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INTRODUCTION 

We start with the notation and the terminology. By the curriers q§Q§... we 
mean the continuous real functions q(t)9 Q(t)9... in open intervals. We deal with 
2** order differential equations 

(?) f-q(*)y 
and 
(C) Y* - Q(t) Y 

provided the coefficients q, Q are continuous in convenient open intervals. 
For any two equations (q)> (Q) there are considered transformations Of the form 

Y(t) ** m(t)y(ot(t)) with convenient m(t) and a(f), where y and Y are solutions 
of (q) and (Q% respectively. 

Solutions of the present differential equations are considered in open intervals 
only. By the term integral, we mean a non-continuable solution which is, more­
over, for the differential equations (q)9 (Q)9... a non-trivial one. 

Recall that for any map / : M -*• N the symbols M « Dom/ and N m Im/ 
are used. 

It is proved [1] that 
1* m(t) -» const/V| a'(f) | and thus the transformation is of the form 

C) Пt) УІФ) 

2° if the last formula holds in some open interval /, then a is a solution in J 
of the 3rd order non-linear differential equation 

(q,Q) -{«,'} + ?(«)«'2 «#*•), 
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where 
, . 1 ot" 3 «"2

 / r r i / 1 V 1 / V Y 1 / V Y 

is Schwarz's derivative, 
3° fdr any integral y of (q) and a of (#, Q) the function (*) is a solution of (fi) 
in Dom a and the formula 

(») , .-Sfi. 

holds in Im a, where A( = a"1 means the inverse function. 
4° for the arbitrary initial conditions a0 6 Dom q9 aj> + 0, a£ € R at t0 e Dom Q 
the equation (q>Q) has the unique integral a. Thus <xeClQmQf a' + 0 and a 
approaches the boundary of Dom Q x Dom q9 

5° for integrals ft of (g, 0 and a of (g, 5) the composition fi o a — if it exists, 
i.e. iff Dom p n Im a is an open interval — is a solution of (qf q)f 

6* for any integral a of (q9 Q) the inverse function a"1 is an integral of (Q, q). 
Note that the equation (q9 Q) splits in two equations: one of them is 

V«'(-j=)ч «(«)-a - «fl ,v« 
and admits only increasing solutions, the other is 

'-_ (-i=ÿ+fl(aKa-Є(.) 

and has only decreasing solutions. 
Let us borrow the symbol [yfz] for denoting the ordered couple of linearly 

independent integrals of the equation (q) and call it a basis of (q). Putting any 

basis [yf z] of (?) to the form y = ±r sin a, z = ±r cos a, r > 0 we get --- = tg a 
z 

and r-V?T7--?__.. 
Vl-'l 

y 

. Every continuous solution a in Dom q of the functional equation tg a = — is 

called a phase of the ordered couple [yf z]. 
There holds [1] 

7° every phase a is an integral of the differential equation 

(-1,1) -{«,*} - *'2 - <_(0 
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in Dom q and, on the contrary, each integral a of ( - 1 , q) exists in Dom q and is 
a phase of (q), i.e. of some convenient basis [y9 i\ of (q). 

Consequently every integral w of (q) is expressible in the form 

w(t) ~ -yJL=%in(m ~ b), 
V|«'(0! 

where a, 6 6 R. 

1. BOTH-SIDED OSCILLATORY CARRIERS AND PHASES 

Henceforth only both-sided oscillatory equations (q)f ( 0 , . . . in R are considered. 
Without any loss of generality we limit ourselves to increasing phases and put 

ty * {a e C | | a' > 0, Im a « R}. 

Evidently }̂ is a group with respect to the composition of functions. Every 

a e 5̂ is the phase of the basis - ^ J - , C0,if of the both-sided oscillatory equation 
L s/a' V«' J 

($r) in R, where q(t) ~ - {a, t} - a'2. 
On the contrary, if a is any increasing phase of the basis [y, z] of some both-sided 
oscillatory equation (q) in R, then a is an integral of ( — 1, q) in R and according 

to the property 3° the function w -= —— is a solution of (q) in R. Since w has 
si a9 

infinitely many zeros at — 00 and -f 00 the phase a fulfils Im a •» R and thus 
a e f . 

This proves that Ĵ is in fact the group of (increasing) phases and can be written 
as Ĵ a* y < — l, q} where q ranges over all both-sided oscillatory carriers in R, 
the union being disjoint and provided that < - 1 , q> means the set of all increasing 
phases of the equation (q). 

Let us denote the subgroup < - 1 , -1> by <£, i.e. the set of all increasing integrals 
of the equation 
( -1 , -1 ) - { a , t } - a ' 2 - - L 

By the same arguments as in [2] it can be proved that affi « 6. In comparison 
with the basic model we have put here — 1 instead of e. We denote here by (q, {?> 
the set of all increasing integrals of the differential equation (q9 Q). The map F is 
here tg t and M is the set of all functions tg a(t), where <x(t) ranges over % 

The group Jtf is here the group of all real homographies h(t) -» • A • .• with 
ct *r $ 

the positive determinant. The multiplication Jt o % s Jt is here the composition 
of functions. 
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We can see that the subgroup 3 -=* r~ *(-T*) is here the set of all a 6 ^ such that 
tg a(0 •* tg r, i.e. 3 = {«v}*«z where Z denotes the set of all integers and ev(#) « 
ms t + vn. In other words 3 is the infinite cyclic group generated by the function 
e(0 * I + n. 

The basic properties, known from the basic model, of the decomposition tyj£ 
and the map r : $$-*> Jt are here consequences of the following statements 
1° {i, t} as 0, where i denotes the identity on R, 
2° {tgM} = 1, 
3° {a, t} =- {/?, t} iff there exists a homography 
h 6 j f such that /? = A o a, (JP are homographies with det 4= 0) 
4° for the composed functions ft o a there holds 

{/?oa,0 = {i8(a),oe}a'
2 + {a,0. 

2. BOTH-SIDES OSCILLATORY BASES AND DISPERSIONS 

For every both-sided oscillatory carrier q(t) on R let us consider the correspond­
ing 2-dimensional real vector space f f consisting of the zero function on R and all 
integrals of the equation (q). 

If u =s [y, z] is a basis of (q), then the formula tg a = — implies a'/cos2 a * 
z 

» - W(u)/z2
9 where HV(ii) means the Wronskian of the basis u. Hence here the 

constant value W(u) has always the opposite sign than a'. 
Since we consider the increasing phases only, we must limit ourselves to the 

bases u == [y, z] with negative Wronskians. Let <g> denote the set of all bases 
of (q) the Wronskians of which are negative. Then we put 01 = \J (q\ whore q 
ranges over all both-sided oscillatory carriers on R. 

To obtain the realization of the map A :M-+*Jt9 known from the basic model, 
let us put Au m 2L for every basis * -= [y, z] e 31. All needed properties of this 

z 
map A follow from the statements l ° - 4 ° sub 1. about Schwarz's derivative. 

If u « {y% z\ is a basis of (q\ then all bases V = [F, Z] of (q) are given by the 
formula 

where k ** I I ranges over all real non-singular matrices. 

Owing to the formula W(V) » >F(»). det k we must choose ^f as the set of all 
2** order real matrices with positive determinants. Evidently this group Jt with 
multiplication of matrices as the group operation works as a group of permutations 
on # . 
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The kernel 0t of the homomorphism © : J f -wj f is the set {A/} A no where 

' "* I o i Jam* ^ r f̂tges over all real numbers different from zero. 

For every a e ty and every at « [y9 2} e 91 the product u a a is defined by the 
formula 

.-.fifsa .fasti 
LVa'ff) ' Va'iOJ 

( •%) «D 

'(0 

according to the introduction. Hence the multiplication J1 D $ « # is well defined 
and we can see that it is associative with respect to A, Jf and $ and fulfils all other 
needed properties supposed in the basic model. 

A phase (p ety will be called a dispersion of the carrier q if it satisfies the differen­
tial equation (q, q). The set <q, q> of all dispersions of the carrier q is a subgroup 
in % conjugated with C = < —1, —1> by the formula < ? , ? > a s a " 1 o i o « for 
any phase a e < - l , f > . 

The nucleus 3 of (B is the kernel of the homomorphism B :&-+*>& which 
assigns the homography h e Jf to the dispersion t\ e (8 according to the formula 
tg rj « h o tg L This nucleus 3 generates the nucleus 3 f of <#» ?> by the formula 
3 f = a"1 o 3 o a for each a € < - 1 , q} owing to the normality of 3 in ®. 

Two things are here particularly important, first that 3 f are infinite cyclic 
groups and secondly that we deal with increasing phases only. If the investor of 
the group 3 f in $ is defined as *3f « {a € ty | a o y « y""1 o a V y e 3 f} and the 
centralizator as ^ 3 f - { a € ^ | a o y = = = y o a V y e 3 f } * tben owing to the first 
property of 3 we have a € *3 iff a o g =- g"1 o a and a 6 *3 iff a o e *» c o a. The 
second property implies that *3 =* * since for a 6 *3 it is a o e ** e*1 o a or 
a(i 4- 7t) a- a(r) - rc which contradicts the increasing of a. The first property 
ensures that *3 = *3 u *3 where n 3 « {a € Ĵ | a o 3 « 3 o a} is the normali-
zator of 3- Thus we have here n 3 ~ *3 and consequently the isomorphism 
*a : 3 - | ^ 3 f such that y »-• a"1 o y o a for each y 6 3 is really independent on 
« e < - l , f > owing to the inclusion CE £ n 3 «• *3* Hence the generator f> «* 
«= a""1 o c o a of 3 f is determined univocally and independently on a € < - l , #>. 

In other words, for the dispersions ev € 3> ^v € 3 f and the phases a s <—1, f > 
we have the Abelian relations a o q>v * ev o a, v 6 Z. 

Recall that the notion of Abelian relations for the group 3 according to the 
basic model implies that for every y e 3 the mapping y *•* a""1 o y o a is an auto­
morphism o£3 independent on a taken from the same class of the decomposition 
«/ne3)n<g. 

Since here <£ £ *3* we have only one automorphism for all a € € , which it 
necessarily the identity. Hence 3 s % where % means the centre of <& Certainly, 
there holds 3 f S H$* #> for every carrier q. 
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Note that in this 2ttd order reaction we have 8Jf = {1} and 8Jf = 0t = {Af}*#<>• 
This implies B<£» q> £ 3 f = *<#, ?> and hence we have here a very particular 
realization of the basic model, namely that fulfilling 8(q, q> = 3 f = *<?» ?> and, 
moreover, BJt = # . 

3. HOMOMORPHISMS AND PSEUDONORMS 

Certainly, we still suppose that all carriers are both-sides oscillatory on R. 
We deal with three decompositions tyffi, Jf/tJt and £fttf the first two being 

in one-to-one correspondence under the map F and the last two under A. Their 
classes can be written as < - l , q>, <0, q} and <#>, respectively. Note that the 
notation <0, q} has here a real sense since £ e <0, q} are all solutions on R with 
increasing branches of the differential equation 

(09q) -{£><} ~q(0-

For every £ e <0, q} the homomorphism *C : <g, q> -•* j f is defined by the 
equation { o a = A(. Its kernel is 3«-

In this realization of the basic model the group jf has the special property 
similarly as Jf, namely that the implication (ktu = k2u) => (kt = fc2) holds for 
any fixed u e 3i and kx, fc2 e Jf. 

For every « e <#> the homomorphism *u : <#, #> -• jf is defined by the 
equation u • a = fc*, i.e. by the equation 

where « = [}>, z] and fc = . Passing to the Wronskians, we get W(u(a)) = 

« W(») • det fc, where on the left it is the value of W(u) at the number a(t). Hence 
we have necessarily det fc = 1. 

The most important thing now is to prove that the group Jf' of all unimodular 
2nd order real matrices with the determinant equal to 1 is the image of the homo­
morphism *«. We can prove a slightly more general 

Lemma 1. Let u = [y, z] be a basis of an arbitrary (not necessarily both-sided 
oscillatory) differential equation (q) defined in some open interval Dom q £ R 

and similarly U = [F, Z"\ a basis of (Q) defined in Dom Q <= R. Let C » — and 
Y z 

Z = — be the corresponding semi-phases. 
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There exists a solution a of the differential equation (?* Q) such that 

O M . K O and ~^L~Z(0 
V|«'(0I Vl«'(0! 

holds if and only if the absolute values of Wronskians are equal, i.e. | W(U) I m 
«B | W(u)\9 and an open interval / g l m f n l m Z exists such that sgn jKao) m 

« sgn Y(t0) (or sgnz(a0) = sgnZ(f0)) is fulfilled for some a06C~*(«0 a**d f0e 
eZ'\J). 

Then a can be determined by the initial conditions a(f0) « a0, a'(*o) •• ao 
and a ^ ) = a0, where a0 is uniquely calculated from the relations 

and a0 is uniquely calculated from the equation 

[YXt0j] _ r/(«0)i /— i rn . 0 q«; 
LzwJ " L-'(«o)J V|ao1 sgna° n w j « • 

Moreover, the formulae (* *) hold in the Dom a of the whole integral a of (qf Q) 
which is given by those initial conditions. 

Now, in case of both-sided oscillatory carriers on R it is clear that the condition 
of lemma is satisfied. We can even put t0 equal to an arbitrary zero of Y and a0 

equal to one of any two consecutive zeros of y (for one of them the condition 
is fulfilled and for the other not, since the sign of z changes in any two consecutive 
zeros of y). 

Certainly, we deal here in fact with a basis u == [yf z] € <#> and another basis 
ku~U~ [Yf Z] where ke Jt and detfc -= 1. Thus Ue <<?> and W(U) » W(u) 
so that the transformation (* *,) is realized by means of some increasing integral a 
of the equation (qf q). 

The question of Dom a and Im a for integrals of (qf q) is now topical. We shall 
prove. 

Lemma 2. If and only if the carrier q in Dom q £ R is both-sided oscillatory, 
then for every carrier Q it is Dom a = Dom Q for each integral a of the equation 
(q,Ql 

Proof. Let Dom a =- Dom Q for every Q and each integral a of (qf Q). Then 
for each integral A of (Q9 q) the inverse function A"1 is an integral of (qf Q) and 
thus Im A •* Dom AT1 =• Dom Q. Particularly if Q is both-sided oscillatory in 
Dom Qf then for each integral Y of ( 0 and each integral A of (Qf q) the solution 
of (q)> y * Y(A)j\I\ A' |, has infinitely many roots at both ends of its interval of 
existence Dom A. Hence y is an integral of both-sided oscillatory equation (q) and 
it is by the way Dom A « Dom q. 

m 



On the contrary, let (q) be both-sided oscillatory in Dom q. Let us admit that 
there exists a carrier Q and an integral a of (q, Q) such that Dom a # Dom Q. 

Without loss of generality we can suppose that a is increasing, Dom q =* ]a, 6[f 

Dom a -* ]c, df[, where a < c. 
Let us denote the restriction Qljejt by Q*. Then a is an integral of (q> Q) and 

for every integral y of(q) the solution of (Q*), Y^y(ot)/y/\ a' |, has infinitely many 
roots at c. Hence Q* is a left-sided oscillatory carrier and no left-sided continuous 
prolongation of Q* exists. This contradicts the existence of Q9 which is such a pro­
longation. Hence we find that for every carrier Q and each integral a of (q, Q) it 
holds Dom a == Dom Q. Lemma 2 is proved. 

Consequently the dual affirmation holds: if and only if the carrier Q is both-
sided oscillatory in Dom Q s R then for every carrier q and each integral a of 
(q$ Q) it holds Im a == Dom q. 

Particularly if and only if both carriers q and Q are both-sided oscillatory, then 
each integral a of (q, Q) is defined on Dom Q and maps this interval onto Dom q. 

Now we can finish the exposition that the group X9 of all 2n* order real matrices k 
with det k = 1 is the image of any homomorphism *u. 

In fact, only the both-sided oscillatory carriers q on R are considered and we 
have seen that for any n € <#> and k e X' there exists an increasing integral a 
of (qf q) such that (J *) holds. Now it is clear that Dom a «• Im a •» R and thus 
a 6 ip or even a e <g, q} and thus to every k e X' there exists a 6 <#, q) such that 
u D a » ku holds. 

Evidently the group X' is invariant in X. Moreover, there exists a minimal 
subgroup if s X such that S£ c\ X' = {/} and JSf X' = X\ namely -Sf « 
* {^/}A>O where A ranges over all positive real numbers. 

Note that 0t « {Af}A#0 and that # n X' = ± J and ^Jf' -» Jf. 
The same arguments as in the preceding paragraph ensure that the set &'(u) -

•B {» a a | a € Ĵ} consists of all bases » e * which have the same (negative) value 
of Wronskians as n. 

According to the absolute values of Wronskians the set M of all bases de­
composes into classes M'(u). 

It is natural to keep the multiplicative group G * ]0, oo[ and assign to every 
basis H € ^ the pseudonorm | H I = I W(u) |. 

Note that the groups <?,if and the factorgroup X/X' are isomorph. The 
pseudonorm of * € X is defined here as the (positive) value det Jc. 

The other decomposition of £ consists of the classes <?>. We can see that any 
class <f> of the latter decomposition intersects with any class 0l'(u) of the former 
decomposition in the set of all bases u u (q, ?> = X'u. 

In comparison with the basic model here the unimodular bases are exactly those 
with the Wronskian equal to - 1 . One of them is the basis [sin u cos #]. 
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Now the following test for the transformation t « u a a between two given 
bases uyve & becomes more visible: such a transformation holds iff the (negative) 
values of Wronskians of u and v are equal. 

4. APPLICATION TO THE DISTRIBUTION OF ZEROS 

A real function a(t) of real variable t will describe the distribution of zeros of 
integrals of the differential equation (q) if for every integral w of(q) some non-zero 
constant Xw exists such that 

((•» ^ L « A w w ( 0 
vV(OI 

holds. Certainly, then a is a solution of the differential equation (?»q). Moreover, 
a(t) is increasing owing to the Sturm theorem. 

Let if * [y, z] be a basis of (q). Then for every integral w -» ay + bz of (q) the 
formula ((*)) gives aXyy + bXMz = Xw(ay + bz) and hence Xw » Xf m X%. Thus 
in the formula ((*)), if it holds for all integrals of (q% the constants A* do not 
depend on w, say Xw == X for all w. 

If q is any both-sided oscillatory carrier on R and if a : R -• R describes the 
distribution of zeros of (q), then a 6 Sfi and for every basis u e <#> we have u a a » 
-=* An for some fixed real number X # 0. 

In conformity with [4] it is XI eX' n 8Jf and since here is aJf « £1 we find 
XI - ± J. 

Hence the unique dispersions which can describe the distribution of zeros are 
the nuclear dispersions <py where <p ** a~l o BO aforae(-~lfq} and e(f) «* t + a. 

According to [4] it is 3f/Ker*n = X' n $ = ±/ . Since 3 € is an infinite cyclic 
group, the unique subgroup Ker*i* having the index 2, is {<p2*}r9z* Hence the 
equation u n a == u holds iff a -= <p2v and the other equation u a a = —n holds 
iffa-«<p2v+1. 

The constructive meaning, describing the distribution of zeros, of the disper­
sion <pv is evident: for any t e R the number <p*(t) means the v-th zero of w with 
respect to t of any integral w of (q) which vanishes at t. For positive v the roots ate 
counted to the right side and for v negative to the left side. 

For any carrier q the fundamental central dispersion <p m a"*1 o e o a9 where 
ae <-*-l, q}> is most important. This one describes completely the distribution of 
zeros for all integrals of the differential equation (q). Evidently, q> e C*, $ > 0» 
<p{t) > t and Im <p » R. 

Unfortunately we do not know <p(t) for every given equation (q). That's why 
the backward procedure was needed. It is based on the fact proved by the author 
in 1961 [3]: 
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Let f e Cj be such that <p'(t) > 0, <p(t) > t and Im q> « R. 
Then there exist both-sided oscillatory (in R) differential equations (q) for which 

<p(t) is the fundamental central dispersion. All such carriers q are given by the 
formula q(t) -= — {a, t} — a'2 where a ranges over all solutions of the Abelian 
functional equation 

1° «(<K0) - «(0 + *» 
such that a e fJ. 

By the method of the proof of this statement it is evident that there exists the 
continuum of carriers having the same fundamental central dispersion. 

Every solution a of 1° depends namely on an arbitrary function ?€Cjt>^f>l 

with y' > 0 and fulfilling some boundary conditions. For some fixed t0 inside 
[t, ^(r)] and for arbitrary initial conditions a0, a0 > 0, a0 at t0 there are X 
functions y fulfilling these initial conditions. 

Now, every q corresponds to many solutions a of the Abelian functional 
equation, but only one a of them has the initial conditions <x0, a0 > 0, a0 at ?0. 
Hence there is one-to-one correspondence between the carriers q and these solu­
tions of 1 ° and thus there exists the continuum of carriers q with the same funda­
mental central dispersion cp. 
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