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ON CONNECTED UNARS WITH REGULAR 
ENDOMORPHISM MONOIDS 

JAN CHVALINA, Brno 
(Received March 3, 1979) 

A monounary algebra, i.e. a pair (A9f)9 where A is a non-void set andfa self-map 
of the set A9 is briefly called a unar. This paper aims to give some conditions of the 
topological and algebraic character equivalent to the regularity of the endomorphism 
monoid of a connected unar. There are used the descriptions of unars with regular 
and inverse endomorphism monoids obtained by L. A. Skornjakov in [12] and 
results of papers [4], [6]. In the below stated characterizations we consider mostly 
endomorphism monoids which are not groups. For the characterization of unars 
whose endomorphism monoids are automorphism groups see [12] Theorem 3. 

Fundamental used notions concerning monounary algebras can be found e.g. 
in papers [5], [8], [11], [12]. Let (A9f) be a connected unar. The set of all cyclic 
elements of (A9f) (i.e. such elements as A that fH(a) «• a for some integer n *z 1) 
will be denoted in regard with [8] by A*2 and further A001 = {x e A \ Ami: there is 
a sequence {xt}i€m such that x0 » x and f(xt+t) = xt for each ieco}9 A0 ** 
=* {x e A:f~l(x) = 0}. A unar is called a cycle if A « Ami. The upper cone of an 
element a, i.e. the set {/"(a): n = 0,1,2,...} will be denoted by [a)/, the lower cone 
{xeA: fn(x) = a for some neco} by (a]f. We agree on denoting the cardinality 
of a set A by | A |. A connected unar (A9 f) with | A | = K0 andf - a permutation 
of A is called a line. A connected unar (A9f) is said to be a cycle with short tails 
or a line with short tails if it contains a cycle or a line C such thatf(*) e C for every 
x e A. If | Bmi | £ 1 for each component (B9 fB) of a unar (A9f) we put a jg ft 
for a9 b e A if there exists n e a> withf*(a) == b and a < fb if a jg fb9 a # b. Further, 
we denote by (A, f) the factor-unar (i.e. the factor-algebra of a monounary algebra 
(A9f)) corresponding to the congruence mf on (A9f) defined by a zsfb if a » b 
or a.beA*32. The monoid of all endomorphisms of (A9f) is denoted by E(A9f). 
For the definition of a regular and inverse semigroup see [3] § 1.9. A certain 
strengthening of the notion of a regular semigroup is the notion of an anti-regular 
semigroup (cf. [10]) called in [1] an anti-inverse semipoup* Let us recall the necessary 
definitions (see [1] and [10]): A semigroup S is said to be anti-inverse if for each 
element aeS there is an element be S such that aba = b and bob = a. The elements a 
and b are then called anti-inverses. 



A saturated topological space called also quasi-discrete ([2] 26A) is a topological 
space (A> t) with the completely additive topological closure operation % i.e. each 
point of this space possesses the minimum neighbourhood (cf. [9]). A discrete space 
of Alexandrov is a saturated T0-space. Compactness is meant in the sense of [2] 
41A, i.e. quasi-compactness considered in [9]. A continuous closed self-map of 
a topological space (A, T) will be called as usual a closed deformation of (A91) 
and the monoid of all closed deformations of this space will be denoted by S(A91) 
We say that a topological space (A9x) has the fixed set property or briefly the 
FS-property (the fixed point property, briefly the FP-property) with respect to closed 
deformations if there exists a non-void proper subset J c i (a point xe A) with 
f(X) = X(f(x) = x) for each/e S(A9 T). 

In what follows g means the usual set inclusion and A c B means A g B 
A* B. 

Theorem 1. Let (A9 f) be a connected unar whose endomorphism monoid is not 
a group. Then E(A9f) is regular if and only if there exists a discrete topology of 
Alexandrov % on the set A such that E(A9f) = S(A91) and the space (A91) has the 
FS-property with respect to closed deformations. 

Proof. Let (A9f) be a connected unar satisfying the assumption of the theorem. 
Since (A, f) contains at most one cyclic element, by Theorem 3.3 [4] there exists 
a discrete topology of Alexandrov r with E(A9 f) = S(A, t) if and only if the unar 
(A, f) has one of the following forms: 

(0 f2 = f, 
(ii) A -« Ami u A°9 where either A0 = 0 or (Am\ S/) is a chain of the type 

co* © co and A0 = 0 (i.e. (A9f) is a line with short tails), 
(iii) A = A0 u Ax, where (Al9 £f) is a chain of the type co with the first element c 

and f(a) « c for each a e A0. 
Suppose A = Aa0i and simultaneously (At001,/) is not a line. Admit there exists 

a non-void set B a A with g(B) = B for each g e E(A9 f). Since/* € E(A9f) for every 
k e co9 the ordered set (B9 S/) does not contain any minimal and maximal element 
and [A)/ g B for each b e B. There exists a pair of elements a9 b e A such that 
aeA\B9 beB and fn(a) = f*(b) for some new. Since elements a,b form a pair 
of h-elements in the sense of [8] Definition 1.22 and xii [8] there exists g e E(A9f) such 
that g(b) = a. We get a contradiction, hence in the considered case for every non-void 
subset Be A there exists an endomorphismg of (A9f) withg(B) # B. Consequently 
(At001,/) is a line in the considered case. Since the existence of a non-void subset 
B g A with the property g(B) = B for each g e E(A, f) implies the inclusion B g 
g Am% u Am2 we have that the case (iii) is eliminated. On the other hand if (Aff) 
is a connected unar with/2 = /and \A\ ^ 2 or (A9f) is a line with short tails then A 
contains an lT(^,/)-invariant non-void proper subset. (A singleton formed by the 
cyclic element in the first case and the carrier of the line in the second one). Therefore 
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there exists a discrete topology of Alexandrov T oH A with S(A, f) « E(A9 f) and 
the space (A, T) has the FS-property with respect to closed deformations if and only 
if (A9f) is either a cycle with short tails or a line with short tails. Now, from 
Theorem 1 [12] there follows the assertion, q.e.d. 

In the following proposition LT(A) means the left zeros subsemigroup of the full 
transformation monoid T(A) on the set A. Recall that a unar is said to be nested 
if the system of all its subunars ordered by means of set inclusion forms a chain. 

Proposition 1. Let (A9f)bea connected unar. The following conditions are equivalent: 
1 ° E(A9f) is regular and LT(A) n E(A9f

k) # 0 for some kern. 
2° There exists a compact saturated topology x on A with the property E(A91) = 

= 5(A, T). 

3° There exists a saturated topology x on A with E(A9 f) = 5(A, T) and the space 
(A, T) has the FP-property with respect to closed deformations. 

Proof. l°-=>2°: Since for some positive integer kem there exists a constant 
self-map g of A with g e E(A9f

k) we have by [12] Theorem 1 (A9f) is a cycle with 
short tails (or without tails). If we define a topology x on the set A by putting a T-C1O-

sure of a subset X c A as xX = X u f(X)9 Condition 2° is satisfied. 
2° => 3°: Let x be a compact saturated topology on the set A such that E(A91) « 

= S(A, T). By [4] Theorem 3.3 the unar (A, f) has one of the forms (i)-(iii) listed 
in the proof of Theorem 1. For each aeA there exists a nested subunar (B9fB) of 
(A9f), an element beB and a surjective homomorphism g: (A9f) -• (B9fB) such 
that g(a) = b and the equality fm(a) = fn(b) with integers m9 n minimal with respect 
to this property implies m = n. Since tn e S(A, T) for each n e co we have that for 
each aeA the closure x{a} is a right cofinal subset of [a)f and has the following 
property: If x9y9ze x{a}9 x <ty <tz then from fn(x) = y9 i

m(y) = z with minimal 
m, n it follows either n = m or z = t(y). Then the least T-neighbourhood of a (i.e. the 
closure of {a} in the saturated topology dual to T) is a left cofinal subset of (d}(. 
Since the space (A, T) is compact by [9] Proposition 1 the unar (A, f) contains a cyclic 
element, say e. Hence f2 = f and g(e) = e for each g e S(A9 x). 

3°=> 1°: Since feS(A9 x) and the unar (A, f) is connected there exists exactly 
one element eeA with i(e) = e. By [4] Theorem 3.3 f2 = f. Condition 1° follows 
easy with respect to [12] Theorem 1, q.e.d. 

Corollary. Let (A9f) be a connected unar. The following conditions are equivalent: 
1° Each element ofE(A9f) has a unique anti-inverse element in E(A9f). 
2° The set A is either a singleton or (A9 x) is the Sierpinski-space for each topology x 

on A with the property S(A9 x) = E(A9f). 
3° There exists a discrete topology of Alexandrov x on A such that (A9 x) is a tower 

space and E(A9f) = S(A9 x). 
4° There exists a saturated tower topology x on A such that the space (A9 x) has the 

FP-property with respect to closed deformations and E(A9f) = S(A9 T). 
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Proof follows immediately from Theorem 1, Proposition 1 and [10] Theorem 2. 

The other characterization is expressed in terms of the groupoid theory. Similarly 
to [5] § 1 we associate a groupoid with every connected unar (A,f). For a, be A, 
denote by m9 n the smallest non-negative integers such that fn(a) e \b)f9 fm(b) e [a)f. 
We put S(a9 b) = m — n. Evidently S(a9 b) -F S(b9 a) = 0 for each pair a9beA 
and S(a9 b) = S(b9 a) = 0 for each pair a, be A™2. Further we put aefb = f(b) if 
S(a9 b) <£ 0 and aefb = f(a) if S(a9 b) < 0. It is to be noted that the groupoid (A9 ef) 
associated in this way with a unar (A9f) is neither associative nor commutative in 
general. In papers [5], [6] the binary operation ef is denoted by Vf. 

The following statement is contained in [5] Proposition 1.2. 

Proposition 2. Let (A9f) be a connected unar such that either A002 = 0 or f2 = / 
ThenE(A9f)~E(A9ef). 

Proposition 3. Let (A9f) be a connected unar with the regular endomorphism monoid 
E(A9f). Then there exists a commutative binary operation o on the set A such that 
E(A9f)~E(A9o). 

Proof. According to [12] Theorem 1 the unar (A, f) has one of the follow
ing forms: 

(1) it is trivial (i.e. | A | = 1), 
(2) f2 = f, 
(3) (A, f) is a line, 
(4) (A, f) is a line with short tails. 

If one of cases (3), (4) occurs, then A = A, f = / . Putting for each pair a,beA:aob = 
= aej-b, we get evidently a commutative groupoid (A, o) satisfying the condition 
£(A, f) = E(A, o) with respect to Proposition 2, q.e.d. 

By an ideal of a groupoid (A,.) we mean a both-side ideal, i.e. a non-empty subset 
/ £ A such that a e / , be A implies a .be J and b .aeJ. The principal ideal 
generated by an element a is denoted by J(a). An ideal / is said to be trivial if | /1 = 1. 
If (A,.) is a groupoid and / an ideal of this groupoid then the corresponding Rees 
factor-groupoid is denoted by (A/J, .j); cf. [3] and [7]. A groupoid (A,.) is called 
distributive if for each triad a,b,ceA equalities a.(b.c) = (a.b). (a.c), (a.b). c = 
= (a.c). (b.c) hold and it is called a BD-groupoid (in accordance with [7]) if it 
satisfies one of the following equivalent conditions (see [7] Proposition 1.2): 

(i) (Af.) is distributive and the set of all its idempotents contains just one element, 
(ii) there is an element eeA with a.e = e = e.a (a zero of (A,.)) and a.(b.c) = 

= e = (a.b).c for all a,b,ceA. 

Theorem 2. Let (A,f) be a connected unar such that the endomorphism monoid 
E(A9f) is not a group. E(A,f) is regular if and only if (A, %) is a commutative groupoid 
containing the least proper ideal J with the following properties: 
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(i) The factor-groupoid (A / / , ej) is a BD-groupoid. 
(ii) If J is principal or contains an idempotent then it is trivial. 

Proof. Let (A9f) be a connected unar with the regular eftdomorphism monoid 
E(A9f) beifig not a group. With respect to [12] Theorem 1 and the definition of the 
binary operation ef we have that (A, %) is a commutative groupoid. If f2 -* f we 
put / = {e}, where e =* A002. If (A9f) is a line with short tails, i.e. A « -4001 u A0 

with (Am%
9f) a line-we put / « A*1. It can be easily shown (see the third part of 

the proof of Theorem 3.8 [6]) that in this case / i s the least proper ideal of the groupoid 
(A, ef). Since the Rees factor-groupoid (A/J, ef) of the groupoid (A, af) is associated 
with a connected idempotent unar (A//, F) (which is a factor unar of (A, f)) we have 
by [5] Lemma 1.3 that (A//, ej) is a BD-groupoid. The ideal / is principal if it 
contains an idempotent of (A, ef), i.e. if / =- {e}, where e is the only cyclic element 
of(A,f). 

Suppose 04,/) is a connected unar such that E(A9f) is not a group and such that 
(A, ef) is a commutative groupoid the least proper ideal / of which satisfies the above 
assumptions. From the commutativity of ef it follows that for each pair a9beA9 

the equality 8(a9 b) =- 0 implies ((a) = f(b). Since E(A9f) is not a group, (A9f) is 
neither a cycle nor a line. If A*01 ^ 0 then it can be easily verified (in the same way 
as in the proof of Theorem 3.8 [6] p. 150) that the least ideal of (A, e§) coincides with 
the least subunar of (A, f) containing the set A°°'(-= Ami). This ideal is non-trivial 
hence (A9f) is a line with short tails. If A™% » 0 then there exists an element a e A 
with 5(a9 x) ^ 0 for each x e A. Then {fk(a): k = 1, 2,...} is the least ideal of (A, ef) 
and since it is principal we have f2 -= f. Hence (A9f) is a cycle with short tails. Apply
ing [12] Theorem 1 we get E(A9f) is regular, q.e.d. 

In [12] Theorem 2 there are given necessary and sufficient conditions under which 
the endomorphism monoid of a unar is an inverse semigroup. In fact these conditions 
strengthen those which are necessary and sufficient for the regularity of E(Aff). 
In the case of a connected unar E(A9f) is an inverse semigroup if and only if 
\f~~1(d) | S 2 for each a e A and (A9f) is either a cycle with short tails or a line with 
short tails (cf. [12] Theorem 2). From this result, using the binary operation ef9 

we get the below stated characterization analogical to Theorem 3.9 [6]. 
For each element a of a groupoid (A9.) we put ^Ja -* {x e A : x.x » a}. Every 

element b€y/a is called a square root of the element a in the groupoid (A9.). If 
I sja | = 1 we say the element a possesses the unique square root in (A».). Especially, 
y/a ~fi(a) for each element a of the groupoid (A9 %) and thus evidently E(A9f) 
is a group (in the case of connected (A9f)) if and only if each element of (A9 ef) 
possesses the unique square root. 

Proposition 4. Let (A9f) be a connected unar. E(A9f) is an inverse semigroup if 
and only if either | sja | = 1 holds for each element a of (A9 ef) or \ y/a | <; 2 for 
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every ae(A, ef) and (A, sf) contains the least ideal J each element of which possesses 
the unique square root in (J, Bf). 

Proof. Let (A,f) be a connected unar. For E(A,f) being a group the assertion 
is evident. Thus we assume E(A,f) is not a group. If E(A,f) is an inverse semigroup 
then by [12] Theorem 2 for each a 6 At we have \f~l(a) \ = 2 and either A = A0 u 
u At001 (where (A^^f) is a line) or A = A0 u A™2. Putting J = A™' in the first 
case and / « At003 in the second one, we obtain the assertion with respect to A0 j&0. 

Assume the groupoid (A, ef) is satisfying conditions from the above proposition. 
Since each element of J possesses the unique square root in (/, ef) and yfa = f1(d) 
for each a e A, the subunar (J9fj) is either a cycle or a line. Since / is the least ideal 
of (A, sf) we have A \ J = A0. Thus (A,f) is either a cycle with short tails or a line 
with short tails and \f1(a) | = | yfa \ S 2 for each a eA. Consequently E(A,f) is 
an inverse semigroup, q.e.d. 

The requirement of the anti-inversibility of E(A,f) enforced a very simple structure 
of the unar (A,f). 

Proposition 5. Let (A,f) be a connected unar. E(A,f) is an anti-inverse semigroup 
if and only if(A,f) is a cycle of the cardinality I or 2 with at most one short tail. 

Proof. Suppose (A,f) has one of the required form. If E(A,f) is non-trivial, 
then either E(A,f) = {idA,f} or E(A,f) = {idA, f,f2}. Since E(A,f) is commutative, 
by [10] Theorem 4 (i) and (ii) it is anti-inverse. It is to be noted that as the multi
plicative table for E(A,f) \ {id^} = {/,/2} can serve the table 3) from [1] Example 2.1. 

Let (A,f) be a connected unar such that E(A,f) is an anti-inverse semigroup. 
Since E(A,f) is regular by [10] Theorem 1 or [1] Corollary 2.1 (i), we have in virtue 
of [12] Theorem 1 and [1] Theorem 2.1 (A,f) is a cycle of the cardinality at most 4 
(except 3) with at most short tails. Admit \A° | J> 2. Assume a,beA°,a^ b. 
Since there exists geE(A,f) such that g(a) = b, g(6)eAV°\ we have g5 # g thus 
in regard with [1] Theorem 2.1 E(A,f) is not anti-inverse. Hence (A,f) is a cycle 
with at most one short tail. Then E(A,f) is a commutative monoid. Admitting 
| Am* | = 4, we have / 3 # / , which is a contradiction in virtue of [10] Theo
rem 4. Consequently | A™2 \ ;g 2, q.e.d. 

Remark. It is easy to verify that E(A,f) is anti-inverse for a connected unar (A,f) 
with | A | > 1 if and only if the groupoid (A, ef) has one of the following multiplicative 
table (or the other formed by a permutation of elements): 

ß/ a b 

a a a 
b a a 

ч a Ь 

a Ъ a 
Ъ Ъ a 

Ч a Ъ c 

a Ъ b b 
Ъ Ъ c Ъ 

c Ъ c Ъ 
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