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A NOTE ON ALGEBRAIC CATEGORIES'

"JIR1'ROSICKY, Brno S &
(Received September 14, 1981) :

This note-is a sequel to [4] but it can be read indepcnden‘t\ly. Both main re-
sults (Corollary 2 and the Example) were motivated by Reiterman [3]... |

For the precise set-theoretic foundation we will need two universes %, and %,
such that %, < %, and %, € %,. %,-sets will be called sets, %,-classes, classes,
% ,-sets metaclasses and %,-classes superclasses. There are four corresponding
levels of categories: small categories, categories, metacategories and supercategories.
We will notationally not distinguish the corresponding levels of functors. Let us
emphasize that one can neglect these set-theoretic difficulties because all what we
assert about categories may be proved in the Gddel —Bernays set theory.

A concrete (meta)category over a category Zis a couple (A, U) where of 1s
a (meta)category and U : of — % afaithful functor. A concrete functarH (#, U)—»

— (4, V) between concrete metacategories is a functor H: o/ — # such that
V.H = U. Denote by ¢4 a supercategory of concrete metacategories and con-
crete functors over ¥. :

Linton [1] has shown how a concrete metacategory (&, U ) over & gives rise to
a concrete metacategosy U-Alg of U-algebras over &. A, U-algebra U consists of
an object X e & and of mappings @% : X" — X* where ¢ carries over natural
transformations U” = U* with n, k € &, and these data satlsfy

(1) U = x* " o
for any morphnsmf k — nof & and ‘ ¢
@ L =ty

for any natural transformations y : U™ — U" and 9o : U" > U" Concermng the
notation, if n.€ & then U" : of — Set is the composition (n, ~) . U, U’ : Uk - ur
has components (U’), = (UA) for A € o, X* is the set Z(n, X) and X” is the
mapping Z(f, X): X" - X*. Similarly 4" is the mappmg X, h): X"ﬂ—-» Y” for any
morphism h: X - Y of Z. |
Homomorphzsms h: U - B of U-algebras are defined obvxously,l e.as morphlsms
| ‘II| — | 8| between' underlying 95‘ -objects of A and' B such: that A* . (p‘
.—(p . k" for any ¢ : U" - U, ‘ e :
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The metaclass of all natural transformations U” - U* will be denoted by 7.
Emphasize that ¢, for A € of, will always denote the A-th component of a natural
transformation ¢ € 7.

Pot T(of) = U-Algandlet T(H) : T(sf) — T(M), for a concrete functor H : of —
— 4, is given as follows

pTI® = (pH)¥

for any W e T(of) and any @ € 14. It is evident that 7 : €4 — €4 is a functor.
The setting

A
P = ¢,

where 4 € of and ¢ € 1, gives rise to a concrete functor n, : of — T(&). The
verification that n ,(A4) is a U-algebra is easy. The functor 1, is called the comparison
functor of . :

Since @144 — (L HY#A) — (pH), = Pry = 9" MY for any 4 e o and
QpETg,Ny:1 = T is a natural transformation (1 denotes the identity functor
on €y).

It is easy to see that the assignment

Py = "

where W e T() gives a natural transformation ¢ € Tr() for any @€ t,. Assign
to any algebra A € T3 ¢) an algebra pu(A) € T(o/) by means of
(pud(M) = (pﬂ(

for any ¢ € 7. Since A*. p*a® = p* g% = ¢® . 1" = *#® _p* for any homo-
morphism 4 : A — B of algebras A, B € Tz(.si), B - Tz(d) — T'(&f) is a functor.
Since (¢ . T(H))g = @rae = ¢ "% = (oH)* = (¢H)y for any H:of - B,
petq and Ae T(H), we get @THwa® = (QHy=*® = oH® = (gT(H))* =

= gl = pra- (T for any H: oA > B, p €4 and A e T* (). Hence

« . T? = Tis a natural transformation.

Theorem. (T, n, 1) is a monad in €.

Proof: Since o® "M@ = g™ = g, = @y for any A e T(#) and @ €1,
we get that p.nT = 1. Since (§. Ny = Pyyay = ¢ = ¢y for any e of
and @ € 1, it holds ¢¥% = (gn)* = eTU@® = QT for any A e T()
and @et,. Hence yu.T(n) = l. Finally, since (Ppa)y = @, @ = ¢"*® =
- ¢M - Eﬂ for any A e T*(«) and @ € T, it holds (o™ T(u))g(ﬂ = ¢T(u4)(“) =
= (Pu, )% = p% = g*T® = o®+rDa®  for any e THf) and @ert,.
Therefore . T(p) = p. uT holds.

A concrete (meta)category (o, U) over & will be called canonically algebraic if
the comparison functor n,, is an isomorphism.
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Corollary 1: Let of be a concrete category over ¥ such that T(f) is canonically
algebraic and n, is a coretraction. Then of is canonically algebraic, too.

Proof: Since T(of) is canonically algebraic, ny,, is an isomorphism.
Hence N1y = T(ny) because puy . Ny = py. T(ny) = 1 implies that Nrw) =
= o' = T(n).

n. being a coretraction means that there is a functor H : T(.of) - & such that
H.ny = 1. Since n,. HA)'= T(H) . N1y(W) = T(H) . T(n)A) = Y, it holds
that n, . H = 1. Hence n, is an isomorphism and &« is canonically algebraic.

Corollary 2: Let of be a concrete category over . Then either of -is canonically
algebraic, or T() is canonically algebraic or no of T"(f) is canonically algebraic.

Proof: Since pu.nT = 1, nyny is a coretraction for n = 1. Hence by the
previous corollary whenever T"(&f) is not canomcally algebraic then neither
T"* (o) is.

Let us specify what means that a category is canonically algebraic over Set.
Under a type ¢ we will mean a class of (infinitary) operation symbols. Having
a class E of equations of type ¢+ we may form the metacategory (¢, E)-Alg of all
t-algebras satisfying all equations from E. Under an algebraic category over Set
we will mean a concrete category isomorphic (as a concrete category) to some
(t, E)-Alg. Any canonically algebraic category over Set is, of course, algebraic over
Set. The converse is not true (see [4]). The reason is that, for a given algebraic
category (t, E)-Alg, there may exist a natural transformation ¢ € 7, gy.4;, Which
is not induced by any term of type ¢ and such that the interpretation of ¢ is not
uniquely determined by the interpretations of terms of type ¢.

We can similarly introduce the concept of an algebraic category over an arbitrary
category ¥ (see [4]). Here, a r-algebra U consists of an object X € & and of
operations f: X" - X* where f carries over operation symbols of type ¢ and
n, k € . Hence we have again an algebraic category (¢,.E)-Alg over . Of course,
any canonically algebraic category is again algebraic.

Returning once more to a monad T : €, — %4, one can ask how T-algebras
look like. We are going to show that any algebraic category over & is a T-algebra.

Consider an algebraic category & = (t, E)-Alg and denote by U the forgetful
functor into . Any operation symbol f e t provides a natural transformation ¢,
by means of (¢,)y = f¥ for any (¢, E)-algebra A. Then the prescription fH® =
= (¢ ,)“, Ae T(H), fet gives the functor H : T(F) = o of t-reducts. We show
that (of, H) is a T-algebra.

Clearly H.n, = 1. Further for any We T(sf) and fet it holds that (F,)g =

= ()% = fH® = (¢ )y = (o H)y. Since fH*4® = (¢, pa® = (g% =

(¢,H)°‘ (@ )T = fH-TEX® Kolds for any A e T () and any fet, We
get that H. p(U) = H. T(H)(Y) for any A € T*(f). Hence H . p,, = H.T(H)-

But there are more T-algebras than algebraic categories and it is an opel
question to characterize them.
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Linton has shown (see. [1]) that any monadic category over & is canonically
algebraic. We are going, to show that the converse is not true even in the case & =
= Set, We will need two auxiliary assertions,

Proposi}ﬁol’l Let (t, E)-Alg be an algebraic category over Set, W, ic I be a set
of its objects and Pe t(,, E)-alg- Then there is a term p of type t such that Py, équals
to its mterpretauon p™on U, for each i L

Proqf Following theorem 6.5. of [4] there is a cham Ey2E =2..2E 2
2 ... 2 E of classes of equatlons of type t indexed by all ordinals such that any

category (t EJ AIg is monadlc over Set and (¢, E)-Alg = {J (s, E)-Alg. Hence
. zeQrd

there is an ordmal o such that Qlfe(t E,)- Alg for. any ieI. The natural trans-
formation ¢ induces an element ¢ € 7, g, ).41,- It is well-known (see e.g. [2], 1.5.5.)
that (¢, E,)-Alg being monadic implies that ¢ is induced on (¢, E,)-4lg by a term
of type L Hence the result follows. *

It 1s clear that the condition of the Proposmon is also sufﬁment for ¢ being

a natural transformatxon
] * ] ‘

Lemma: Let (¢, E)-Alg be an algebratc category over, Set such that any operatton
symbol fram t is unary. Denote by U the forgetful functor. Then any natural trans-
formation @ : U" —» U is a composition U2 US> U where « is natural and =,
is the projection given by someien.. - ‘ Lo

Proof: At first; assume that Py | U [* - | A |is constant for any A € (¢, E) -Alg.
Let og: | U | - | A | be constant with the same value ‘as (pm Then @ U U is
clearly natural and ¢ = a.7; foranyien. =
~ Let there be an algebra U such that @y is not constant. Assume that @y =
=7. (n)g = g.(nyy for i,jen and fe: [9| = [A|. Consider a,be| A
Thereis ¢ = (c,‘),,,,, €| A |"such that ¢, = aand ¢; = b. Since f(a) = f. (n,),,(c) =
=g. (m))y(c) = g(b) and gy is not constant, we get that i = J. Hence (pg, factorlzes
over at most one 7;. Denote this i, if it exists, by i,.

Consrder a (1, E)- algebra B. Followmg the Proposmon, there is an n-ary term p
of type ¢ such that oy = p® and ¢y = p®. But the term p equals to ;. ¢ where ¢
is the unary term and 7, the pro;ectlon term. Hence i "= i, Put ag = (gg)®. For
any, (t, E) algebras B,C and any homomorphlsm h: % - (\Z it holds ‘ that
hoog. (m)®=h.(qe)® @)® =h.p®=h.¢g= 0. I =a,. @) K=
=ag. K. (n‘o)” ‘Since (mi)® is onto, o : U - Uis a natural transformatlon
Thus (o = 0. Mg ‘ '

A,

Example: Let .Q” = Set and consider the type ¢ havnng a class of unary’ operanon
symbols fy, f33 /25 -.. indexed by all ordinals. Let E consist.of equatlons

=fi

‘e
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for any ordinal i and
fi f; = fo
for any two distinct ordinals i, j.

Let o be a (1, E)-algebra. If ()% = (f))* for i # j then (f)* = (ﬁ)“ A =
= (f)¥. ()™ = (fo)*. Since A can have only a set of different ()Y, there is an
ordinal j such that (f)¥ = (f,)¥ for any i 2 j. Hence o = (1, E)-Alg has only
a class of objects and thus it is a category.

Denote by U: of — Set the forgetful functor. Let ¢ : U - U be a natural
transformation and assume that ¢ differs from the natural transformation ¢, : U —
— U induced by f,. Thus there is an algebra U € & such that @y # (fo)®. Following
the Proposition there is an ordinal i such that @y = (f)¥. Consider an arbitrary
B € /. By the Proposition again, there is j such that pg = ( f,) and ¢y = ( f,)“
Since (f)® = (f)® and (f)¥ # (f,)¥, we get that i = j. Hence ¢ = ¢,,. We have
proved that ¢, ’s exhaust all natural transformations U — U.

Following the Lemma any natural transformation U” — U is induced by a term
of type t. Hence & is canonically algebraic.

It remains to verify that of is not monadic. We will prove it by exhibiting
one-generated (¢, E)-algebras of arbitrary cardinalities. It suffices to consider, for
any ordinal i, a (z, £)-algebra o, on the set i such that (f)%(k) = k if k < i and
(fO¥™(j) = 0 otherwise.
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