
Archivum Mathematicum

Jiří Rosický
A note on algebraic categories

Archivum Mathematicum, Vol. 18 (1982), No. 3, 163--167

Persistent URL: http://dml.cz/dmlcz/107138

Terms of use:
© Masaryk University, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/107138
http://project.dml.cz


ARCH. MATH. 3, SCRIPTA FA€ SCL NAT. UJEP BRUNENSIS* 
> , XVIH: I63-T168, 1982 t S 

A NOTE ON ALGEBRAIC CATEGORIES 

JIŘÍ ROSICKÝ, Prno 
(Received September 14, 1981) 

This note is a sequel to [4] but it can be read independently. Both .rrtain re
sults (Corollary 2 and the Example) were motivated by Reiterman [3]. > ; 

For the precise set-theoretic foundation >ye will need two universes <8f4 and <%2 

such thatM% £ <8f2 and If^e M2. ^ r se t s will be called sets, ^-classes,classes, 
$f2-sets metaclasses and ^-classes superclasses. There are four corresponding 
levels of categories: small categories, categories, metacategories $nd superc^tegones. 
We will notationally not distinguish the corresponding levels of functors. Let us 
emphasize that one can neglect these set-theoretic difficulties because all what we 
assert about categories may be proved in the Godel — Bernays set theory. 

A concrete (meta)category over a category 9£ is a couple (sit U) where' st is 
a (meta)category and U : stf -• 0C a faithful functor. A concrete functor H : (s/, U) -+ 
-> (@, V) between concrete metacategories is a functor H \ si -+ 3t such that 
V. H = U. Denote by ^x a supercategory of concrete metacategories and con
crete functors over 9£. 

Linton [1] has shown how a concrete metacategory (sty U) over #* gives #ise to 
a concrete metacategory U-Alg of [/-algebras over SC. A U-algebra 31 consists of 
an object l e f and of mappings qf : X* -> X*, where ^ carries over natural 
transformations Un -• Uk with n, ke £, and these data satisfy 

(1) (Uff = Xf 

for any morphism/: k -> n of 3C and 

(2) * . . ; . ' (q>.^f^f.^ 

for any natural transformations \j/ : Um -+ Un and q>: U* -+ Uk* Concerning the 
notation, if ne 9C then Un : s/ -+ Set is the composition SC(n> - ) . Uf U

f : Uk•-+ Un 

has components (Uf)A = (UA)f for A^s4, JP1 is the set %(n> X) arid Xs is the 
mapping £*(/, X) : Xn -* Xk. Similarly hn is the mapping X(n, h):Xn>-> F* for any 
morphism h : X -+ Y of 3C. 

Homomorphisms h : 31 -• S of {/-algebras are defined obviously, i.e. as morphisms 
h : | 311 -* | » | between underlying ^-objects of 31 and' S such that hh . q>* » 
= 9®. A" for any <j> : Un ~+ Uk. « 
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The metaclass of all natural transformations U* -* Uk will be denoted by x^. 
Emphasize that q>A, for A e s/9 will always denote the .A-th component of a natural 
transformation <pex^. 

Put T(si) = U-Alg and let T(H) : T(st) -> T(J% for a concrete functor H; si -> 
-> &9 is given as follows 

for any 91 e 1W) and any cpexm. It is evident that T: <€x -> ## is a functor. 
The setting 

P**(A) = <^, 

where A e si and <p ex^9 gives rise to a concrete functor r]^ ; si -* T(si). The 
verification that f\^(A) is a U-algebra is easy. The functor ry^ is called the comparison 
functor of si'. 

Since <pT{H) n^A) = ((pH)n«iA) = (^H)^ = <p„M) = <p"*(l^> for any A es/ and 
<P eT*» *L/ : 1 ~* ^ *s a natural transformation (1 denotes the identity functor 
on V9). 

It is easy to see that the assignment 

where 91 e T(si) gives a natural transformation f e xT{sf) for any <p e xA. Assign 
to any algebra 9C 6 T2(si) an algebra ^(91) € T(si) by means of 

for any <p e x*. Since hk . <p**(9l> = h* . <p% = f* . hn = <pM <̂®). A" for any homo-
morphism h : 91 -• 93 of algebras 9t, 93 G T 2 ( J / ) , ^ : T2(si) --> T(si) is a functor. 
Since (<? . r(.H))« = ? r ( H ) ( W = pT<* ><«> = (<pH)* = (<?#)* forjmy H: si -> £9 

q>exm and 91 € T(si\ we get cpT<«><̂ <«» = ((pHf^m = <pH« = (<pT(H)f = 
« r̂»<HK«) ^ ?*#.<i*<*)<«» f o r any H : .J* - 3£, <p e T* and 91 e T 2 ( J / ) . Hence 
H4 : T2 -* r is a natural transformation. 

Theorem. (T, .7, /*) w a monad in <€x. 
Proof: Since <p<""T><«> = <pm***} = <p% = ^ for any 91 e r( j / ) and 9 € xA9 

we get that /J . >?r = 1. Since (^ . fu)^ = <?nsgm = 4P«-*<«> = ^ for any 91 e si 
and <?>€T ,̂ it holds <p« = (fqjf = ^T<̂ ><«> = 9o»-

T<«>W<«> for any W.eT(sf) 
and (pexA. Hence /*:. rfo) = 1. Finally, since ($fl*\ = ?v<«) = ^ ^ = 
= f« = i a for any 91 e T2(si) and <p e %*, it holds (<p<* >̂W<«> . f ro^x*) «• 
a (f/*„)« = ^« = ^it^)<«> = qp-WsAm for a n y 91 e T*(st) and ( p 6 v 
Therefore /1 . T(n) = /*. \iT holds. 

A concrete (meta)category (sf9 U) over #* will be called canonically algebraic if 
the comparison functor tf^ is an isomorphism. 
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Corollary 1: Let si be a concrete category over X such that T(si) is canonically 
algebraic and ^M is a coretraction. Then si is canonically algebraic, too. 

Proof: Since T(si) is canonically algebraic, ^ ^ is an isomorphism. 
Hence ^{4g) = T(t\J) because ^ . ^TiJg) = ji.,. TfyJ) » 1 implies that *jT ( j r / ) = 
* & = T(nj. 

^44 being a coretraction means that there is a functor H: Tisi) -• si such that 
H.n*= 1. Since na . //(3l)<= T(H). nn^m - W • T^)(W) - »» it holds 
that ^Jg . H — I. Hence ^ is an isomorphism and si is canonically algebraic. 

Corollary 2: I>t si be a concrete category over X. Then either si is canonically 
algebraic, or T(si) is canonically algebraic or no of Tn(si) is canonically algebraic. 

Proof: Since \i^T = l^Tn(Jg) is a coretraction for » ^ 1 . Hence by the 
previous corollary whenever Tn(si) is not canonically algebraic then neither 
r + 1 (^) is . 

Let us specify what means that a category is canonically algebraic over Set. 
Under a type t we will mean a class of (infinitary) operation symbols. Having 
a class E of equations of type t we may form the metacategory (t9 E)-Alg of all 
f-algebras satisfying all equations from E. Under an algebraic category over Set 
we will mean a concrete category isomorphic (as a concrete category) to some 
(t9 E)-Alg. Any canonically algebraic category over Set is, of course, algebraic over 
Set. The converse is not true (see [4]). The reason is that, for a given algebraic 
category (t9E)-Alg9 there may exist a natural transformation <pex(ttE)mAi0 which 
is not induced by any term of type t and such that the interpretation of (p is not 
uniquely determined by the interpretations of terms of type t. 

We can similarly introduce the concept of an algebraic category over an arbitrary 
category X (see [4]). Here, a t-algebra 31 consists of an object X e X and of 
operations / : X" -» Xk where / carries over operation symbols of type t and 
n9k e X. Hence we have again an algebraic category (t9JE)-Alg over X. Of course, 
any canonically algebraic category is again algebraic. 

Returning once more to a monad T: <€x -* C€X9 one can ask how T-algebras 
look like. We are going to show that any algebraic category over X is a T-algebra. 

Consider an algebraic category si = (t9E)-Alg and denote by U the forgetful 
functor into X. Any operation symbol fe t provides a natural transformation <pf 

by means of (<pf)% =/** for any (t9 2?)-algebra 31. Then the prescription /H(*> -* 
= (<pff9 31 e T(si)9 fe t gives the functor H: T(si) -* si of t-reducts. We show 
that (si9 H) is a T-algebra. 

Clearly H . ^ = 1. Further for any 31 e T(st) and fe t it holds that (f / )* -* 
= (<Pff = fm) - (<Pf)mm = (*/")*. Since /*•**»> = (<pfY*M - (fff ~ 
= (<pfHf = (^/)

r(H)<8l> -B/H.TCHK*) holds for any 3le T 2 ( J^ ) and any fet, we 
get that H.^(9t) = / i \ 7X#)(SI) for any 31 e T2(.a0. Hence # . ^ = J.f.IX/0-

But there are more T-algebras than algebraic categories and it is an open 
question to characterize them. 
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Lintoo has shown (see [I]) that any monadic category over #f is canonically 
algebraic. We are goirjg.to show that the converse is not true even in the case #T a 
-» Setf We will need twos auxiliary assertions. 

Proposition: Let (t9E)-Alg be an algebraic category over Set, iti9 i%Ibe a set 
of its objects and q>§TittE)mAlg. Then there is a term p of type t such that $>%< iquals 
to itst interpretationpUi\ on) 91 * for each iel. t 

Prpcjf: Following theorem 6.5. of [4] there is a chain £Q 3 Et '3 ... S ^ 3 
3 ... 3 E of classes of equations of type t indexed by all ordinals such that any 
category (t, EJ-Alg is monadic over Set and \t9E)-Alg = \j (t9Ea)-Alg. Hence 

there is an ordinal a such that 91*e (t,EJ-Alg for any iel. The natural trans
formation ^induces an element q> s r ( / fBaM^, It is well-known (see e.g. [2], 1.5.5.) 
that (t9 E^-Alg being monadic implies that q> is induced on (t, Em)-Alg by a term 
of type t. Hence the result follows. ' 

• • > - if . , 

It is clear that the condition of the Proposition is also Sufficient for q> being 
a natural transformation. 

• ••••• • - - - - - • .• - " t ,- . < . . » ... i , - • 

Lemma: Let (t9 E)rAIg.be-an algebraic category over^ Set such that any operation 
symbol from 4 is unary. Denote by U the forgetful functor Then any natural trans
formation xp: Un -» U is a composition Un-*+ UA* U where a is natural and n{ 

is the projection given by some i e ri. < • > • * 
Proof: At first, assume that <p% : | 91 \n -* ] 911 is constant for any 9t e \t9 E)-Alg. 

Let a« : I 911 ~* I 911 be constant with the same value'as q>%. Then a : U -• (7 is 
clearly natural and >̂ = a". 7rf for any 7e n. 

Let there be an algebra 9t such tliat <p% is not constant. Assume that <p% == 
= y-(*du = g-(*jh {0T / ' I € r t and / , g : | 9 t | ^ | 9 t | . Consider a9be\K\. 
There is c = (ck)ke„ e j 911* such that cf = a and £] = ft. Since/(a) == / ! ^ ^ ( c ) = 
- 8 - (^/)ar(c) — s(b) and <pa is not constant, we get that / -= J.'Hence q>% factorizes 
over at most one 7 .̂ Denbte this /, if it exists, by /0. 

Consider a (t9 2?)-algebra &. Following the Proposition, ther̂ e is an w-ary term/? 
of type t such that <pm ~ p% and <p$ = /?®. But ttie term P equals'to n{. q where # 
is the unary term and nt the projection term. Hence 1 -= i0'. Put aB = (q%)9. For 
any (f,\£)-algebras 8 , C and any homomorphism A:1B-*(£ it holds'that 
A . 4 . ^ = h.^.^f = A./>® = A. & -• *..*• = a, .iktf'.V -
= a^. A". (;t|0)®. Since (rcI0)® is onto, a : U -> U is a natural transformation. 
Thus <p — a . #,_. 

' • ' " " ' - . ' . ' ' . 7 , ^ * ' . - '• • j 

Example: Let .#* = Set and consider the type t having a class of unary operation 
symbols f<hftsf2\ ... indexed by all ordinals. Let E consist of equations 

ff'fi " .V- ' - .'.".. V ' 
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for any ordinal i and 

/ . . / , " - / o 

for any two distinct ordinals i9j. 
Let 9t be a (*, £)-algebra. If ( /)* » (fjf for i # f then (/,)* - (fif • (/D* -

« (/<)* . (//)* » (/o)*. Since W can have only a set of different (/f)®, there is an 
ordinal j such that (ftf » (/<,)• for any i fc j . Hence jaf - (', E>Alg has only 
a class of objects and thus it is a category. 

Denote by U: si ~* Set the forgetful functor. Let q>: U -+ U be a natural 
transformation and assume that <p differs from the natural transformation <pf9: U -• 
-• £/ induced by / 0 . Thus there is an algebra 216 si such that <p% # (f0f. Following 
the Proposition there is an ordinal i such that <p% = (ff. Consider an arbitrary 
93 e si. By the Proposition again, there is J such that q>B -» (fjf and <pa * (/})* 
Since (/,)* = (fjf and (/,)« # (f0f, we get that * » f. Hence q> ** q>fr We have 
proved that ^ / s exhaust all natural transformations U -+ U. 

Following the Lemma any natural transformation U" -• (7 is induced by a term 
of type t. Hence si is canonically algebraic. 

It remains to verify that si is not monadic. We will prove it by exhibiting 
one-generated (t9 -E)-algebras of arbitrary cardinalities. It suffices to consider, for 
any ordinal i, a (t, £)-algebra 21* on the set / such that (fkfl(k) = k if k < i and 
(fkf'fj) = 0 otherwise. 
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