}(P)\right]=$ $=\emptyset$ thus $C\left(f^{-1}(P)\right)=f^{-1}(P)$. Hence $D(P)=D\left(f\left(f^{-1}(P)\right)\right)=f\left(C\left(f^{-1}(P)\right)\right)=$ $=P=C_{1}(P)$. Now, let $P \cap B=\left\{b_{i_{1}}, \ldots, b_{i_{k}}\right\}$ be valid with $i_{k} \leqq n$ and $[P]=$ $=\bigcup_{j=1} X_{j}$, where $X_{1}, X_{2}, \ldots, X_{r}$ are elements of \bar{T}^{\prime}. Then $f^{-1}(P) \cap A=\left\{a_{i_{1}}, \ldots, a_{i_{k}}\right\}$, where $f\left(a_{i_{1}}\right)=b_{i_{1}}, \ldots, f\left(a_{i_{k}}\right)=b_{i_{k}}$ and $f^{-1}\left(X_{j}\right), j=1,2, \ldots, r$ are all the elements of \bar{T}_{c} contained in $f^{-1}(P)$. We have $D(P)=D\left(f\left(f^{-1}(P)\right)\right)=f\left(C\left(f^{-1}(P)\right)\right)=$ $=f\left(f^{-1}(P) \cup\left\{a_{0}, a_{i_{1}+1}, \ldots, a_{i_{k}+1}\right\}\right)=P \cup\left\{b_{0}, b_{i_{1}+1}, \ldots, b_{i_{k}+1}\right\}=C_{1}(P)$. We get in this way that for each subset P of S there holds $D(P)=C_{1}(P)$, thus $D=C_{1}$ and we have that $\mathscr{A}(S)$ is closed with respect to closure isomorphisms. Let k be a positive integer. Consider arbitrary $C \in \mathscr{A}_{k-1}(S)$. Then $C^{k+1}(T)=T \cup\left\{a_{0}, a_{1}, \ldots\right.$, $\left.a_{k-1}\right\}=C^{k+1}(T)$ and $C^{m}(T)=T \cup\left\{a_{0}, a_{1}, \ldots, a_{m-1}\right\} \nsubseteq T \cup\left\{a_{0}, a_{1}, \ldots, a_{m}\right\}=$ $=C^{m+1}(T)$ for $m<k$. Since $C^{k}(P)=C^{k+1}(P)$ for each $P \subset S$, i.e. C^{k} is a closure and C^{m} is not if $m<k$, we have that C is a k-iterable pre-closure, q.e.d.

Now, put $\mathscr{T}(S)=\mathscr{C}(S) \cup \mathscr{A}(S)$ and define a mapping F of $\mathscr{T}(S)$ into exp exp S by $F(C)=\{X: X \subset S, C(X)=X\} \cup \bigcup_{k \geqq 1}\left\{X: X \subset S, C^{k}(X) \neq S, C^{k+1}(X)=S\right\}$ for every $C \in \mathscr{T}(S)$.

Lemma 2. Let $C_{1}, C_{2} \in \mathscr{A}(S), C_{1} \neq C_{2}$. Then it holds $F\left(C_{1}\right) \neq F\left(C_{2}\right)$.
Proof. Let $\left\{T_{1}, \bar{T}_{1},\left(A_{1},<_{1}\right)\right\},\left\{T_{2}, \bar{T}_{2},\left(A_{2},<_{2}\right)\right.$ be triads corresponding to C_{1}, C_{2} respectively, where C_{1}, C_{2} are arbitrary different pre-closures from $\mathscr{A}(S)$. Consider all possible cases:
(1) $T_{1}=T_{2}, \bar{T}_{1}=\bar{T}_{2},\left(A_{1},<_{1}\right) \neq\left(A_{2},<_{2}\right)$,
(2) $T_{1}=T_{2}, T_{1} \neq T_{2}$,
(3) $T_{1} \neq T_{2}$.

Let the case (1) occur. Suppose $A_{1} \neq A_{2}$ and put $P=T_{1} \cup A_{1}=T_{2} \cup A_{1}$, $Q=T_{1} \cup A_{1} \cup A_{2}=T_{2} \cup A_{1} \cup A_{2}$. Since $T_{1} \cap A_{1}=T_{1} \cap A_{2}=\emptyset$, it holds $P \neq Q$. Further $C_{1}(P)=P$ thus $P \in F\left(C_{1}\right)$ and $C_{2}(P)=Q, C_{2}^{2}(P)=C_{2}(Q)=$
$=Q \neq S$ for $\operatorname{card}\left(S-T_{i}\right) \geqq \aleph_{0}, i=1,2$. Thus $P \notin F\left(C_{2}\right)$. Let $A_{1}=A_{2}$, $<_{1} \neq<_{2}$. Put $\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}=A_{1},\left\{b_{0}, b_{1}, \ldots, b_{n}\right\}=A_{2}$. There exists a pair of indices i, j such that $a_{i}=b_{j}, i \neq j$. Let $i \in\{0,1,2, \ldots, n\}$ be the greatest nonnegative integer with the property $a_{i}=b_{j}$, where $j<i$. Put $P=\left\{a_{i}, a_{i+1}, \ldots, a_{n}\right\}$. There is $C_{1}(P)=P$ but $C_{2}(P) \neq P$ and $C_{2}^{k}(P) \neq S$ for every k. Hence $P \in F\left(C_{1}\right)$, $P \notin F\left(C_{2}\right)$ and we have $F\left(C_{1}\right) \neq F\left(C_{2}\right)$ in the case (1).

Let the case (2) occur. There exists a block $X \in \bar{T}_{1}$ which does not belong to \bar{T}_{2}. If $[X]_{2}=\emptyset$, then the set X is C_{2}-closed thus $X \in F\left(C_{2}\right)$ whereas $X \notin F\left(C_{1}\right)$. If $[X]_{2} \neq \emptyset$, there exists a block $Y \in T_{2}$ contained as a subset in X. Then $[Y]_{1}=\emptyset$ and thus Y is a C_{1}-closed set i.e. $Y \in F\left(C_{1}\right)$ but $Y \notin F\left(C_{2}\right)$, thus $F\left(C_{1}\right) \neq F\left(C_{2}\right)$ again.

Suppose now that (3) holds, i.e. $T_{1} \neq T_{2}$. Admit first that $\left(A_{1},<_{1}\right)=$ $=\left(A_{2},<_{2}\right)$. Without loss of generality it can be supposed $T_{1}-T_{2} \neq \emptyset$. Let $x \in T_{1}-T_{2}, X \in T_{1}$ be such a block that $x \in X$. Let $[X]_{2}=\emptyset$. Then $X \notin F\left(C_{1}\right)$, $X \in F\left(C_{2}\right)$ since $C_{2}(X)=X$. If $[X]_{2} \neq \emptyset$, then there exists a set $Y \in T_{2}$ with $Y \subset X$. Then $[Y]_{1}=\emptyset$ thus $C_{1}(Y)=Y$ and we have $Y \in F\left(C_{1}\right), Y \notin F\left(C_{2}\right)$. Now, consider the case $\left(A_{1},<_{1}\right) \neq\left(A_{2},<_{2}\right)$. If $A_{1}=A_{2},<_{1} \neq<_{2}$, then we get in the same way as in the case (1) that there exists a set $P \subset S$ with $P \in F\left(C_{1}\right), P \notin F\left(C_{2}\right)$. Let $A_{1} \neq A_{2}, \quad A_{1}=\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}, \quad A_{2}=\left\{b_{0}, b_{1}, \ldots, b_{m}\right\}$. If there exists $a_{i} \in$ $\in A_{1}-A_{2}$ with $i<n$ then $C_{2}\left\{a_{i}\right\}=\left\{a_{i}\right\}$ for card $X \geqq 2$ whenever $X \in T_{2}$ and thus $\left\{a_{i}\right\} \in F\left(C_{2}\right)$ but $\left\{a_{i}\right\} \notin F\left(C_{1}\right)$. Let $a_{i} \in A_{1}-A_{2}$ implies $i=n$. If there exists $b_{j} \in A_{2}-A_{1}$ with $j<m$, then similarly as above $\left\{b_{j}\right\} \in F\left(C_{1}\right)$ but $\left\{b_{j}\right\} \notin F\left(C_{2}\right)$. If $b_{j} \in A_{2}-A_{1}$ implies $j=m$, and $a_{i} \in A_{1}-A_{2}$ is followed by $i=n$, then we have $\left\{a_{n-1}, a_{n}\right\} \in F\left(C_{1}\right)$ and $\left\{a_{n-1}, a_{n}\right\} \notin F\left(C_{2}\right)$. Now, consider the case $A_{1}-A_{2}=$ $=\left\{a_{n}\right\}$. Then there exist positive integers i, j with $i<n, j<n, i \neq j$ such that $b_{m-1}=a_{i}, b_{m}=a_{j}$ and thus $\left\{b_{m-1}, b_{m}\right\}$ is a C_{2}-closed set, i.e. $\left\{b_{m-1}, b_{m}\right\} \in F\left(C_{2}\right)$ but $\left\{b_{m-1}, b_{m}\right\} \notin F\left(C_{1}\right)$. Therefore $F\left(C_{1}\right) \neq F\left(C_{2}\right)$ in the case (3) and we have that the mapping F restricted onto the system $\mathscr{A}(S)$ is injective.

Lemma 3. Let $C_{1}, C_{2} \in \mathscr{T}(S)$. Then $C_{1} \cong C_{2}$ if and only if $F\left(C_{1}\right) \sim F\left(C_{2}\right)$.
Proof. If C_{1}, C_{2} are closure operations i.e. $C_{1}, C_{2} \in \mathscr{C}(S)$, then $F\left(C_{1}\right), F\left(C_{2}\right)$ are systems of all C_{1}-closed, C_{2}-closed sets respectively, thus $C_{1} \cong C_{2}$ if and only if $F\left(C_{1}\right) \sim F\left(C_{2}\right)$. This is the well-known assertion. Suppose that $C_{1} \in \mathscr{A}(S)-$ $-\mathscr{C}(S), C_{2} \in \mathscr{A}(S)-\mathscr{C}(S)$ are isomorphic pre-closures. Denote by $\left\{T_{1}, \bar{T}_{1}\right.$, $\left.\left(A_{1},<_{1}\right)\right\},\left\{T_{2}, T_{2},\left(A_{2},<_{2}\right)\right\}$ triads corresponding to C_{1}, C_{2} respectively. It was shown in the proof of lemma 1 that if $C_{1} \cong C_{2}$, then there exists a permutation f of the set S such that $T_{2}=f\left(T_{1}\right), T_{2}=\left\{f(X): X \in T_{1}\right\}$ and $\left(A_{2},<_{2}\right)$ is orderisomorphic to $\left(A_{1},<_{1}\right)$ with the isomorphism f. Let $A_{1}=\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}$, $A_{2}=\left\{b_{0}, b_{1}, \ldots, b_{n}\right\}$. Let P be a C_{2}-closed set and put $Q=f^{-1}(P)$. The following three cases are possible:

$$
\begin{equation*}
P \cap A_{2} \subset\left\{b_{n}\right\} \text { and }\left[P \cap T_{2}\right]_{2}=\emptyset \tag{1}
\end{equation*}
$$

(2) $b_{i} \in P \cap A_{2}, i<n$ implies $b_{i+1} \in P \cap A_{2}$ and $\left[P \cap T_{2}\right]_{2}=\varnothing$,
(3) $\left[P \cap T_{2}\right]_{2} \neq \emptyset$ and $A_{2} \subset P$.

Considering the properties of the mapping f we get that $Q \subset\left\{a_{n}\right\}$ and $\left[Q \cap T_{1}\right]_{1}=$ $=\emptyset$ in the case (1). Similarly, $a_{i} \in Q \cap A_{1}, i<n$ implies $a_{i+1} \in Q \cap A_{1}$ and $\left[Q \cap T_{1}\right]_{1}=\varnothing$ if the case (2) occurs and $\left[Q \cap T_{1}\right]_{1} \neq \varnothing, A_{1} \subset Q$ in the case (3). Thus $Q=f^{-1}(P)$ is a C_{1}-closed set. Now, let $P \in F\left(C_{2}\right)$ be such a set that $C_{2}^{k}(P) \neq$ $\neq S, C_{2}^{k+1}(P)=S$, where $k \leqq n-1$. Then $P=S-\left\{b_{0}, b_{1}, \ldots, b_{k}\right\}$ hence $f^{-1}(P)=S-\left\{a_{0}, a_{1}, \ldots, a_{k}\right\}$ and thus $f^{-1}(P) \in F\left(C_{1}\right)$. Therefore $F\left(C_{2}\right) \subset$ $\subset\left\{f(X): X \in F\left(C_{1}\right)\right\}$. If P is a set of the form $P=f(Q)$, where Q is a suitable set belonging to $F\left(C_{1}\right)$, we get, similarly as above, considering all possible cases with respect to the set Q that the inclusion $F\left(C_{2}\right) \supset\left\{f(X): X \in F\left(C_{1}\right)\right\}$ holds. Thus we have $F\left(C_{1}\right) \sim F\left(C_{2}\right)$.

Now, suppose $F\left(C_{1}\right) \sim F\left(C_{2}\right)$ for $C_{1}, C_{2} \in \mathscr{A}(S)$. There exists a permutation f of the set S such that $F\left(C_{2}\right)=\left\{f(X): X \in F\left(C_{1}\right)\right\}$. Put $T=f\left(T_{1}\right), T=\{f(X): X \in$ $\left.\in T_{1}\right\}$. Let $(A,<)$ be a chain such that $f:\left(A_{1},<_{1}\right) \rightarrow(A,<)$ is an order-isomorphism of A_{1} onto A. Denote by C a pre-closure on S determined by $\{T, T$, $(A,<)\}$. As it was shown in the proof of lemma 1, the pre-closure C is isomorphic to the pre-closure C_{1}. Further, it is easy to see that $F(C)=\left\{f(X): X \in F\left(C_{1}\right)\right\}$, thus we have $F(C)=\left\{f(X): X \in F\left(C_{1}\right)\right\}=F\left(C_{2}\right)$ and by lemma 2 it holds $C=C_{2}$, hence pre-closures C_{1}, C_{2} are isomorphic. Finally, let $C_{1} \in \mathscr{A}(S)$, $C_{2} \in \mathscr{C}(S)$, i.e. C_{1} non $\cong C_{2}$. We are going to show that $F\left(C_{1}\right)$ non $\sim F\left(C_{2}\right)$. Admit on the contrary that there exists a permutation f of the set S with $F\left(C_{2}\right)=$ $=\left\{f(X): X \in F\left(C_{1}\right)\right\}$. Let $A_{1}=\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}$, Since $C_{1}\left(S-\left\{a_{0}, a_{1}\right\}\right)=$ $=S-\left\{a_{1}\right\}, C_{1}^{2}\left(S-\left\{a_{0}, a_{1}\right\}\right)=C_{1}\left(S-\left\{a_{1}\right\}\right)=S$ thus $S-\left\{a_{0}, a_{1}\right\} \in F\left(C_{1}\right)$, we have $S-\left\{f\left(a_{0}\right), f\left(a_{1}\right)\right\} \in F\left(C_{2}\right)$. Further $C_{1}\left(T_{1} \cup A_{1}\right)=T_{1} \cup A_{1}$, hence the set $f\left(T_{1}\right) \cup f\left(A_{1}\right)$ is C_{2}-closed. Then also $f\left(T_{1}\right) \cup\left\{f\left(a_{2}\right), \ldots, f\left(a_{n}\right)\right\}=[S-$ $\left.-\left\{f\left(a_{0}\right), f\left(a_{1}\right)\right\}\right] \cap\left(f\left(T_{1}\right) \cup f\left(A_{1}\right)\right)$ is a C_{2}-closed set. From here $T_{1} \cup\left\{a_{2}, \ldots\right.$, $\left.a_{n}\right\}=f^{-1} f\left(T_{1} \cup\left\{a_{2}, \ldots, a_{n}\right\}\right) \in F\left(C_{1}\right)$, which contradicts the definition of $F\left(C_{1}\right)$. Hence $F\left(C_{1}\right)$ non $\sim F\left(C_{2}\right)$. The proof is complete.

Lemma 4. Let $C_{1}, C_{2} \in \mathscr{T}(S), C_{1} \neq C_{2}$. Then $F\left(C_{1}\right) \neq F\left(C_{2}\right)$.
Proof. If $C_{1}, C_{2} \in \mathscr{C}(S)$, then $F\left(C_{1}\right), F\left(C_{2}\right)$ are systems of all closed sets in corresponding closure spaces, thus $C_{1} \neq C_{2}$ implies $F\left(C_{1}\right) \neq F\left(C_{2}\right)$. If $C_{1}, C_{2} \in$ $\in \mathscr{A}(S), C_{1} \neq C_{2}$, then $F\left(C_{1}\right) \neq F\left(C_{2}\right)$ by lemma 2 . If $C_{1} \in \mathscr{A}(S), C_{2} \in \mathscr{C}(S)$, then with respect to lemma $3 F\left(C_{1}\right)=F\left(C_{2}\right)$ is followed by $C_{1} \cong C_{2}$ which is a contradiction, thus $F\left(C_{1}\right) \neq F\left(C_{2}\right)$.

Lemma 5. It holds: card $\mathscr{A}(S)=2^{\operatorname{card} S}, \operatorname{card}[\mathscr{A}(S) \mid \cong]=\operatorname{card} S$ and $\mathscr{X} \in \mathscr{A}(S) \mid \cong$ implies card $\mathscr{X} \geqq \operatorname{card} S$.

Proof. Let $T \subset S$ be a set of an infinite cardinality \mathfrak{m}. The system of all such
decompositions of the set T blocks of which have finitely many elements has the cardinality \mathfrak{m}. Denote by \mathscr{F} the system of triads $\{T, T, A\}$ satisfying the above conditions, namely $\aleph_{0} \leqq$ card T, card $(S-T) \geqq \aleph_{0}, X \in T$ implies $2 \leqq \operatorname{card} X<$ $<\aleph_{0}, 2 \leqq \operatorname{card} A<\aleph_{0}$ and $A \cap T=\emptyset$. Clearly, card $\mathscr{F} \geqq 2^{\text {card } S}$ because there is at least $2^{\text {card } S}$ different sets T satisfying the just mentioned conditions. On the other hand card $\mathscr{F} \leqq 2^{\text {card } S}$. card $S . \aleph_{0}=2^{\text {card } S}$. From the equality card $\mathscr{F}=$ $=$ card $\mathscr{A}(S)$ it follows the first assertion. Consider the decomposition $\mathscr{A}(S) / \cong$. Denoting by \mathscr{F} a decomposition of \mathscr{F} such that $\left\{T_{1}, T_{1}, A_{1}\right\} \in \mathscr{F}$ and $\left\{T_{2}, T_{2}\right.$, $\left.A_{2}\right\} \in \mathscr{F}$ belong to the same block of \mathscr{F} if there exists a permutation f of the set S with $T_{2}=f\left(T_{1}\right), T_{2}=\left\{f(X): X \in T_{1}\right\}, A_{2}=f\left(A_{1}\right)$, we have card $\mathscr{A}(S) \mid \cong=$ $=\operatorname{card} \mathscr{F}=\operatorname{card} S . \operatorname{card} S . \aleph_{0}=$ card S. Let $\mathscr{X} \in \mathscr{A}(S) \mid \cong$. Denote by \mathscr{Y} the corresponding block of \mathscr{F}. Let $\{T, T, A\} \in \mathscr{Y}$. Consider these two possible cases: (1) card $(S-T)=\operatorname{card} S$, (2) $\aleph_{0} \leqq \operatorname{card}(S-T)<\operatorname{card} S$. In case (1) we chose an arbitrary element $a \in T$ and assign to every element $x \in S-(T \cup A)$ a triad $\left\{T_{x}, T_{x}, A_{x}\right\}$, where $T_{x}=f_{x}(T), T_{x}=\left\{f_{x}(X): X \in T\right\}, A_{x}=A$ and f_{x} is a permutation of the set S defined by: $f_{x}(s)=s$ for $s \in S, x \neq S \neq a$ and $f_{x}(a)=x$, $f_{x}(x)=a$. Evidently card $S \leqq$ card \mathscr{Y}. Let case (2) occur. We construct other triads from $\{T, T, A\}$ in the following way. Let $X, Y \in T, X \neq Y, a \in X, b \in Y$. Put $T_{1}=T, A_{1}=A, X_{1}=(X-\{a\}) \cup\{b\}, \quad Y_{1}=(Y-\{b\}) \cup\{a\}$ and finally $T_{1}=(T-\{X, Y\}) \cup\left\{X_{1}, Y_{1}\right\}$. If C, C_{1} are corresponding pre-closures, then it holds $C\left(X_{1}\right)=X_{1} \neq X_{1} \cup\left\{a_{0}\right\}=C_{1}\left(X_{1}\right)$ and $C \cong C_{1}$. Since card $T=\operatorname{card} T=$ $=$ card S, we get again card $S \leqq \operatorname{card} \mathscr{Y}$. Hence card $S \leqq$ card \mathscr{X}, q.e.d.
As in $\S 4$ of [5] we use, for the sake of brevity, the following notions. If P, Q are sets and ϱ, σ binary relations on P, Q respectively, then the mapping $f: P \rightarrow Q$ is called an embedding of the monorelational system (P, ϱ) into the monorelational system (Q, σ) if f is injective and for every pair of elements $a \in P, b \in Q$ it holds $a \varrho b$ if and only if $f(a) \sigma f(b)$.

We summarize the obtained results in the following theorem. Notice that we have proved in fact a stronger assertion because the below described system of pre-closures was explicitely constructed.

Theorem. Let S be an infinite set. There exist a system $\mathscr{T}(S)$ of pre-closures on S containing $\mathscr{C}(S)$, closed with respect to closure-isomorphisms, and a mapping F of $\mathscr{T}(S)$ into $\exp \exp S$, such that it holds:
1° Each element of $\mathscr{T}(S)-\mathscr{C}(S)$ is an algebraic pre-closure on S and to every positive integer n there exists an n-iterable pre-closure contained in $\mathscr{T}(S)-\mathscr{C}(S)$.
$2^{\circ} \operatorname{card}[\mathscr{T}(S)-\mathscr{C}(S)]=2^{\operatorname{card} S}, \quad \operatorname{card}[(\mathscr{T}(S)-\mathscr{C}(S)) / \cong]=\operatorname{card} S$ and $\mathscr{X} \in$ $\in[\mathscr{T}(S)-\mathscr{C}(S)] / \cong$ implies card $\mathscr{X} \geqq$ card S.
$3^{\circ} F: \mathscr{T}(S) \rightarrow \exp \exp S$ is an embedding of the monorelational system $(\mathscr{T}(S), \cong)$ into the monorelational system $(\exp \exp S, \sim)$ and for every closure $C \in \mathscr{C}(S)$ it holds $F(C)=\{X \subset S: C(X)=X\}$.

Proof follows from lemmas $1,3,4$ and 5.
The paper [5], mentioned in the introduction, contains the following incorrectness. The system $\mathscr{T}_{A}(P)$, defined in $\S 3 \mathrm{p} .108-109$ is not a system of A-topologies and thus final system $\mathscr{T}(P)$ does not contain any A-topology. All lemmas and especially the main theorem of the paper [5] are valid, however for their proofs it is necessary to change the definition of $\mathscr{T}_{A}(P)$ as follows:

Denote by $\mathscr{A}_{1}(P)$ a system of all A-topologies on P satisfying the following condition. There exists a pair $X_{1}, X_{2} \subset P$ of non-void sets with $X_{1} \cup X_{2} \neq P$, card $\left(X_{1} \cap X_{2}\right)=1$ such that if $X \subset P$ then $u X=X \cup Y$, where
(i) $Y=\emptyset$ if $X \cap X_{1}=\emptyset=X \cap X_{2}$,
(ii) $Y=X_{i}, i \in\{1,2\}$ if $X \cap X_{i} \neq \emptyset$ and $X \cap X_{j}=\emptyset$ for $j \in\{1,2\}, j \neq i$,
(iii) $Y=X_{1} \cup X_{2}$ if $X \cap X_{1} \neq \emptyset \neq X \cap X_{2}$.

To every A-topology u from the system $\mathscr{A}_{1}(P)$ there is assigned a pair of sets X_{1}, X_{2} with the above described properties. We shall denote these sets by $L_{1}(u)$, $L_{2}(u)$ respectively. Put $\mathscr{T}_{A}(P)=\left\{u \in \mathscr{A}_{1}(P):\right.$ card $L_{1}(u) \geqq 2$, card $L_{2}(u) \geqq 2$, card $\left(L_{1}(u) \cap L_{2}(u)\right)=1$ and $\left.L_{1}(u) \cup L_{2}(u) \neq P\right\}$. It was proved by Vladimír Tichý that all assertions concerning $\mathscr{T}_{A}(P)$ from paper [5] are true after the above change of the definition of the system $\mathscr{T}_{A}(P)$.

REFERENCES

[1] O. Borůvka: Foundations of the Theory of Groupoids and Groups, VEB DVW, Berlin 1974.
[2] S. Burris: Representation theorems for closure spaces, Colloq. Math. 19 (1968), 187-193.
[3] S. Burris: Closure homomorphisms, Journal of Algebra 15 (1970), 68-71.
[4] P. M. Cohn: Universal Algebra, Harper and Row, New York 1965.
[5] J. Chvalina: On homeomorphic topologies and equivalent set-systems, Arch. Math. (Brno) 2, XII (1976), 107-115.
[6] F. Neuman and M. Sekanina: Equivalent systems of sets and homeomorphic topologies, Czech. Math. Journ. 15 (90) (1965), 323-328.
J. Chvalina,

66295 Brno, Janáčkovo nám. $2 a$
Czechoslovakia

