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THE SECOND ORDER DIFFERENTIAL EQUATION 
WITH AN OSCILLATORY COEFFICIENT 

JAROMfR SlMSA,Brao 
(Received September 21,1981) 

Consider a scalar differential equation 

(1) ^ - x . r f , ) * , 
dr 

where the coefficient function p(t), continuous for t 2; 0, is "small" as t -* oo. 
Under the smallness condition is meant, that the integral 

(2) ]p{t)t*dt 

converges (perhaps relatively) for some q Jg 0. Then the following question arises: 
Are there two solutions xx(t) and x2(t) of the equation (1) satisfying 

(3) xt(t) = (1 + o(C*)) e*, x2(t) - (1 + o(r*)) e~< 
as r -» oo? 

A classical theorem gives the positive answer to this question provided that the 
integral (2) converges absolutely (see [1], Th. 17.2). As shown in [2], in the case 
q ^ 1, the asymptotic formulas (3) follow from ordinary convergence of the 
integral (2); in the case 0 «* q < 1 the same assertion is true under a supplementary 
condition 

(4) ]r9\]p(s)s9ds\dt <oo. 
t 

The aim of the present paper is to prove essentiality of the condition (4), Con
structing an oscillatory coefficient function p(t) we show that the mere condition 
of convergence of the integral (2) does not guarantee the validity of formulas (3), 

Theorem. Let q be a real number satisfying 0 <£ q < 1. Assume thai a number r 
is chosen as follows: 

(5) 2q- 1 < r < l i / * £1/2 , 
or 
(6) 0 < r < 1 - 2q if q < 1/2. 
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Then there exists a real function p(t) defined and continuous for t _t 0 Such that the 
integral (2) converges and the equation (1) has a solution x(t) satisfying 

( 7 ) x ( 0 = jTi + <~r + * ( O K !/«--/-, f(l + Г' + o(Г')) 

(exp (t-ť + o(ť) ')) if q < 1/2 
as t -> oo. 

Proof. Let q and r be any numbers satisfying (5) or (6). Then there exist 
numbers qx and q2 such that r is equal to | qx + q2 - 1 I and it holds either 
1/2 __ q < qt < q2 < 1 or 0 5_ q < #_ < q2 < 1/2. Having fixed the numbers 
q,r,qx and #2

 w e P u t 

( 8 ) *o = 2-* . r, 0O = 2-«\ 
an = a0 . n"*1 and j3„ = j30 . "~*2 for n = 1, 2, ... 

Consider now a sequence of functions Fn(A) defined by 

(2n + 1 - A)1+* - (2n + A)1+* 
r»(^) = (2n - ft, - A)1+" - (2n - 1 + ft, + <4)1+* 

for _ e [0, 1/2 - ft,). Obviously, FB(J) € C[0, 1/2 - ft,) and Fn(A) -> + oo as 
A -* 1/2 — ft„. Therefore, the equation 

2 + a„ 
(9) JҒ^) = 

2 - O Ł , 

has a solution A = An on (0, 1/2 — /?n) if the number Fn(0) is smaller than the right 
hand side of (9): This condition written in the form 

t^.PM- D < 2 / ( 2 - a n ) 

is fulfilled for all sufficiently large n, since 2/(2 — an) -* 1 and, as we now verify, 
a" 1 .(Fn(Q) - 1) -> 0 as n -+ oo. We have 

« - . (Fn(0) - 1) = a ; 1 ( ^ + l)^-(2n)^ \ _ 
V ' V ( 2 n - f t , ) 1 + * - ( 2 n - l + ft,)1+« / 

- x l (l + 2 - 1 n - 1 ) 1 + ^ - l \ _ 
" V d - 2 - 1 n - 1 f t J 1 + « - ( l - 2 - 1 n - 1 + 2-1n-1ft1)

1+« 1 

_ _ - t / (l + g ) 2 - 1 n - 1 + o(n-2) A 

" V(l + 9 ) 2 - 1 n - 1 - ( l + c2)n-1ftB + o(«-2) / 

_ g - t / 1 + ofr-1) A _ 2aB-
1ft, + a ; 1 ^ - 1 ) 

" Vl - 2ft, + 0(n~l) j 1 - 2ft, + o(n-J) ' 

The last ratio tends to zero as n -* oo, because, by (8), a^1/?,, -* 0 and ncc„ -» oo 
as n -+ oo. Thus the existence of the solution A - An of (9) is established for all 



If we now define numbers an, bn, cn and dn(2n — I < an < bn < 2n < cn < dn < 
< 2/i + 1) by means of the formulas 

(10) an = 2/i - I + pn + An% bn = 2/i - fim - Am% 

cn = 2w + An and dn = 2/7 + 1 - An for /7 ;> /70, 

then the property of An can be expressed as follows: 

dГ*-cГ« = 2 + «. 
b J + , - a i + « - ~ a » 

(11) ":,.. . . . ' f - ^ r 1 f o r n â « o -

Now we can define a function u(t) of the class C*[0, oo) by the following way 
(see Fig. 1): we put u(t) = 0 for t e [0, 2/70 — 1), u(t) = <xn for te [aH, bn~\ and 
w(0 = —0Ln for r e [cn, dn], where /i = /70, n0 + 1 , . . . It remains to define u(t) on 
the intervals (2n - l,flf„), (bn,cn) and (dny2n + 1). We can petform it rather 
arbitrarily but for further considerations it is convenient to keep the following * 
conditions: 0 g u(t) ^ aw for t e(2n — 1, an) u (6„, 2/7), — a„ ^ u(t) £ 0 for 
/ e (2/7, O u (</„, 2/7 + 1) and 

(12) J u(0df = J u(t)dt = - J u(0dr = - "j u(0dr = e„, 
2n-l bn 2n dn 

where en > 0 is a sufficiently small number Such that 

(13) X(2w + l ) f e n < o o . 
n = no 

Note that for t e [2/7 - 1, 2/7 + 1] we have | u(t) | = an = a0/7~fl
 = 3 f la0r f l , 

since t = 3/?. Thus the function u(t) satisfies 

(14) | u(t) | <- 3 f I a 0 r f l , 0 < t < oo. 

From the definition of i*(0» (10) and (12) it follows 
2 * + l • 

(15) J u(t) dt - an(bn -an + cn- dn) = - 2 a A < 0 
2 n - l 

and 

(16) j" u(t)dt£an J df = an. 
2 » - l 2 n - l 

t 

Taking in account that the integral J u(s) ds is nondecreasing in t on [2/7 — 1, 2/i] 
and nonincreasing on [2/i, 2/7 + 1], we obtain from (15) and (16) 

(17) - 2 f arfk £ }•«(•)ds <£ a. - 2 ^ a A , 
k--«o 0 *=-n<> 

where / e [2/7 — 1, In + 1] and n = /i0, /i0 + 1 , . . . 
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In what follows we shall use some properties of a series 

(18) £fc"y , 7 = const. > 0 . 
k= - l 

Namely, the series (18) diverges for y < 1 and it holds 

(19) n v-*£fc -y ->( i_ y ) - i as n->oo. 
*=i 

For y > 1 the series (18) converges and it holds 

(20) ny-i£fc-y- .>(y_i)- i as n -> oo. 
k = n 

Easy proofs of (19) and (20) are based on a comparison of the series (18) to an 
area between the curve x = t~y and the /-axis. They are omitted here. 

Returning to (17) we distinguish two cases: q < 1/2 and q _ 1/2. If q < 1/2, 
then, by (17), the integral of u{t) diverges to — oo, since akpk = a0p0k~qi''q2 and 
qx + q2 == l - r < 1. Note that for t e \2n - 1, 2n + 1] we have t = (2 + o{\))n. 
Thus the inequality (17) implies that the value of an expression 

Trfw(s)ds 
o 

lies between two values of the common form 

-2a0/?0(2-r + o(l))n-'( £ fc'"1 + 0(1)), 
* = 1 

which has, by (8) and (19), a limit equal to —1. Consequently, 
t 

(21) t~r fw(s)ds-> - 1 as i*->co. 
o 

If q ^ 1/2, then by (17), the integral of u{t) converges, since ockpk = a0p0k~qi~qi 

and qx + q2 = 1 + r > 1. Let us rewrite (17) in a form 

-an - 2 £ akpk £ | u(s) ds = -2 £ aA-
*=n f k = n + l 

This means that the value of an expression 

t']u(s)ds 
t 

lies between two values of the common form 

-2a0/J0(2r + o(l)) nr( £ fc"'-1 + 0(n~q% 
* = n 
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which has, by (8) and (20), a limit equal to —1. Consequently, 
oo 

(22) tr Jw(s)ds-> ~1 as *->oo. 
ř 

Now we define functions p(i) and x(t) by 
(23) p(t) = u'(t) + 2u(t) + u2(t) 

x(t) = C exp {t + J w(s) ds} 
o 

where a constant C is chosen as follows: 

~ J u(t) át if 
o 

1 if 

Ф< t < » ) 

( 0 ś ( < oo), 

q Ł 1/2, 

fl<l/2. 
Then the function x(t) is a solution of (1) for p(t) from (23) and, by (21) and (22^ 
it satisfies (7). To finish the proof we must now show that the integral (2) converges 
for our function p(t) from (23). To this purpose it will be shown that there converge 
both integrals 

00 00 

(24) ju'(Ot*dt and f(2u(<) + u\t))t"At. 
As to the first one, integrating by parts we obtain 

T r 
J u'(s) s* ds = u(s) S" \J -qj u(s) sq~l ds. 
t t 

From (14) we have u(t) tq — 0 as n -» oo and 
00 00 

J I u(t) I p-1 At = 3*'a0 J I * " * - 1 At < oo, 

since q < qt. Thus the first integral in (24) converges. 
The second integral in (24) converges if a function 

(25) U(t) = J (2M(S) + u2(s)) sq ds 
o 

has a finite limit U(oo). The function u(t) has been defined in such a manner that U(t) 
is nondecreasing on [2n — 1, 2n\ and nonincreasing on [2«, 2« + 1] for any 
n = 1,2,... Thus we have 

(26) min {U(2* - 1), U(2n + 1)} = C/(0 = U(2/i) 

for te[2n - 1, 2/i + 1] 
The equality (11) may be written as follows: U(bn) - U(aw) + U(dn) - U(en) .«. 0„ 

and thus ; 

(27) U(2n + 1) - U(2n - 1) = \U(2n + 1 ) ~ I jK)] + [t%„> - t/(2«)] + 
+ \U(2n) - U(bn)\ + [U(an) - U(2n - 1)]. 

Further, the estimate (14) enables to bound the integrand in (25): 
(28) | 2u(t) + u2(t) | t* = 3 | u(t) | t* = 31+q-a0t

q~qi. 
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From (12), (27) and (28) we have 

| U(2n + 1) - U(2n - 1) | £ 3(2n + 1)«{ "f + J + J + J } I «(s) I ds = 
<*„ 2n bn 2 n - l 

= 12(2« + I)**,, 
which, with respect to (13), gives 

00 

£ I U(2n + 1) - U(2n - 1) | < oo. 
n = l 

Consequently, the sequence {U(2n + 1)} has a finite limit: 

(29) U(2n + 1) -•£--= co/is*. ^ oo as /i -» oo. 

It holds also 
(30) U(2n) -»L as n -» oo, 

because, by (28), the difference U(2n) — U(2n — 1) tends to zero: 
2n 

0 £ t/(2n) - U(2n - 1) S 31+€1a0 J **~*1 d* = o(l), since ^ > q. 
2n-i 

From (26), (29) and (30) we can see that U(t) -» L as t -> oo. The proof of Theorem 
is complete. 

Remark. The proved Theorem suggests that in the case q < 1 the remainders 
0(*~9) in (3) must be replaced by o(tl~~2q). We hope to prove this conjecture on 
another occasion. 

<**+ 

Fig. 5. 
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