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MONOTONICITY THEOREMS FOR SECOND 
ORDER NON-LINEAR DIFFERENTIAL EQUATIONS 

MIROSLAV BARTUSEK, Brno 
(Received November 23,1978) 

1. Consider the differential equation 

0) yn+f(t,y,y')~o 
where/is continuous on D «• {(t, y, v): te\a,b),b £ oo,yeR,ve R},f(t, y,v)y>0 
for y * 0. 

A non-trivial solution y of (1) is called oscillatory if there exists a sequence of 
numbers{tk}f suchthata £ tk < tk+i,y(tk) - 0,y(t) & Oonfo, fk+1),k » 1,2,..., 
lim tk = b holds. 

In all the paper we shall omit the trivial solution y &• 0 from our considerations. 
Let y be an oscillatory solution of (1) and {tk}f the sequence of all its zeros. 

Then there exists exactly one sequence of numbers {xk}* called the sequence of 
extremants of y, such that tk < xk < tk+1, y'(xk) = 0 holds. This is a consequence 
of the following lemma (see [1], [2]): 

Lemma. Let y be an arbitrary non-trivial solution of (I) and t% < tt its consecutive 
zeros (y(t) *- Ofor te(tl9 f 2)). Then ti, t2 are the simple zeros ofy, there exists exactly 
one number x such that ft < x < t2, y'(x) « 0 holds. Further, 

f(t,y(t),y'(t))>0, te(ti9x), 
f(t,y(t),y(t))<0, te(x,t2). 

Denote Dx = {(t,y, v): (t,y, v)eD,y > 0}, D2 - {(t,y, v): (f,y, v)eD9y < 0}, 
D3 "* {(t,y,v):(t,y,v)eD,v¥>0}9 D4 « {(t,y,v): (t,y9v)eDuv> 0}, D5 • 
- {(t,y, v) : (t,y, v)eD2, v > 0}, D6 - {(t,y, v): (t,y, v)eDi9v< 0}, Jk~ fo, tfc], 
Lk « [W*+i] - k~ 1,2,3,... 

Consequently, we must state some of the following assumptions on the function 
f(t,y,v) 

(2) f(t, -y, v) « -f(t, y, v) in D, 
(3) f(t,y, -v) ~f(t,y, v) in D, 
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(4) -§•• X" exist in D> "^ exists in D*> 
(5) / i s decreasing (increasing) with respect to t in Dt(D^9 

(6) / i s increasing (decreasing) with respect to t in DX(D2)9 

(7) jff(t,y,v)£0 inD, 

(8) / i s non-increasing (non-decreasing) with respect to v in D4(D5)9 

(9) / i s non-decreasing (non-increasing) with respect to v in D4(DS)9 

(10) / i s non-decreasing (non-increasing) with respect to v in 2>4(-06)-

Put Ak- fk+1 - ffc,5fc«Tk-t*,yfc=- ffc+1 ~ T k , * = l , 2 ,3 , . . .Thus4«5* + yk. 
Our aim is to find conditions under which the sequences {| y(xk) |}J°, {!/(**) l}f 
(i.e. the sequences of the absolute values of all local extremes of the solution y and 
its derivative) and {Ak}f are monotone. This problem was studied e.g. in [3—7], but 
for the special cases of the differential equation (1): 

f+f(t,y)g(y')~o in [3], [4], [7], 
y*+/(t,y) = 0 in [6], 

/ + # ) / C v ) W = 0 in [5]. 

We use the method of "local inverse functions" used in [3]. As the oscillatory solution 
y(t) is monotone on /* or Lk9 there exist the inverse functions Tltk(z) and T2tk(z) 
to | KOI on Jk and Lk9 respectively, z e [0, | y(xk) | ] , k == 1,2,... Similarly, as 
y"(t) » 0<» t « tk9 the function y'(t) is monotone on /k or Lk; let us denote the 
inverse function to | / ( t ) | on Jk and Lk by Tuk(z) ze[09 \y'(xk)\] and T$,*(z), 
z 6 [0, | / ( t*+ 1) |]» respectively. 

The differential equation (1) has been investigated in [3], too. The basic results 
are given in the following 

Theorem 1. Let y be an oscillatory solution of (l)t 

(i) Let (5), (8), ((6), (9)) and (3) be valid. Then 

1 y'(Tuk) | fc | y'(T2tk) |, xk - 7\,fe £ T2>fc - t*, 
(| /CTM) | £ | /(r2, fc) I, xk ~ r l t k ^ T2tk - T*), 

* 6 [0, | ><**) | ] , k » 1, 2,. . . Ao/ifc, J*? rAat, to particular, the sequence {| / ( ^ \}f is 
non-increasing (non-decreasing) and Sk g yk (5k ^ y*). 

(ii) Let (5), (10), ((6), (8)) and (2) be valid. Then the sequence {I Ktk) \}f is non* 
decreasing (non-increasing) and 

I y'(rUu) I £ 1 y'(T2j |, z 6 [o, | j<ti) I], 
(I y(TtJ) I i I y'(T2J I, * « [o, i ***«) OK 
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2. Theorem 2. Let y be m oscillatory solution of (i) and let (3), (4), (5), (i) Im 
valid. Then 

I y'(Tu0 I 2 I y'(T2tk) I, t* - TUk £ T%tk - tft, 

z € [0, | ;K**) I], fc « 1,2,... rto/dr- 50 li%ar» In particular, the sequence (| /(f^) \}f 
is noMncreasing and Sk £ yk, k «• 1,2,... ho/dy. 

Proof. Let y(t) > 0 on (tkf tk+l). If y < 0, the proof is similar, 1%us especially 
/(/, ;K0, /(0) > 0, /(f) < 0 on this interval, /(f) > 0 for f e [f*, t*), /(f) < 0 fee 
* e (tk> f4+J (see Lemma). Let k be an arbitrary integer. Put for the simplicity Tt «• 
- r M f T2 - T2tkf y[ - /(.T,), j£ - / ( r 2 ) , tf - f(Tt% f2 - / ( r 2 ) . From this 
and from the assumptions of the theorem we obtain for the fixed z e [0,Xf*)). 

dz-(/i - l.v.1) - 3 - + 7T - TTTTT-- Iy-l-ATi.z.yi) + y[.KT2,z,y'2y] - /,/ _.,,- u _ J£ + A L 
y'i y'i y'i\y»\ 

-T/lVrCCyi - I y'zl)/(T2,Z,y'2) + \y'2\(/(T2,Z,y2)-/(T.,z,y2)) + 
yi I y_1 

(ii) +1 y. I (/(Ti. -. y'i) - /(Tt, z, yi))], 

-£-(vi — I_vil> < -TTTTCO'. - y.)/(Ta;z,y2) + |y2 |x d z .vi I J-a I 
(12) x(/(T.,z,y2)- /(T. ,z, /1))] , 

-^-(/i - / .) - -^-(-/(T., z, y't) + /(T2, z, /-)) . 

= -^4-/^1.^^-^/^,^/)--^^/^,.,^) + 

^ - ^ j ( T 2 ; z , y 2 ) + | - (T2,z,y2) + | ' 

Now we show by the indirect proof that 

(14) / . - I y'2 I _; 0 forzetO.yfr,.)] 

holds. Let £ € [0, yCr*)) be a number such that y[(£) - I .v_(£) I < 0, The validity 
of the following relation follows from (12) 

.vifo) - I y'M I - 0 •*•-g-O-W * I J'-*'*) I) < ° 

and thus the following relation must be valid 

(15) .v'i-l/al<0 for*etf,.Kti)). 

m i. 
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From this and from (13) we have 

•s-w-/-)* 
Ł 

\y'z 

As 

\-ĄГf{Ti,z,y\)-fíl-f{Tí,z,y-t)-.y'г^-f{j'2,z,yĄ 

-ly-fЊ>z'ń) + Jӯ f(т>'z- y'2)' z є K. УЫІ 

lim -£-/(Г., z, /,) = -£- Дt ł f Xтt), 0) < 0, 
*~Hъ) C í ö í 

(we must use the assumption/(t, y, v) = f(t, y, — v)) we can see that 

lim ~ 0 t f - y a ) - a > . 

Thus there exists a number £t S= £ such that ----- 0>i' - y'£) *> 0 for z € / = [^, ;K**)'] 

holds and from the fact that y"t - y2 = 0 for z = J<T*) we can conclude that y'[ -
— )>2 £ 0 on /. According to (11) 

~{y't - |yil)--V(/i - T 4 T ^ ) « -V(/I - / j s o d z y% \ \/i\ J yi 
on / and (see (15)) y\(z) - | /2(z) | £ yjfo) - | ^ ( ^ ) | < 0, z € /. However, it is 
a contradiction because y[ - | y2 | = 0 for z = ;<**)• Thus we proved that (14) is 
valid and the first part of the statement is proved. 

Consider two functions ht(z) = tk - 7\(z) = 0, A2(z) = T2(z) - Tk = 0, z e 
6 [0»>>(T*)]. From the proved part (14) of the theorem it follows that 

-4-[*iW - *a(*)] - - 4 ~ 4" » °' z€[°' ***))• 
d 2 yl )>2 

The function Aj - A2 is non-decreasing and with regard to ht(z) = h2(z) = 0 for 
z = (<y(t̂  we can conclude that At $ h2, i.e. T* - ^(z) «£ T2(z) - Tk, z € [0, X**)]-
The theorem is proved. 

The following theorem can be proved in the same way as Theorem 2. 

Theorem 3. Let y be m oscillatory solution of (1) md let (3), (4), (6) and (8) be 
valid. Then 

| y>(Ttk) ] S I /(!•*) I, tk - r u fc F2k - xk, 
« [ 0 , | J < T ^ | ] , fc « 1,2,3,... 
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holds, so that particularly the sequence {) /(Q \}f is non-decreasing and I* ji£ f*t 
k = 1,2, 3, . . . holds. 

Theorem 4. Let y be an oscillatory solution of (I) and let (3), (4), (5) mA (7)t be 
valid. Then 

I y(T& | > I y(T*d I, i e (0, | /(tfc+i) I], 

A: = 1,2, 3, . . . holds. The sequence {| /(h) \}? itself is decreasing. 
Proof. Let y(t) > 0 on (tk9 tk+t). If >> < 0, the proof is similar. Thus /(*) < 0, 

f(*>y(t),y'(t)) > 0 on this interval, /(t) > 0 for t e [ffc, T*), / ( 0 < 0 on (tfc, tfc+i]. 
Let k be an arbitrary integer number. Put for the simplicity Tt » T%k% T% m Tik9 

yi~yiTt), y2-y(Tt), tf-Zdy, tf-/(ra), /=(0 ,c) , e « min (/(**)» 
I /(t*+i) I)- We have for z e 2" 

(16) ^ - ^ . . ( ^ - - L ) . 

+ ^ - [ - | - / ( T 2 ' "•z) - - |r / ( T- *•z) + ^r / ( T" *• «>]• 
According to (17) and y\ — y'i = 0 for z = 0 we can see that 

l i m A ( y j _ ^ ) < 0 . 

There exists an interval It » (0, 0 such that y\ - yN
% < 0 on It. Further, it is shown 

that we can put It = I. On the other hand let IJ be the smallest number tf®I such 
that yl(n) - yl(n) - 0. Then yl(z) - j£(*) < 0, * € (0f IJ), 

(18) ^'(0) - ^(0) Ф 0, Л ( 0 ) - Л ( 0 ) Ф 0 

_d_ 
dz 

and according to (16) -r-0' i - y2)>0,ze (0, n). 

Therefore 

(19) ^ i - J ' 2 > 0 for-6(0, if]. 

Consequently, 

o * fM - fM -
- [-/Pi,*,*) +XT2,yitt,)] + [-ATz,yi,fi) +f(T2,y2,tt)] < 

< -Mi.yi, n)+f(Ti,y*>*i). 
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The inequality y% < y% following from the notation - J ~ / ^ 0 is a contradiction 
dy 

to (19). Therefore 
(20) rtto-jm<0> 16/ 

and yt(z) - y2(z) > 0, *e(0, c] (use (20), (16) and (18)). As a consequence, we have 
y2(c) - 0, yt(c) % 0 wherefrom c « | /(**+1) |, | /(**) | > | yVk+i) I- The statement 
of the theorem is proved. 

The following theorem can be proved in the same way as Theorem 4. 

Theorem $. Let y be m oscillatory solution of (1) and let (3), (4), (6) and (7) be 
valid. Thm 

| y(T*k) | < | y(Ttk) |, * € (0, | y'(tk) |] , ^ « 1,2,3,... 

In particular, the sequence {| y'(tk) \}? is increasing. 

Theorem 6. Let y be an oscillatory solution of (I) and let (2), (4), (5) and (7) be valid. 
Thm 

I Mi) I £ I JKJU+I) I, ^ e [o, i y(tk+1) i] 

ho/ds, j© f&tf, especially 9 the sequence {| X**) \}f is non-decreasing. 
Proof. Let y'(t) > 0 on (tk9 tk+i). If / < 0 holds, the proof is similar. Thus 

y(t) < 0,/(t,y(t)> /(f)) > 0» /(f) > 0 on [rfc, W and y(t) > 0,/(t, y(t), y'(t)) < 0' 
y*(0 < 0 on (tk+%, T*+1] (see Lemma). Let k be an integer number. Put for the 
simplicity T2 » ra%, 7\ - Tt%+1, * - y(Tt)9 y2 * X^) , /[ - / ( 2 U yj -
» / ( r 2 ) and J » [0, y'(ik+t)). Then we get for the fixed z e I: 

(21) — ( l ^ l - y , ) - — - - ^ -
dz fi /t 

Z Atf(T2,\y2\,z)-f(Ti9\y2\fz)}^tf(Tl9\y2\9z)^f(Ti9yi9zy}}. 
yl\yl 

Now, considering 4he assumptions of the theorem, we have 

(22) \y2(n)\ - yM - 0*- l - ( |y a ( j , ) r - yM) > 0. 

The following relation will be proved indirectly: 

(23) \y2(z)\-yMS09 zel. 

Let a number £ e / exist such that | j>2(0 | - y%(0 > 0, then it follows from (22) 
that 

(24) lft(*)l ~ *<# > 0 for z€lt ^{^/(t^)). 
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Furthermore, if y2 •• | y" \ for some z e / „ then 

0 - ^ - W I - -AT2,y2,z) -A-", ,* ,*) -
- [/(r2,1^, |,z) -f(Tlt\y2 I, j)] + [/(r„ | va |,z) - / fT , , * ,* ) ] ^ 

*/(-",, I * I, z)-f(Tlt.v„z) 
and because/is non-decreasing with respect to y we obtain the relation y* — | y\ I «• 
** 0 -> | v2 | <;>>.. Taking (24) into consideration, one of the following inequalities 
is valid 

(25) / 2 - | v ; i > 0 on i„ 

(26) v ! | - | v ; | < 0 on/„ 

But if (26) is valid, then 

0 >y'i - \yl I - -f(T2,y2,z) -f(T1>yi,z) -
- [ / (r 2 , | .v 2 | ,z)- / (r„ |^ | ,z)] + 

+ [f(Tx, \y2 \,z) -f(Ti>yi,z)1 >> 0, z e / t 

and we get the contradiction. Thus (25) is valid and it follows from (21) and (24) 
that 

^ ( | v 2 | - v O = z ( - X - - L ) > 0 , z e / „ 

I y2(z) I - y,(z) >. I y2(Z) I - * ( 0 > 0, z e [{, /(rt+,)). 

Especially for z «• /(.t+i) I y2 I — >"i > 0, which is a contradiction, as yt =» y2 «• 0 
for z ='/(»*+1). So we have proved that the inequality (23) is valid. For z «• 0 in 
particular, we get | y(T2) | £ yiTt). 

\ fif 
Theorem 7. Let the assumptions of Theorem 6 be fulfilled. Let — —- be non-

1 /5f 
increasing with respect to t and y in Dx and let — -~- be non-decreasing with respect 

to t and y in D4 and non-increasing with respect to t and y in D6. Then 

Tlk-xkgTk+i - Tf,k+l9 ze[0f\y'(tk+1)\lsothatyk£5k+t9k~ 1,2,3,... 
holds. 

Proof. Let /(/) > 0 on (T*, T4+ t). If / < 0, the proof is similar. Let Tt, T& yu 

y% >y\»yl ^ °f the same meaning as in Theorem 6. We prove the inequality 

(27) yl(z) - | fx(z) | £ 0, * e (0, / ( W ] « / 

by the indirect proof. Let { 6 / be such number that yJK) - I >>J(£) | < 0. Then there 
exists tj > £ whereby 
(28) f%(z) - \yl(z)\ < 0, ze frf f )* /, 
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y'M = I yltt) I (Use the fact that y2(z) = | y'[(z) | for z = y'(h+1)) a n d 

d 
dz 

( І П ^ - І П | / ; D = 

_1 

Уá2 

+ 

-\^f{T2,\y2\,z)-Z~f(T2,\y2\,z) + -^f(T2,\y2\,z).y^ 

^[^/(T.y.^-z^/^^.z)-/^/^,^^^ 

y2 

• |-/(T2 , | .v2 | ,z) ^ r / ( T . > y . , z ) 
H~ 

/ ( r i . i ^ i , - ) /(П.^i .г) + 

ðғ-
Z(r2,l>*2|,z) 

ÕV 
f{T,,Уl,z) 

f(T2,\)>2\,z) f{T1>Уl,z) 

As | y2(z) | < yx(z), z e[0,yf(tk+1)), then ^~( lny 2 - In | y\ |) < 0 and thus the 

function is decreasing. As ^ 2 ^" 
lyil ly'iOOl 

1, we can conclude that y"2(z) ̂  | y\(z) |, 

2 € [£> ?]• This *s a contradiction to (28), so that (27) is valid. 
Consider two functions h2(z) = T2(z) - xk, hx(z) = rfe+1 - Tx(z), z e [0, y'('*+i)]« 

Then 

d [ft^z) - ft2(z)] = - J _ - - i - = 0, z є [ 0 , / ( W ) . 
УÌ. Уг 

åz 

The function hx — A2 is non-decreasing and with respect to /̂ (O) = h2(0) = 0 we 
can conclude that hx*z h2, i.e. T2(z) — rfe ^ xfe+1 — 7\(z). The theorem is proved. 
The following theorem can be proved similarly to Theorems 6 and 7. 

Theorem 8. Let y be an oscillatory solution of (1) and let (2), (4), (6) and (7) be 
valid. Then 

I y(T*2k) | ^ | y(T?,k+1) I, z e [0,1 /(*fe+1) |] 

holds, so that in particular, the sequence {| y(xk) |}J° is non-increasing. If, in addition, 

_ . _ J L is non-decreasing (non-increasing) with respect to t(y) in Di9 —--r— is non-
f oy J ov 

increasing (non-decreasing) with respect to t(y) in D4(D6), then 

T*2k-<ck*tTk+i-Tlk+i, ze[0 , | / (** + 1 ) | ] . 

It should be emphasized that yk § Sk+i, k = 1, 2, ... holds. 
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Corollary 1. Let y be an oscillatory solution of (I) and let (2), (3), (4), (5) and (7) 

be valid. Further, let — ~— be non-increasing with respect to t and y in D4 and — —— 
f dy J dv 

non-decreasing with respect to t and y in D4. Then the sequence {| y'(tk) \}f is non-

increasing, {| y(rk) |}f and {Ak}™ are non-decreasing. 

Corollary 2. Let y be an oscillatory solution of (1) and let (2), (3), (4), (6) and (1) 

be valid. Further, let the function — -^— be non-decreasing with respect to t and non-

1 14" 

increasing with respect to y in D4 and — -^— be non-increasing with respect to t 
f ov 

and non-decreasing with respect to y in D4. Then the sequence {| y'(tk) |}J° is 
non-decreasing, {| y(rk) |}J° and [Ak}f are non-increasing. 
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