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ARCH. MATH. 1, SCRIPTA FAC. Sfcl. NAT. UJEP BRUNENSIS 
XVIII: 9—14, 1982 

INVERSE PROBLEM OF THE CLASSICAL 
CALCULUS OF VARIATIONS 

JAN CHRASTINA,Brno 

(Received February 16, 1981) 

In its widest scope, the mentioned problem is concerned with specifying 
a functional, if we have some information about its differential. The problem has 
been solved, and recently also resolved by several authors in the particular case 
when the mentioned differential is completely known. Among others, it was 
studied in the Seminar on the calculus of variations in Brno led by D. Krupka who 
used certain special exterior differential forms named Lepagian forms, and obtained 
very explicite results. For more information and also for the history and recent 
development see [1]. 

The purpose of the present note is to derive the above results by elementary and 
extremly simple methods, and to improve some details. 

1. Setting of the problem. We deal with the functional 

(1) F(u) = J / (x , u9 ...,wa, ...)dx, 
(O 

where x = (xl9 ..., xn) e (o c Rrt, dx = dxl9 ..., dxn9 u = (u\x)9 ..., um(x))9 ua = 
= (d^ul(x)jdxa, ..., d^um(x)/dxa). Here, as usual, a = (OLX , ..., a„) denotes 
a multiindex consisting of non-negative integers, | a | = ax + ... 4- a„, dx* =* 
= dx?[l ... dxa

n
n. We suppose all functions and all boundaries of integration domains 

to be sufficiently smooth and our considerations will be local. 
Remember that the variation 8F of the functional Fis defined by using a function 

U(x9 A), xeco9 a ^ X ^ b9 where U(.9 c) = u for certain c, a £ ci& b, and then 

(2) 5F(u9Su) = ±F(U(.9X))\Xs,0 = 

= j ^6 i (x , i i , . . . ,u a , . . . )^ (x)dx + 
. a i 

+ i !«£'(*>« u.,...)5uUx)dxJ. 
d<o IJA' 



Here 

are the Euler —Lagrange operators related with the functional F, e^J are certain 
differential operators called boundary operators related with F, dx* = dxt ... 
dXj-.t dx i + 1 ... dx^dx* = dx*' ... d^",and 8ul = dU*/6X |Assc,5iii = 8U*/dX |Aasc. 

An explicite expression of the operators e^J will not be needed in what follows. 
Remind only the fact that if the highest order derivatives involved in the function/ 
are of order s then el are the operators of order at most 2s, the operators e^J are 
of order at most 2s — 1, and s**J = 0 for | a | ^ 2s. 

Now, the inverse problem, we shall deal with, consists in the question to find 
the conditions for a-priori given differential operators el, ...,em to be exactly 
the Euler— Lagrange operators related with an appropriate functional F. 

2. Necessary conditions. Let ei be the Euler —Lagrange operators related with 
the functional (1). Then (2) holds, and by integration we get 

(4) F(U(., b)) - F(t/(., a)) = } 4f F(U(.rX» dX = 

a dli 
= J í E«'(x,U Ua,...)-^-áxdk + 

b (O i 

Ь fìTJ 

+ í í Z <£'(*. U> •••> U„ . . . ) - ^ d x ' d A . 
a дm i,jta' s 

dA 

ĚЊ 
õl 

Denote xn+1 = X and let I be the interval a g xn+l S b. The cartesian product 
Q = ox Fez Rn + i is a nice integration domain, and we may introduce the 
functional 

(5) R(U) = f 2 > f o U,..., U„ . . . ) - ^ - d x d x B + 1 . 
a i oxn+l 

But the relation (4) is of the form 

R(U) = J (certain differential form), 
do 

so we see can that the value R(U) does not depend on the behaviour of the function U 
in inner points of the domain Q. Consequently, all the Euler - Lagrange operators 
related with the functional R vanish identically: 

where /f,« (fil9 ..., pm+t) is an n + 1-tuple of non-negative integers, dxfi = 
*- dxf4 ... dxjjft1. The variable plays an exceptional role here, and using the 
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abbreviated notation U[ — dU'/d**, U{a « d2U*/dxkdxi9 ... we may write (6) 
more distinctly as follows: 

^£^(4^)-•••)-<>• 
The coefficients of £/,'+., UB+i,*, ••• vanish separately: 

d Be' 
- . . . sO, (8) ^1..(H.+YJ-^-) + Y — 

dUJ \dU' it dx» 8UJ
kJ M <*** d*. 5U!., 

_ / 3^ de^\ - _d_ ge' _ 

We hope that the general rule is quite clear and that there is no need to write down 
all relations (8), however see [1], 

Note only briefly that the relations (8) which we get for the higher order 
derivatives are the most simple ones. For example, let the operators el involve the 
derivatives ua of order | a | = r but not of order r + 1. Then the coefficients of 
dUi/dx^, in (l)2Lve 

- J ^ + ( - i y i t - O f | « | - r . 
dUa dui 

At first, suppose r to be even. Then (— l)r = 1, and the last identity means-that 
the differential form £ el dU{ is exact as a function of the highest order derivatives 

i,L« 
U{> | a = r. At second, let r be odd. Then ( - l)r = — 1, and in the particular case, 
if e* are quasilinear operators, the last identities mean that the matrix of the coe-
ficients of U{ in el is skew-symmetric. Especially, this is not possible if m = 1, 
so the Euler —Lagrange operator is necessary of even order. 

3. Theorem. Let e\x9 u9 ..., ua9 . . .) , / = 1, ..., m be certain differential operators. 
Then these operators are the Euler—Lagrange operators related with an appropriate 
functional F is and only if all identities (8) are true. 

Proof: Necessity of the identities (8) was already proved. Reversely, let el be 
operators satisfying (8), we have to find the functional (1) such that (2) holds witt 
our operators el and certain unspecified operators ea

tJ. However, the boundary 
terms are without any influence on the Euler — Lagrange operators, thus the rela
tion (4) suggests the formula 

(9) F(u) - f J £ e\x9 U9..., t/«, . . . ) -^dAdx , u - t/(., b)9 
to a i €A 

but some caution is necessary. 

U 



We start with the simple observation that the relations (8) are equivalent to the 
fact that the value R(U) defined by (5) depends only on the behaviour of the func
tion U in inner points of the domain Q. And looking for the shape of the function 
under the sign of the integral, we can see that R(U) depends actually only on values 
of the functions U(., X) near the boundary dco and also on the functions U(., a), 
U(., b). So if we fix once for all the function w = U(., a), and if we suppose 
U(x, X) = w(x) = il(x) for all x near the boundary dco, then the number F(w) is 
uniquely determined by (9). Namely, the value F(w) actually depends only on the 
function w = U(., b). At last, observe that 

(10) -&*&(•> *» = JIfi,'(*> 1J> • - u*> " O - ^ d x U . , , 

an encouraging formula, in the main identical with (2). 
However, so far we operate only on the restricted class of functions w with the 

property w(x) = u(x) for x near dco. But now, let us define the value F(w), for an 
arbitrary w by the formula (1), where 

f(x, w, ..., wa, ...) = 

= J j y ( x , (J, .... Um9 . . . ) -S-dx, U(.,X) = w + X(u - w). 
O i ^ A 

Since the function U is uniquely determined by w, the last definition of F(w) is 
authomatically correct. In addition, it agrees with the old one in the previous case, 
if w(x) = u(x) near the boundary. 

To complete the proof of the Theorem, it remains to verify (2) for the new, 
enlarged definition of the functional F. We shall do it using the result (10). 

Take an arbitrary function w(., X) dependent on a parameter J. in such a manner 
that w(., X) varies only inside co. That is, du(., X)jdX = 0 near dco, or, 

m \ du(x,X) , 
(11) — \ , = 0 if x$co, co a c co. 

cX 

Now, modify all functions w(., X) in a unique manner near the boundary dco to 
get some functions U(., X) for which U(., X) == w(x) near dco. (For example, we 
may set U(., X) = w + x • (w(-» ^) — «)» where x ^ a n auxiliary function with the 
property x(x) = 0 for x near the boundary dco, x(x) = 1 for x 6 co\) Then 

F(u(.9X)) - F(U(., X)) = J (f(x, w(x, X),...) - f(x, U(x, X), ...))dx = 
to 

= J (f(x, w(x, A),...) - f(x, l/(x, A), ...))dx = constant. 
ct>-to' 

Then we have, using (10), (11), 

^-F(U(.,A)) = ^.F(U(.,A)) = 
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= f I / ( x , U(x,X), •)^r
ax = J£e«(x,«(x, A), ...)-^djc. 

Comparing with (2), we see that e* are the Euler - Lagrange operators. 

4, Another approach. Theorem 3 may be proved still more easily by using two 
parameter families of functions and the plane divergence theorem. We shall only 
briefly outline this approach. (See also [2], where this simple idea is covert in an 
unnecessary apparatus of non-linear functional analysis.) 

Let us set u = w(., A, p) into the functional (1), and compare the second mixed 
derivatives, d2F/8X dfi = d2F/dfi dk. Using (2), we easily get 

n 2 . ^F(uj.,k,n)) _fy(y 8s' e__ du< , a V \ 
(I2) dkdti -iWhiuj °n ~dx+eJHMrx+ 

+ boundary term, 

and, by integration per partes, 

(13) JxT» I-H£( } *x*\du{ ox) dn +eendx)dx + 

4- boundary term. 

Then, using the duplicate of the formulae (12) with X, n interchanged, we obtain 
the property of formal selfadjointness of the Euler — Lagrange operators, 

(14) J £ —rviw* dx = J £ -—r w^dx + boundary term, 
Q> tj,a duJ

a oij,<t du{ 

where we denote v = du/dk, w = du/djii, for clarity. Also, using the formulae (12) 
and the duplicate of (13), we have 

n . . f v dsl 8uj
a du> f v ,., d1*1 / a e 1 3tA 0ii' . ^ (15) l&lZ^n*-l^ 

+ boundary term, 

and by comparing the coefficients of dul/dk on both sides, we could obtain the 
identities (7). 

So we have derived the necessity of the conditions (4), (7). Following these 
lines, the sufficiency proof is also possible, but we shall not deal with it. 

5. The case e* s 0, The functional F is not uniquely determined by the related 
operators s*. Namely, suppose e* = 0. Then (2) is simplified to the equation 

(16) 4 r n w - ») = J S <*y(*. v(x, X), ...)du'j.x'x) dxJ. 
aA dm I, J,* 0A 
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(17) Ғ(l/(., b)) - F(U(., Û)) = J £ g> dУ, 
д<o 

^ = J S ^ , t / ( x > Я ) > - ) a U ^ Я ) d A . (18) * - , ^ v~,~v~, „ „ . . . , . . 

Let us fix the function w = U(., a), and set a = 0, b = 1, U{., A) = w + A(w - w). 
Then the functions gJ are well defined even by the target function w = U(., 1). 
Namely, g' = ^(x, W(JC), ..., wa(x), ...). So we have a formula 

(1°) W = F(U(., 1)) - F(w) + J I ^ dx'* -
aco j 

= J (/(*,«.(*),.. .)dx +J E^dx'. 
to da> J 

Locally, there exists an n — 1-form <p in the variable x, for which d<p = 
= f(x, w(x), ...) dx. We have proved 

6. Theorem. Let the Euler—Lagrange operators related with F all identically 
vanish, e* = 0. Then, locally, there exists an n — 1 -form <p in the variable x and 
such that 

m = J (9 + I g*(x, u(x), ..., ua(x), ...)dx'), 
aw j 

/0r certain functions gJ. If the function f in (1) does not depend on derivatives ua of 
order higher than s, the functions gj may be chosen in such a way that they do not 
involve the derivatives wa of order | a | > 2s. 

The last part of the theorem follows from (18) and from the remark on the order 
of boundary operators e*j stated at the end of the Paragraph 1. 
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