Archivum Mathematicum

František Neuman; Svatoslav Staněk

On the structure of second-order periodic differential equations with given characteristic multipliers

Archivum Mathematicum, Vol. 13 (1977), No. 3, 149--157
Persistent URL: http://dml.cz/dmlcz/106971

Terms of use:

© Masaryk University, 1977

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

ON THE STRUCTURE OF SECOND-ORDER PERIODIC DIFFERENTIAL EQUATIONS WITH GIVEN CHARACTERISTIC MULTIPLIERS

FRANTIŠEK NEUMAN, SVATOSLAV STANĔK

(Received December 27, 1976)

I. Problem

Consider a second-order differential equation

$$
\begin{equation*}
y^{\prime \prime}=q(t) y \tag{q}
\end{equation*}
$$

with a periodic coefficient $q \in C^{\circ}(\mathbf{R}), q(t+\pi)=q(t)$ for all $t \in \mathbf{R}=(-\infty, \infty)$. According to Floquet Theory, (q) admits independent solutions u and v that satisfy
either

$$
\begin{equation*}
u(t+\pi)=\varrho \cdot u(t), \quad v(t+\pi)=1 / \varrho \cdot v(t), \quad \varrho \neq 0 \tag{1}
\end{equation*}
$$

or
(2)

$$
u(t+\pi)=\varrho \cdot u(t)+v(t), \quad v(t+\pi)=\varrho \cdot v(t), \quad \varrho^{2}=1
$$

(Generally complex) numbers ϱ and $1 / \varrho$ are called characteristic (or Floquet's) multipliers of (q).
The purpose of this paper is to give a description of the structure of classes of those oscillatory equations (q) that admit the same characteristic multipliers.

II. Basic notions and relations

When differential equations (q) have the same characteristic multipliers, their 'solutions still may behave in a different way with respect to the number of their zeros (on an interval). Following O. Borůvka [5] we say that (q) is of category $(1, k), k$ being a positive integer, if (q) is both side oscillatory (i.e., both for $t \rightarrow-\infty$. and for $t \rightarrow+\infty$), it has real characteristic multipliers, and it admits a solution y, $y\left(t_{0}\right)=0$, for which $t_{0}+\pi$ is the k-th zero on the right of t_{0}. In the case of complex
characteristic multipliers $\mathrm{e}^{\star a \pi i}, a \in(0,1)$, (and only then) the general solution y of (q) can be written as

$$
\begin{equation*}
y(t)=c_{1} \frac{\sin \left[P(t)+(2 k+a) t+c_{2}\right]}{\left|P^{\prime}(t)+2 k+a\right|^{\frac{1}{2}}}, \quad P(t+\pi)=P(t) \in C^{3}(\mathbf{R}) \tag{3}
\end{equation*}
$$

see [8]. Then (q) is of category $(2, k)$.
We say that differential equations $\left(q_{1}\right)$ and $\left(q_{2}\right)$ are of the same behavior if

1. they have the samz characteristic multipliers, and
2. they are of the same category, and
3. if the relation (2) holds for a suitable pair of solutions of one equation, then it holds also for a suitable pair of solutions of the second equation, wronskians of the both pairs being of the same sign.

The condition 3. is in a close relation to the problem of "the coexistence of periodic solutions" (see e.g. [2], [7]), since, in particular, if all solutions of (q_{1}) are periodic, then the same is true for $\left(q_{2}\right)$.

In accordance with [3], define a phase $\alpha: \mathbf{R} \rightarrow \mathbf{R}$ of a pair r, s of independent solutions of (q) as a continuous function on \mathbf{R} satisfying $\tan \alpha(t)=r(t) / s(t)$ on $\mathbf{R}-\{t \in \mathbf{R} ; s(t)=0\}$. Then $\alpha \in C^{\mathbf{3}}(\mathbf{R}), \alpha^{\prime}(t) \neq 0$ on \mathbf{R}, and the general solution y of (q) can be written in the form

$$
\begin{equation*}
y(t)=c_{1} \frac{\sin \left(\alpha(t)+c_{2}\right)}{\left|\alpha^{\prime}(t)\right|^{\frac{1}{2}}}, \quad c_{1} \text { and } c_{2} \text { being constants. } \tag{4}
\end{equation*}
$$

If (q) is both-side oscillatory, then and only then $\alpha(\mathbf{R})=\mathbf{R}$.
All bijections $f: \mathbf{R} \rightarrow \mathbf{R}, f(\mathbf{R})=\mathbf{R}, f \in C^{3}(\mathbf{R}), \mathrm{d} f(t) / \mathrm{d} t \neq 0$ on \mathbf{R}, together with the composition rule form the group ($\mathbf{(5}$. The set of all phases of the equation $y^{\prime \prime}=$ $=-y$ on \mathbf{R} is a subgroup \mathfrak{E} of \mathfrak{G}. If α is a phase of a both-side oscillatory (q), then all phases of (q) form the set $\mathbb{E} \alpha=\{\varepsilon \alpha ; \varepsilon \in \mathbb{E}\}$ that is an element of the right decomposition of \mathfrak{G} with respect to $\mathfrak{E}, \mathfrak{G} / r \mathfrak{E}$.

The elements of $\mathfrak{G} / \boldsymbol{\mathcal { C }}$ are in $1-1$ correspondence with both-side oscillatoric equations (q) on \mathbf{R}, since for $\alpha \in \mathfrak{F}, q_{a}(t):=-\frac{1}{2}\left(\alpha^{\prime \prime}(t) / \alpha^{\prime}(t)\right)^{\prime}+\frac{1}{4}\left(\alpha^{\prime \prime}(t) / \alpha^{\prime}(t)\right)^{2}-$ $-\alpha^{\prime 2}(t)$, the function α is a phase of the differential equation $y^{\prime \prime}=q_{\alpha}(t) y$ on \mathbf{R}.

The set $\mathfrak{G}:=\left\{f \in \mathfrak{G} ; f(t+\pi)=f(t)+\pi \cdot \operatorname{sign} f^{\prime}\right.$ for $\left.t \in \mathbf{R}\right\}$ is a subgroup of \mathbb{G} and is called the group of elementary phases. For more details see [3].

In [4] O. Borůvka introduced a "block" of phases as an element of the least common covering of the right and left decompositions of \mathfrak{G} with respect to \mathfrak{E}, i.e. for a given $\alpha \in \mathbb{G}$ a block is the set $\left\{\varepsilon_{1} \alpha \varepsilon_{2} ; \varepsilon_{1} \in \mathfrak{E}, \varepsilon_{2} \in \mathbb{E}\right\}=\mathbb{E} \alpha \mathfrak{E}$. There he also proved that all the differential equations (q), whose phases are in the same block, are of the same behavior.

A natural question arose then, which blocks correspond to differential equations of a given behavior. The problem is solved in the theorem of the paper.

III. Preparatory lemmas

Let (q) be a π-periodic both-side oscillatory differential equation and α be a phase of (q). Then due to Floquet Theory and [5]

$$
\begin{aligned}
& \frac{\sin \alpha(t+\pi)}{\left|\alpha^{\prime}(t+\pi)\right|^{\frac{1}{2}}}=c_{11} \frac{\sin \alpha(t)}{\left|\alpha^{\prime}(t)\right|^{\frac{1}{2}}}+c_{12} \frac{\cos \alpha(t)}{\left|\alpha^{\prime}(t)\right|^{\frac{1}{2}}} \\
& \frac{\cos \alpha(t+\pi)}{\left|\alpha^{\prime}(t+\pi)\right|^{\frac{1}{2}}}=c_{21} \frac{\sin \alpha(t)}{\left|\alpha^{\prime}(t)\right|^{\frac{1}{2}}}+c_{22} \frac{\cos \alpha(t)}{\left|\alpha^{\prime}(t)\right|^{\frac{1}{2}}}
\end{aligned}
$$

or

$$
\begin{equation*}
\alpha(t+\pi)=\varepsilon \alpha(t) \quad \text { for all } t \in \mathbf{R} \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\varepsilon(x)=\operatorname{arctg} \frac{c_{11} \operatorname{tg} x+c_{12}}{c_{21} \operatorname{tg} x+c_{22}} \in \mathscr{E}, \tag{6}
\end{equation*}
$$

: arctg denoting a suitable branch of the function such that $\alpha \in C^{\mathbf{3}}(\mathbf{R})$ (that is possible, since $\left.\varepsilon(t)=\alpha\left(\alpha^{-1}(t)+\pi\right)\right)$. And also conversely: If $\alpha \in \mathfrak{G}$ and (5) is satisfied for some $\varepsilon \in \mathfrak{E}$, then (q) with the phase α is a both-side oscillatory differential equation with π-periodic coefficient; see [5].

The constant 2×2 matrix C formed by $c_{i j}(i, j=1,2)$ from (6) is unimodular. It is evident for the special pair y_{1} and y_{2} of independent solutions of (q) determined by the conditions $y_{1}(0)=0, y_{1}^{\prime}(0)=1, y_{2}(0)=1, y_{2}^{\prime}(0)=0$, where

$$
\operatorname{det} \bar{C}=\operatorname{det}\left(\begin{array}{ll}
y_{1}^{\prime}(\pi) & y_{1}(\pi) \\
y_{2}^{\prime}(\pi) & y_{2}(\pi)
\end{array}\right)=\text { wronskian of }\left(y_{2}, y_{1}\right)=1
$$

And for other pairs of independent solutions, the corresponding matrix C is similar to \bar{C}.

In such a situation it holds
Lemma 1. If (q) is of category $(1, k)$, then for each phase α of (q) there exists $x_{0} \in \mathbf{R}$ such that

$$
\begin{equation*}
\varepsilon\left(x_{0}\right)=x_{0}+k \pi \cdot \operatorname{sign} \alpha^{\prime} \tag{7}
\end{equation*}
$$

where ε is determined by (5).
Proof. Let t_{0} be a zero of a solution y of (q) and $t_{0}+\pi$ be the k-th zero of y on the right of t_{0}. Then due to (4)

$$
\left|\alpha\left(t_{0}+\pi\right)-\alpha\left(t_{0}\right)\right|=k \pi
$$

or

$$
\alpha\left(t_{0}+\pi\right)=\alpha\left(t_{0}\right)+k \pi \cdot \operatorname{sign} \alpha^{\prime}
$$

From (5) we get $\varepsilon \alpha\left(t_{0}\right)=\alpha\left(t_{0}\right)+k \pi . \operatorname{sign} \alpha^{\prime}$, and $x_{0}:=\alpha\left(t_{0}\right)$ completes the proof.

Lemma 2. If the relation (5) is satisfied for some phase $\alpha \in(5$ of (q) and some $\varepsilon \in \mathfrak{E}$, and if (7) holds for an $x_{0} \in \mathbf{R}$, then (q) is π-periodic both-side oscillatory equation of category $(1, k)$.

Proof. It is sufficient to show that (q) is of category $(1, k)$. For $t_{0}:=\alpha^{-1}\left(x_{0}\right)$ we have

$$
\alpha\left(t_{0}+\pi\right)=\varepsilon \alpha\left(t_{0}\right)=\varepsilon\left(x_{0}\right)=x_{0}+k \pi \operatorname{sign} \alpha^{\prime}=\alpha\left(t_{0}\right)+k \pi \operatorname{sign} \alpha^{\prime}
$$

Hence the solution

$$
y(t):=\frac{\sin \left[\alpha(t)-\alpha\left(t_{0}\right)\right]}{\left|\alpha^{\prime}(t)\right|^{\frac{1}{2}}}
$$

of (q) vanishes both at t_{0} and at $t_{0}+\pi, t_{0}+\pi$ being the k-th zero of the y on theright of t_{0}, since $\left|\alpha\left(t_{0}+\pi\right)-\alpha\left(t_{0}\right)\right|=k \pi$. Such a solution y with the property cannot be of the form (3), hence (q) has real characteristic multipliers.

Lemma 3. If (q) is of category ($2, k$), then there exists a phase α of (q) satisfying (5), for $\varepsilon: x \mapsto x+(2 k+a) \pi, a \in(0,1)$. And conversely, if (5) holds for $\varepsilon(x)=x+$ $+(2 k+a) \pi$ and a phase α of (q), then (q) is of category $(2, k)$.

Proof. (\Rightarrow). Due to the definition of category $(2, k)$, the form (3) of the general solution of (q) shows that $P(t)+(2 k+a) t+c_{2}=: \alpha$ is a phase of (q). The: phase α satisfies

$$
\begin{equation*}
\alpha(t+\pi)=\alpha(t)+(2 k+a) \pi \tag{8}
\end{equation*}
$$

and hence (5) gives $\varepsilon(x)=x+(2 k+a) \pi$ for $\forall x \in \mathbf{R}$.
(\leftarrow). If (8) holds, then (see [1, p. 67] or [6, p. 163]) the general form for a solution α is $\alpha(t)=(2 k+a) t+Q(t), Q(t+\pi)=Q(t)$ for $\forall t \in \mathbf{R}$. Such an α being. a phase of (q) implies the category ($2, k$) for (q), compare (3).

We shall need also
Lemma 4. Let C_{1} and C_{2} be real unimodular similar 2×2 matrices. A. If their Jordan canonical form is

$$
\left(\begin{array}{cc}
\varrho & 0 \\
0 & \varrho^{-1}
\end{array}\right)=: J, \quad \varrho \neq 0, \quad \text { real }
$$

then there exist real and regular P and Q such that

$$
P C_{1}=C_{2} P \quad \text { and } \quad Q C_{1}=C_{2} Q
$$

$\operatorname{det} P$ and $\operatorname{det} Q$ being of the opposite signs.
B. If the Jordan canonical form of C_{1} and C_{2} is

$$
\left(\begin{array}{rr}
\pm 1 & 1 \\
0 & \pm 1
\end{array}\right)=: J_{*}^{*}
$$

then the sign of the determinants of the real regular matrices P such that

$$
P C_{1}=C_{2} P
$$

is uniquely determined by C_{1} and C_{2}. Moreover, in this case B, C_{1} is also similar to C_{2}^{-1} and for Q, for which

$$
Q C_{1}=C_{2}^{-1} Q
$$

the sign of $\operatorname{det} Q$ is opposite to $\operatorname{sign} \operatorname{det} P$.
Proof. A. There exist real regular matrices K and L such that

$$
K C_{1} K^{-1}=L C_{2} L^{-1}=J
$$

For $E:=\left(\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right)$ we have $E=E^{-1}$ and $E J=J E$. Hence also

$$
E K C_{1} K^{-1} E^{-1}=L C_{2} L^{-1}=J
$$

For $P:=L^{-1} K$ and $Q:=L^{-1} E K$ we get

$$
P C_{1}=C_{2} P \quad \text { and } \quad Q C_{1}=C_{2} Q
$$

with $\operatorname{sign} \operatorname{det}(P \cdot Q)=\operatorname{sign} \operatorname{det} E=-1$.
B. Let $K C_{1} K^{-1}=L C_{2} L^{-1}=J^{*}$. Suppose $P C_{1}=C_{2} P$ and $P C_{1}=C_{2} P$, $\operatorname{sign} \operatorname{det}(P \widetilde{P})=-1$. Then

$$
\begin{gathered}
L P C_{1} P^{-1} L^{-1}=J^{*} \quad \text { and } \quad L \bar{P} C_{1} \bar{P}^{-1} L^{-1}=J^{*}, \quad \text { or } \\
\left(L P K^{-1}\right) J^{*}\left(K P^{-1} L^{-1}\right)=J^{*} \quad \text { and } \\
\left(L \bar{P} K^{-1}\right) J^{*}\left(K \bar{P}^{-1} L^{-1}\right)=J^{*} .
\end{gathered}
$$

Hence there exists a real regular 2×2 matrix D (equal to $L P K^{-1}$ or $L P K^{-1}$) with det $D<0$, such that

$$
D J^{*}=J^{*} D
$$

That implies $D=\left(\begin{array}{ll}\gamma & \delta \\ 0 & \gamma\end{array}\right), \gamma \in \mathbf{R}, \delta \in \mathbf{R}$. Since $\operatorname{det} D=\gamma^{2}>0$, we get a contradiction. To finish the proof of the lemma, denote again $E:=\left(\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right)$ and use the relation $E J^{*}:=J^{*-1} E$, to derive

$$
E K C_{1} K^{-1} E^{-1}=J^{*-1}=L C_{2}^{-1} L^{-1}
$$

Hence

$$
\left(L^{-1} K\right) C_{1}=C_{2}\left(L^{-1} K\right)
$$

and

$$
\left(L^{-1} E K\right) C_{1}=C_{2}^{-1}\left(L^{-1} E K\right)
$$

or

$$
P C_{1}=C_{2} P \quad \text { and } \quad Q C_{1}=C_{2}^{-1} Q, \text { sign } \operatorname{det}(P . Q)=-1,
$$

for $P:=L^{-1} K$ and $Q:=L^{-1} E K$.

IV. Main result

Theorem. Let $\left(q_{1}\right)$ be a both-side oscillatory differential equation on \mathbf{R} with a π-periodic coefficient q_{1}, and α_{1} denote one of its phases.

Differential equation $\left(q_{2}\right)$ is of the same behavior as $\left(q_{1}\right)$ if and only if a (then every) phase α_{2} of $\left(q_{2}\right)$ satisfies

$$
\alpha_{2}=\varepsilon \alpha_{1} h
$$

for some $\varepsilon \in \mathfrak{E}$ and $h \in \mathfrak{H}$.
Note. Hence there is a $1-1$ correspondence between the decomposition of all π-periodic both-side oscillatory differential equations (q) into classes of equations of the same behavior and the least common covering of the right decomposition of \mathfrak{G} with respect to $\mathfrak{E}, \mathfrak{G} / r \mathfrak{E}$ and the left decomposition of \mathfrak{G} with respect to \mathfrak{H}, $\mathfrak{b}_{l} / \mathfrak{H}$.

Proof of theorem. (\Rightarrow). In accordance with the notations introduced in the beginning of the Section III, let C_{1} and C_{2} stand for 2×2 matrices formed from constants ($c_{i j}$) of relation (6) considering with respect to (at this moment) arbitrary phases α_{1} and α_{2} of $\left(q_{1}\right)$ and $\left(q_{2}\right)$, respectively. Then the property 1 . of the definition of behavior (Sect. I) implies the same characteristic values of C_{1} and C_{2}, the property 3. gives the same elementary divisors of the both matrices. Hence C_{1} and C_{2} are similar and there exists a real regular 2×2 matrix C_{3} such that

$$
\begin{equation*}
C_{1} C_{3}=C_{3} C_{2} \tag{9}
\end{equation*}
$$

Denote by ε_{3} a function from \mathfrak{E} that satisfies (6) with constants taken as elements of C_{3}. Evidently sign $\alpha_{3}^{\prime}=\operatorname{sign} \operatorname{det} C_{3}$. The relation (9) gives

$$
\varepsilon_{1} \varepsilon_{3}(t)+m \pi=\varepsilon_{3} \varepsilon_{2}(t), \quad m-\text { an integer }
$$

or

$$
\begin{equation*}
\tau_{m} \varepsilon_{1} \varepsilon_{3}=\varepsilon_{3} \varepsilon_{2} \tag{10}
\end{equation*}
$$

where τ_{m} denotes the translation $\tau_{m}(t)=t+m \pi$.
If $\left(q_{1}\right)$ is of category $(1, k)$ and the case A in Lemma 4 holds for C_{1} and C_{2}, then C_{3} in (9) can be chosen such that $\operatorname{sign} \operatorname{det} C_{3}=\operatorname{sign}\left(\alpha_{1}^{\prime} . \alpha_{2}^{\prime}\right)$. We have

$$
\alpha_{1} \tau_{1}=\varepsilon_{1} \alpha_{1} \quad \text { and } \quad \alpha_{2} \tau_{1}=\varepsilon_{2} \alpha_{2}, \quad \text { or from (10), }
$$

$$
\left(\varepsilon_{3} \alpha_{2}\right) \tau_{1}=\varepsilon_{3} \varepsilon_{2} \alpha_{2}=\tau_{m} \varepsilon_{1}\left(\varepsilon_{3} \alpha_{2}\right)
$$

The function $\varepsilon_{3} \alpha_{2}$ is also a phase of $\left(q_{2}\right)$, since $\varepsilon_{3} \in \mathscr{E}$ (see Sect. II). According to Lemma 1 there exists $x_{0} \in \mathbf{R}$ such that

$$
\varepsilon_{1}\left(x_{0}\right)=x_{0}+k \pi \operatorname{sign} \alpha_{1}^{\prime},
$$

or

$$
\tau_{m} \varepsilon_{1}\left(x_{0}\right)=x_{0}+k \pi \operatorname{sign} \alpha_{1}^{\prime}+m \pi=x_{0}+k \pi \operatorname{sign}\left(\varepsilon_{3} \alpha_{2}\right)^{\prime}+m \pi
$$

Since $\left(q_{2}\right)$ is also of category ($1, k$), Lemma 2 implies $m=0$ for the relation (10).
Let $\left(q_{1}\right)$ and $\left(q_{2}\right)$ be of category $(1, k)$ and let the case B from Lemma 4 hold for C_{1} and C_{2}. Due to 3 . (see also (2)), we may choose phases α_{1} and α_{2} corresponding. to the special pairs $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ of solutions of $\left(q_{1}\right)$ and $\left(q_{2}\right)$, resp., i.e.

$$
\alpha_{1} \tau_{1}=\varepsilon_{1} \alpha_{1} \quad \text { and } \quad \alpha_{2} \tau_{1}=\varepsilon_{2} \alpha_{2}, \quad \alpha_{1}^{\prime} \cdot \alpha_{2}^{\prime}>0
$$

where both α_{1} and α_{2} satisfy (6) with $C=J^{*}=\left(\begin{array}{rr} \pm 1 & 1 \\ 0 & \pm 1\end{array}\right)$. Hence $\varepsilon_{2}=\tau_{m} \varepsilon_{1}$. According to Lemma $1, \varepsilon_{1}\left(x_{0}\right)=x_{0}+k \pi \operatorname{sign} \alpha_{1}^{\prime}$ for an $x_{0} \in \mathbf{R}$. Thus

$$
\varepsilon_{2}\left(x_{0}\right)=\tau_{m} \varepsilon_{1}\left(x_{0}\right)=x_{0}+k \pi \operatorname{sign} \alpha_{1}^{\prime}+m \pi=x_{0}+k \pi \operatorname{sign} \alpha_{2}^{\prime}+m \pi
$$

with Lemma 2 gives $m=0$, or $\varepsilon_{2}=\varepsilon_{1}$. For the case the relation (10) is satisfied for $\varepsilon_{3}=$ id with $m=0$.

For $\left(q_{1}\right)$ to be of category $(2, k)$, let α_{1} denote the phase of $\left(q_{1}\right)$ that according. to Lemma 3 leads to $\varepsilon_{1}: x \mapsto x+(2 k+a) \pi$. Then

$$
\tau_{m} \varepsilon_{1}(x)=x+(2 k+a+m) \pi
$$

or

$$
\varepsilon_{3} \alpha_{2}(t+\pi)=\varepsilon_{3} \alpha_{2}(t)+(2 k+a+m) \pi .
$$

Since $\left(q_{2}\right)$ is of category $(2, k)$, Lemma 3 gives $m=0$.
Summarizing our considerations, we get $m=0$ for the relation (10) in all possible cases. Thus

$$
\begin{gathered}
\varepsilon_{1} \varepsilon_{3}=\varepsilon_{3} \varepsilon_{2} \\
\left(\alpha_{1}^{-1} \varepsilon_{1} \alpha_{1}\right) \alpha_{1}^{-1} \varepsilon_{3} \alpha_{2}=\alpha_{1}^{-1} \varepsilon_{3}\left(\varepsilon_{2} \alpha_{2}\right) \\
\tau_{1} \alpha_{1}^{-1} \varepsilon_{3} \alpha_{2}=\alpha_{1}^{-1} \varepsilon_{3} \alpha_{2} \tau_{1}
\end{gathered}
$$

or

$$
\alpha_{1}^{-1} \varepsilon_{3} \alpha_{2} \in \mathfrak{G}
$$

and $\alpha_{2}=\varepsilon \alpha_{1} h$ for suitable $\varepsilon\left(=\varepsilon_{3}^{-1}\right) \in \mathfrak{E}$ and $h \in \mathfrak{H}$.
In the cases when α_{1} was not an arbitrary phase of $\left(q_{1}\right)$, but a special one the last relation remains true, because each phase of $\left(q_{1}\right)$ is of the form $\tilde{\varepsilon} \alpha_{1}, \tilde{\varepsilon} \in \mathfrak{E}$, and hence again $\varepsilon \tilde{\varepsilon} \in \mathfrak{E}$. In other words: Once a phase α_{2} of $\left(q_{2}\right)$ is of the form $\varepsilon \alpha_{1} h(\varepsilon \in \mathfrak{C}, h \in \mathfrak{H})$, then every phase of $\left(q_{2}\right)$ is of this form, since all phases of $\left(q_{2}\right)$ form the set $\mathbb{E} \alpha_{2}$.
(\Leftrightarrow). Let (q_{1}) be a both-side oscillatory π-pericdic differential equation, α_{1} its phase, ε_{1} determined by (5), C_{1} being 2×2 matrix of constants $c_{i j}$ from (6). Moreover, let $\varepsilon \in \mathfrak{E}, h \in \mathfrak{H}, \alpha_{2}:=\varepsilon \alpha_{1} h$, and α_{2} be a phase of $\left(q_{2}\right)$. Then $\alpha_{2}(\mathbf{R})=\mathbf{R}$ and $\left(q_{2}\right)$ is both-side oscillatory. Since

$$
\begin{aligned}
& \alpha_{2} \tau_{1}=\varepsilon \alpha_{1} h \tau_{1}=\varepsilon \alpha_{1} \tau_{\text {sign } h^{\prime}} \cdot h=\varepsilon \varepsilon_{1}^{\text {sign } h^{\prime}} \alpha_{1} h= \\
& \quad=\varepsilon \varepsilon_{1}^{\text {sign } h^{\prime}} \varepsilon^{-1} \varepsilon \alpha_{1} h=\left(\varepsilon \varepsilon_{1}^{\text {sign }} h^{\prime}\right) \alpha_{2}=\varepsilon_{2} \alpha_{2}
\end{aligned}
$$

and

$$
\varepsilon \varepsilon_{1}^{\operatorname{sign} h^{\prime}} \varepsilon^{-1}\left(=\varepsilon_{2}\right) \in \mathbb{E}
$$

q_{2} is π-periodic. If we write $\varepsilon \varepsilon_{1}^{\text {sign } h^{\prime}} \varepsilon^{-1}$ in the form (6), the corresponding 2×2 constant matrix C_{2}^{\prime} is similar to $C_{1}^{\text {sign } h^{\prime}}$. Matrices C_{1} and C_{1}^{-1} are similar, since due to (1) and (2), the product of the characteristic values of C_{1} is 1. Hence (q_{1}) and $\left(q_{2}\right)$ have the same characteristic multipliers $(\Rightarrow 1$), and the elementary divisors of C_{1} and C_{2} are the same. For the condition 3. to be satisfied it is sufficient to show that if the differential equation $\left(q_{1}\right)$ admits a pair (u_{1}, v_{1}) of solutions satisfying (2), then $\left(q_{2}\right)$ also has a pair $\left(u_{2}, v_{2}\right)$ satisfying the same relation, wronskians of (u_{1}, v_{1}) and (u_{2}, v_{2}) being of the same sign. Let α_{1} be a phase of $\left(q_{1}\right)$ corresponding to $\left(u_{1}, v_{1}\right)$. Then

$$
\begin{equation*}
\alpha_{1} \tau_{1}=\varepsilon^{*} \alpha_{1} \tag{11}
\end{equation*}
$$

where $\varepsilon^{*} \in \mathbb{E}$ satisfies (6) with $C=J^{*}$. Each phase of $\left(q_{2}\right)$ is of the form $\varepsilon \alpha_{1} h$, $\varepsilon \in \mathfrak{E}, h \in \mathfrak{5}$. The relation (2) holds for $\left(u_{2}, v_{2}\right)$ if and only if the phase α_{2} of the pair (u_{2}, v_{2}) satisfies $\alpha_{2} \tau_{1}=\varepsilon^{*} \alpha_{2}$. Hence such $\varepsilon \in \mathfrak{F}$ and $h \in \mathfrak{H}$ should exist that

$$
\varepsilon \alpha_{1} h \tau_{1}=\varepsilon^{*} \varepsilon \alpha_{1} h
$$

or

$$
\begin{equation*}
\varepsilon \alpha_{1} \tau_{1}^{\operatorname{sign} h^{\prime}} h=\varepsilon^{*} \varepsilon \alpha_{1} h . \tag{12}
\end{equation*}
$$

From (11) we get $\alpha_{1} \tau_{1}^{\operatorname{sign} h^{\prime}}=\varepsilon^{* \operatorname{sign} h^{\prime}} \alpha_{1}$. Hence (12) gives

$$
\begin{equation*}
\varepsilon \varepsilon^{* \operatorname{sign} h^{\prime}} \varepsilon^{-1}=\varepsilon^{*} \tag{13}
\end{equation*}
$$

With respect to the second part of Lemma 4, for $\operatorname{sign} h^{\prime}=1$ also $\operatorname{sign} \varepsilon^{\prime}=1$, since (13) is then satisfied for $\varepsilon=\mathrm{id}, \mathrm{id}^{\prime}=1$; and for $\operatorname{sign} h^{\prime}=-1$, we get $\operatorname{sign} \varepsilon^{\prime}=$ $=-1$ (e.g. for ε in (6) with $C=\left(\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right)$). However in both cases $\operatorname{sign}\left(\varepsilon^{\prime} . h^{\prime}\right)=1$ and for $\alpha_{2}=\varepsilon \alpha_{1} h$ we have $\operatorname{sign} \alpha_{2}^{\prime}=\operatorname{sign} \alpha_{1}^{\prime}$, i.e., the sign of wronskian of $\left(u_{2}, v_{2}\right)$ is the same as for $\left(u_{1}, v_{1}\right)$. Hence the condition 3. is satisfied for both $\left(q_{1}\right)$ and $\left(q_{2}\right)$.

If (q_{1}) is of category $(1, k)$, then $\varepsilon_{1}\left(x_{0}\right)=x_{0}+k \pi \operatorname{sign} \alpha_{1}^{\prime}$ (see Lemma 1), and we have

$$
\begin{gathered}
\varepsilon_{2}\left(\varepsilon\left(x_{0}\right)\right)=\varepsilon \varepsilon_{1}^{\operatorname{sign} h^{\prime}}\left(x_{0}\right)=\varepsilon\left(x_{0}+k \pi \operatorname{sign} \alpha_{1}^{\prime} \cdot \operatorname{sign} h^{\prime}\right)= \\
=\varepsilon\left(x_{0}\right)+k \pi \operatorname{sign}\left(\alpha_{1}^{\prime} \cdot h^{\prime} \cdot \varepsilon^{\prime}\right) \\
=\varepsilon\left(x_{0}\right)+k \pi \operatorname{sign} \alpha_{2}^{\prime} .
\end{gathered}
$$

According to Lemma $2,\left(q_{2}\right)$ is of category $(1, k)$.
If $\left(q_{1}\right)$ is of category $(2, k)$, let $\tilde{\alpha}_{1}$ denote its phase that satisfies (8). Evidently $\tilde{\alpha}_{1} \alpha_{1}^{-1}=: \widetilde{\varepsilon} \in \mathcal{E}$. Then

$$
\begin{gather*}
\tilde{\varepsilon} \varepsilon^{-1} \alpha_{2}(t+\pi)=\tilde{\varepsilon} \alpha_{1} h(t+\pi)=\tilde{\alpha}_{1} h(t+\pi)= \tag{14}\\
=\tilde{\alpha}_{1}\left(h(t)+\pi \operatorname{sign} h^{\prime}\right)= \\
=\tilde{\alpha}_{1}(h(t))+(2 k+a) \pi \operatorname{sign} h^{\prime}= \\
=\tilde{\varepsilon}^{-1} \alpha_{2}(t)+(2 k+a) \pi . \operatorname{sign} h^{\prime} .
\end{gather*}
$$

Since

$$
\tilde{\varepsilon}_{2}:=\operatorname{sign} h^{\prime} \cdot \widetilde{\varepsilon} \varepsilon^{-1} \in \mathfrak{E}, \quad \check{\varepsilon}_{2} \alpha_{2} \text { is a phase of }\left(q_{2}\right)
$$

From (14) we have

$$
\tilde{\varepsilon}_{2} \alpha_{2}(t+\pi)=\tilde{\varepsilon}_{2} \alpha_{2}(t)+(2 k+a) \pi
$$

that due to Lemma 3 shows that $\left(q_{2}\right)$ is of category $(2, k)$.
Hence both in real and complex cases $\left(q_{1}\right)$ and $\left(q_{2}\right)$ are of the same category, i.e. also the condition 2 . is satisfied.

REFERENCES

[1] J. Aczél: Lectures on Functional Equations and their Applications, Acad. Press, New York 1966.
[2] F. M. Arscott: Periodic Differential Equations, Pergamon Press, Oxford 1964.
[3] O. Borůvka: Linear Differential Transformations of the Second Order, The English Univ. Press, London 1971.
[4] O. Borůvka: Sur les blocs des équations différentielles $Y^{\prime \prime}=Q(T) Y$ aux coefficients périodique Rend. Mat. 8 (1975), 519-532.
[5] O. Borůvka: Теория глобаных свойств обыкновенных линейных дифференчиальных уравнений второго порядка, Дифференциальные уравнения 8 (1976), 1347-1383.
[6] M. Kuczma: Functional Equations in a Single Variable, PWN, Warszawa 1968.
[7] W. Magnus \& S. Winkler: Hill's Equation, Interscience Publishers, New York 1966.
[8] F. Neuman: Note on bounded non-periodic solutions of second-order linear differential equations with periodic coefficients, Math. Nachr. 39 (1969), 217-222.
F. Neuman

66295 Brno, Janáčkovo nám. 2a
Czechoslovakia
S. Staněk

77200 Olomouc, Gottwaldova 15
Czechoslovakia

