Archivum Mathematicum

Alan Day
A note on Arguesian lattices

Archivum Mathematicum, Vol. 19 (1983), No. 3, 117--123
Persistent URL: http://dml.cz/dmlcz/107164

Terms of use:

© Masaryk University, 1983
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

A NOTE ON ARGUESIAN LATTICES

by ALAN DAY*)
(Received May 5, 1981)

§0 INTRODUCTION

In [4] Jónsson introduced the Arguesian lattice identity which reflects precisely Desargues' Theorem for projective spaces qua lattices. In this note we "geometrize" Jónsson's equation by proving that one can assume more geometrical facts about the lattice variables in the equational or the (equivalent) implicational form. An interesting consequence of this is the fact that 2-distributive (modular) lattices are Arguesian. This fact reflects the property that one dimensional projective spaces geometrically trivial.

§1 PRELIMINARIES

The Arguesian identity and its equivalents have been developed by Jonsson et al in a series of papers (see especially [3], [6] and [7]). An early result, [5], was that Arguesian lattices are modular. Therefore we will assume throughout this paper that all lattices are modular.

Let L be a (modular) lattice. A triangle (or trilateral) in L is an arbitrary triple $a=\left(a_{0}, a_{1}, a_{2}\right) \in L^{3}$. For two triangles, a and b, in L we require certain derived polynomials and statements

1. Definition. For a, b in L

(a) $p(a, b)=\left(a_{0} \vee b_{0}\right) \wedge\left(a_{1} \vee b_{1}\right) \wedge\left(a_{2} \vee b_{2}\right)$
(b) $c_{i}(a, b)=\left(a_{j} \vee a_{k}\right) \wedge\left(b_{j} \vee b_{k}\right), \quad\{i, j, k\}=\{0,1,2\}$
(c) $\operatorname{CP}(a, b):\left(a_{0} \vee b_{0}\right) \wedge\left(a_{1} \vee b_{1}\right) \leqq a_{2} \vee b_{2}$
(d) $\operatorname{AP}(a, b): c_{2}(a, b) \leqq c_{0}(a, b) \vee c_{1}(a, b)$
$\operatorname{CP}(a, b)$ is an abbreviation of central perspectivity for the triangles (of points in a projective plane) \boldsymbol{a} and $\boldsymbol{b} . \operatorname{AP}(\boldsymbol{a}, \boldsymbol{b})$ is an abbreviation for the axial perspectivity of these triangles (of points).

[^0]2. Definition. A lattice $(L ; \vee, \wedge)$ is called:
(a) Arguesian if for any pair of triangles a, b in $L, p(a, b) \leqq a_{0} \vee$ $\vee\left(b_{0} \wedge\left(b_{1} \vee\left(c_{2} \wedge\left(c_{0} \vee c_{1}\right)\right)\right)\right)$.
(b) Desarguean if for any pair of triangles $\boldsymbol{a}, \boldsymbol{b}$ in $L, \mathrm{CP}(\boldsymbol{a}, \boldsymbol{b})$ implies $\operatorname{AP}(\boldsymbol{a}, \boldsymbol{b})$.
(c) Arguesian (Desarguean) for a given class of triangles if (a) (respectively (b)) holds for that particular class of triangles.

The following theorem is a synopsis of the pertient results that appear in aforementioned papers.
3. Theorem. ([3], [6], and [7]): Let L be a modular lattice, then the following are equivalent:
(1) L is Arguesian.
(2) L is Desarguean.
(3) L is Desarguean for triangles a, b in L satisfying (A): $a_{i} \vee p=b_{i} \vee p=$ $=a_{i} \vee b_{i}, i=0,1,2$.
(4) L is Arguesian for triangles a, b in L satisfying (A): $a_{i} \vee p=b_{i} \vee p=a_{i} \vee b_{i}$, $i=0,1,2$.

The other notion we need is that of an n-diamond. This notion reflects the geo metrical property of $n+1$ points in general position in a projective space odimension $\geqq n-1$.
4. Definition. (i) A sequence $d=\left(d_{0}, d_{1}, \ldots, d_{n}\right)$ in a (modular) lattice L is called an n-diamond if

$$
\begin{aligned}
\left(D_{n} 1\right) \bigvee_{\substack{j \neq i}}^{0, n} d_{j} & =v, \quad i \leqq n \\
\left(D_{n} 2\right) d_{i} \wedge \bigvee_{\substack{k \neq i \\
k \neq j}}^{0, n} d_{k} & =u, \quad i \neq j \leqq n .
\end{aligned}
$$

We will call a sequence, \boldsymbol{d} in L, a lower n-diamond (upper n-diamond) if it satisfies ($D_{n} 2$) (respectively $\left(D_{n} 1\right)$).
(ii) A lattice is called n-distributive if it does not contain an n-diamond.

By Huhn [2] and Hermann \& Huhn [1] we know that (modular) n-distributive lattices form an equational class of (modular) lattices and that an n-diamond is either non-trivial ($d_{i} \neq d_{j}$ for $i \neq j$) or completely trivial (i.e. $d_{0}=d_{1}=\ldots=d_{n}$).

The last notion we need is that of an independent set $\left\{a_{1}, \ldots, a_{n}\right\}$ in L.

$$
\perp\left(a_{1}, \ldots, a_{n}\right) \quad \text { iff } \quad u=a_{i} \wedge \bigvee_{j+i}^{l, n} a_{j} \quad \text { for all } i \leqq n
$$

§ 2 THE RESULTS

Our goal is to discover what other restrictions one can place on the triangles and still ensure the Desarguean implication. Basically, we are attempting to "regeometrize" the Desarguean implication by removing all "degenerate" cases of variable substitutions. Our first result is an easy reduction to independent triangles.

1. Lemma, For a modular lattice L, L is Arguesian if and only if L is Desarguean for triangles a and b in L satisfying (A) $a_{i} \vee p=b_{i} \vee p\left(=a_{i} \vee b_{i}\right) i \leqq 2$ and (I) $\perp\left(a_{0}, a_{1}, a_{2}\right)$ and $\perp\left(b_{0}, b_{1}, b_{2}\right)$.

Proof: The condition is clearly necessary so let a and b be arbitrary centrally perspective triangles in L satisfying (A). By defining

$$
x_{i}^{\prime}=\left(x_{i} \vee x_{j}\right) \wedge\left(x_{i} \vee x_{k}\right)
$$

for $x \in\{a, b\}$ and $\{i, j, k\}=\{0,1,2\}$ the reader can easily check that \boldsymbol{a}^{\prime} and \boldsymbol{b}^{\prime} are centrally perspective triangles in L that satisfy (A) and (I). By the condition we infer $\operatorname{AP}\left(a^{\prime}, b^{\prime}\right)$ and since $c_{i}^{\prime}=c_{i}$ for all i we obtain $\operatorname{AP}(\boldsymbol{a}, \boldsymbol{b})$.

Later results will be proven in a similar way as we add more conditions on our triangles. Let us first note however that we may always assume that the triangles a and b are strictly independent. That is x_{i} and x_{j} will be incomparable if $i \neq j$, $x \in\{a, b\}$,
2. Lemma. Let a and b be centrally perspective triangles in a modular lattice L. If either $\left\{a_{0}, a_{1}, a_{2}\right\}$ or $\left\{b_{0}, b_{1}, b_{2}\right\}$ contains comparable elements, then a and b are axially perspective.

Proof: By symmetry we need only consider the cases $a_{0} \leqq a_{1}, a_{0} \leqq a_{2}$ and $a_{0} \leqq a_{1}$. If $a_{0} \leqq a_{1}$ then $\mathrm{CP}(a, b)$ gives us

$$
a_{0} \leqq\left(a_{0} \vee b_{0}\right) \wedge\left(a_{1} \vee b_{1}\right) \leqq a_{2} \vee b_{2}
$$

and

$$
\begin{aligned}
c_{0} \vee c_{1} & =\left(a_{1} \vee a_{2}\right) \wedge\left(b_{1} \vee b_{2} \vee c_{1}\right)= \\
& =\left(a_{1} \vee a_{2}\right) \wedge\left(b_{1} \vee\left(\left(b_{2} \vee a_{0} \vee a_{2}\right) \wedge\left(b_{0} \vee b_{2}\right)\right)\right) \geqq \\
& \geqq\left(a_{1} \vee a_{2}\right) \wedge\left(b_{1} \vee\left(\left(a_{0} \vee b_{0}\right) \wedge\left(a_{1} \vee b_{1}\right) \wedge\left(b_{0} \vee b_{2}\right)\right)\right)= \\
& =\left(a_{1} \vee a_{2}\right) \wedge\left(a_{1} \vee b_{1}\right) \wedge\left(b_{1} \vee\left(\left(a_{0} \vee b_{0}\right) \wedge\left(b_{0} \vee b_{2}\right)\right)\right) \geqq \\
& \geqq a_{1} \wedge\left(b_{1} \vee b_{0}\right)= \\
& =\left(a_{0} \vee a_{1}\right) \wedge\left(b_{0} \vee b_{1}\right)= \\
& =c_{2} .
\end{aligned}
$$

If $a_{2} \leqq a_{0}$ then $\mathrm{CP}(\boldsymbol{a}, \boldsymbol{b})$ gives us

$$
\left(a_{2} \vee a_{1} \vee b_{1}\right) \wedge\left(a_{0} \vee b_{0}\right) \leqq a_{2} \vee b_{2}
$$

and

$$
\begin{aligned}
& c_{0} \vee c_{1}=c_{0} \vee\left(a_{0} \wedge\left(b_{0} \vee b_{2}\right)\right)= \\
&\left.=\left(a_{0} \wedge\left(b_{0} \vee b_{2}\right)\right) \vee\left(a_{2} \cap b_{0} \vee b_{2}\right)\right) \vee c_{0}= \\
&=\left(a_{0} \wedge\left(b_{0} \vee b_{2}\right)\right) \vee\left\{\left(a_{1} \vee a_{2}\right) \wedge\left[b_{1} \vee b_{2} \vee\left(a_{2} \wedge\left(b_{0} \vee b_{2}\right)\right)\right]\right\}= \\
&=\left(a_{0} \wedge\left(b_{0} \vee b_{2}\right)\right) \vee\left\{\left(a_{1} \vee a_{2}\right) \wedge\left[b_{1} \vee\left(\left(b_{2} \vee a_{2}\right) \wedge\left(b_{0} \vee b_{2}\right)\right)\right]\right\} \geqq \\
& \geqq\left(a_{0} \wedge\left(b_{0} \vee b_{2}\right)\right) \vee\left\{\left(a_{1} \vee a_{2}\right) \wedge\left[b_{1} \vee\left(\left(a_{2} \vee a_{1} \vee b_{1}\right) \wedge\left(a_{0} \vee b_{0}\right) \wedge\left(b_{0} \vee b_{2}\right)\right)\right]\right\}= \\
&=\left(a_{0} \wedge\left(b_{0} \vee b_{2}\right)\right) \vee\left\{\left(a_{1} \vee a_{2}\right) \wedge\left[b_{1} \vee b_{0} \vee\left(a_{0} \wedge\left(b_{0} \vee b_{2}\right)\right)\right]\right\}= \\
&=\left[a_{1} \vee a_{2} \vee\left(a_{0} \wedge\left(b_{0} \vee b_{2}\right)\right)\right] \wedge\left(b_{0} \vee b_{1} \vee\left(a_{0} \wedge\left(b_{0} \vee b_{2}\right)\right) \geqq\right. \\
& \geqq\left[a_{1} \vee\left(\left(a_{2} \vee b_{0} \vee b_{2}\right) \wedge a_{0}\right)\right] \wedge\left(b_{0} \vee b_{1}\right) \geqq \\
& \geqq\left[a_{1} \vee\left[a_{0} \vee\left(b_{0} \vee\left(\left(a_{0} \vee b_{0}\right) \wedge\left(a_{1} \vee b_{1}\right)\right)\right)\right]\right] \wedge\left(b_{0} \vee b_{1}\right)= \\
&=\left[a_{1} \vee\left(a_{0} \wedge\left(a_{1} \vee b_{0} \vee b_{1}\right)\right)\right] \wedge\left(b_{0} \vee b_{1}\right)= \\
&=c_{2} .
\end{aligned}
$$

The case where $a_{0} \leqq a_{2}$ is left for the reader.
Now let \boldsymbol{a} and \boldsymbol{b} be centrally perspective triangles in L satisfying (A) and (I) define
and(i) $s_{a}=\left(a_{0} \wedge\left(a_{2} \vee b_{2}\right)\right) \vee\left(a_{1} \wedge\left(a_{2} \vee b_{2}\right)\right)$
(ii) $s_{b}=\left(b_{0} \wedge\left(a_{2} \vee b_{2}\right)\right) \vee\left(b_{1} \wedge\left(a_{2} \vee b_{2}\right)\right)$
(iii) $a_{i}^{\prime}=a_{i} \vee s_{a}$ and $b_{i}^{\prime}=b_{i} \vee s_{b}$

Easy calculations give us that \boldsymbol{a}^{\prime} and \boldsymbol{b}^{\prime} are centrally perspective triangles satisfying (A) and (I). Moreover $c_{2}^{\prime}=c_{2}, c_{1}^{\prime}=c_{1} \vee\left(c_{0} \wedge\left(a_{2} \vee b_{2}\right)\right)$ and $c_{0}^{\prime}=c_{0} \vee\left(c_{1} \wedge\left(a_{2} \vee b_{2}\right)\right)$. Therefore $\operatorname{AP}(\boldsymbol{a}, \boldsymbol{b})$ holds if and only if $\operatorname{AP}\left(\boldsymbol{a}^{\prime}, \boldsymbol{b}^{\prime}\right)$ holds.

The above allows us to add the conditions $a_{0} \wedge\left(a_{2} \vee b_{2}\right)=a_{1} \wedge\left(a_{2} \vee b_{2}\right)=0_{\text {a }}$ and $b_{0} \wedge\left(a_{2} \vee b_{2}\right)=b_{1} \wedge\left(a_{2} \vee b_{2}\right)=0_{b}\left(0_{a}=a_{0} \wedge a_{1}=a_{0} \wedge a_{2}=a_{1} \wedge a_{2}\right.$ and similarly for 0_{b}) to (A) and (I). We are however more interested in certain consequences of these conditions.
3. Theorem. A modular lattice, L, is Arguesian if and only if L is Desarguean for triangles a and b in L satisfying (A), (I) and (U): $p=\left(a_{i} \vee b_{i}\right) \wedge\left(a_{j} \vee b_{j}\right), i \neq j$.

Proof: Using the notation above the theorem statement we get

$$
a_{0}^{\prime} \wedge\left(a_{2}^{\prime} \vee b_{2}^{\prime}\right)=0_{a} \vee s_{a} \leqq p^{\prime}
$$

Therefore $\boldsymbol{p}^{\prime}=\boldsymbol{p}^{\prime} \vee\left(a_{0}^{\prime} \wedge\left(a_{2}^{\prime} \vee b_{2}^{\prime}\right)\right)=\left(\boldsymbol{p}^{\prime} \vee a_{0}^{\prime}\right) \wedge\left(a_{2}^{\prime} \vee b_{2}^{\prime}\right)$ since $\quad \mathbf{C P}\left(\boldsymbol{a}^{\prime}, \boldsymbol{b}^{\prime}\right)=$ $=\left(a_{0}^{\prime} \vee b_{0}^{\prime}\right) \wedge\left(a_{2}^{\prime} \vee b_{2}^{\prime}\right)$ by (A$)$.

We want one more condition on our triangles. Let $\boldsymbol{a}, \boldsymbol{b}$ be triangles in L satisfying (A), (I) and (U) and define
(i) $u_{a}=\bigvee_{i}^{0,2}\left(a_{i} \wedge p\right), u_{b}=\bigvee_{i}^{0,2}\left(b_{i} \wedge p\right)$,
(ii) $a_{i}^{\prime}=a_{i} \vee u_{a}, b_{i}^{\prime}=b_{i} \vee u_{b}$.

We have by easy calculations:
(1) $a_{i}^{\prime} \vee b_{i}^{\prime}=a_{i} \vee b_{i}$
(2) $\boldsymbol{p}^{\prime}=p$ and $\boldsymbol{a}^{\prime}, b^{\prime}$ satisfy (U)
(3) $a_{i}^{\prime} \vee a_{j}^{\prime}=a_{i} \vee a_{j} \vee\left(a_{k} \wedge\left(a_{i} \vee b_{i}\right)\right)=a_{i} \vee a_{j} \vee\left(a_{k} \wedge\left(a_{j} \vee b_{j}\right)\right)$
(4) $\left(a_{i}^{\prime} \vee a_{j}^{\prime}\right) \wedge\left(a_{i}^{\prime} \vee a_{k}^{\prime}\right)=\left[\left(a_{i} \vee a_{j}\right) \wedge\left(a_{i} \vee a_{k}\right)\right] \vee u_{a}$
(5) $\boldsymbol{a}, \boldsymbol{b}$ satisfy (I)
(6) $a_{i}^{\prime} \vee p^{\prime}=a_{i}^{\prime} \vee b_{i}^{\prime}=b_{i}^{\prime} \vee p^{\prime}$ hence a, b satisfy (A)
(7) $c_{i}^{\prime}=c_{i} \vee\left(c_{j} \wedge\left(a_{k} \vee b_{k}\right)\right)=c_{i} \vee\left(c_{k} \wedge\left(a_{j} \vee b_{j}\right)\right)$
(8) $\operatorname{AP}(\boldsymbol{a}, \boldsymbol{b})$ iff $\operatorname{AP}\left(\boldsymbol{a}^{\prime}, \boldsymbol{b}^{\prime}\right)$

Therefore it behooves one to determine what other special properties hold for these triangles.
4. Lemma. ($a_{0}^{\prime}, a_{1}^{\prime}, a_{2}^{\prime}, p^{\prime}$) and ($b_{0}^{\prime}, b_{1}^{\prime}, b_{2}^{\prime}, p^{\prime}$) are lower 3-diamonds with bottom element u_{a} (resp. u_{b}).

Proof:

$$
\begin{aligned}
a_{0}^{\prime} \wedge\left(a_{1}^{\prime} \vee a_{2}^{\prime}\right) & =\left(a_{0} \vee\left(a_{1} \wedge p\right) \vee\left(a_{2} \wedge p\right)\right) \wedge\left(a_{1} \vee a_{2} \vee\left(a_{0} \wedge p\right)\right)= \\
& =\left(a_{0} \wedge\left(a_{1} \vee a_{2}\right)\right) \vee u_{a}= \\
& =u_{a} \\
a_{0}^{\prime} \wedge\left(a_{1}^{\prime} \vee p^{\prime}\right) & =\left(a_{0} \vee\left(a_{1} \wedge p\right) \vee\left(a_{2} \wedge p\right)\right) \wedge\left(a_{1} \vee p\right)= \\
& =u_{a} \vee\left(a_{0} \wedge\left(a_{1} \vee p\right)\right)= \\
& =u_{a} \vee\left(a_{0} \wedge\left(a_{1} \vee b_{1}\right) \wedge\left(a_{1} \vee a_{0} \vee b_{0}\right)\right)= \\
& =u_{a} \vee\left(a_{0} \wedge\left(a_{1} \vee b_{1}\right)\right)= \\
& =u_{a} \vee\left(a_{0} \wedge p\right)= \\
& =u_{a} \\
p^{\prime} \wedge\left(a_{0}^{\prime} \vee a_{1}^{\prime}\right) & =p^{\prime} \wedge\left(a_{0} \vee a_{1} \vee\left(a_{2} \wedge p\right)\right)= \\
& =\left(a_{2} \wedge p\right) \vee\left[\left(a_{0} \vee a_{1}\right) \wedge\left(a_{0} \vee b_{0}\right) \wedge\left(a_{1} \vee b_{1}\right)\right]= \\
& =u_{a}
\end{aligned}
$$

5. Lemma. For each $\{i, j, k\}=\{0,1,2\},\left(a_{i}^{\prime}, b_{i}^{\prime}, c_{j}^{\prime}, c_{k}^{\prime}\right)$ is a lower 3-diamond.

Proof:

$$
\begin{aligned}
c_{j}^{\prime} \wedge\left(a_{i}^{\prime} \vee b_{i}^{\prime}\right) & =\left(a_{i} \vee b_{i}\right) \wedge\left(c_{j} \vee\left(c_{k} \wedge\left(a_{i} \vee b_{i}\right)\right)\right)= \\
& =\left[c_{j} \wedge\left(a_{i} \vee b_{i}\right)\right] \wedge\left[c_{k} \wedge\left(a_{i} \vee b_{i}\right)\right]= \\
& =c_{k}^{\prime} \wedge\left(a_{i}^{\prime} \vee b_{i}^{\prime}\right) \\
a_{i}^{\prime} \wedge\left(c_{j}^{\prime} \vee c_{k}^{\prime}\right) & =\left[a_{i} \vee\left(a_{j} \wedge p\right) \vee\left(a_{k} \wedge p\right)\right] \wedge\left[c_{j} \vee c_{k}\right]= \\
& =\left[a_{i} \vee\left(a_{j} \wedge\left(a_{i} \vee b_{i}\right)\right) \vee\left(a_{k} \wedge\left(a_{i} \vee b_{i}\right)\right)\right] \wedge\left[c_{j} \vee c_{k}\right] \\
& =\left[a_{i} \vee\left(b_{j} \wedge\left(a_{i} \vee a_{j}\right)\right) \vee\left(b_{i} \wedge\left(a_{i} \vee a_{k}\right)\right)\right] \wedge\left[c_{j} \vee c_{k}\right]= \\
& =\left(b_{j} \wedge\left(a_{i} \vee a_{j}\right)\right) \vee\left(b_{i} \wedge\left(a_{i} \vee a_{k}\right)\right) \vee\left(a_{i} \wedge\left(c_{j} \vee c_{k}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(b_{j} \wedge\left(a_{i} \vee a_{j}\right)\right) \vee\left(b_{i} \wedge\left(a_{i} \vee a_{k}\right)\right) \vee\left(a_{i} \wedge\left(b_{i} \vee b_{k}\right)\right) \vee \\
& \vee\left(a_{i} \wedge\left(b_{i} \vee b_{j}\right)\right)= \\
& =\left[c_{j} \wedge\left(a_{i} \vee b_{i}\right)\right] \vee\left[c_{k} \wedge\left(a_{i} \vee b_{i}\right)\right]
\end{aligned}
$$

The other calculations are left to the reader.
6. Theorem. A modular lattice, L, is Arguesian if and only if any triangles a,b in L satisfying:
(A) $a_{i} \vee p=b_{i} \vee p=a_{i} \vee b_{i}$
(I) $\perp\left(a_{0}, a_{1}, a_{2}\right)$ and $\perp\left(b_{0}, b_{1}, b_{2}\right)$
(U) $p=\left(a_{i} \vee b_{i}\right) \wedge\left(a_{j} \vee b_{j}\right), i \neq j$
(LF) ($\left.a_{0}, a_{1}, a_{2}, p\right),\left(b_{0}, b_{1}, b_{2}, p\right),\left(a_{i}, b_{i}, c_{j}, c_{k}\right)$ are lower 3-diamonds are axially perspective. Moreover $c_{i} \vee c_{j}=c_{i} \vee c_{k}=c_{j} \vee c_{k}$.
7. Corollary. 2-distributive (modular) lattices are Arguesian.

Proof: If L is 2-distributive and \boldsymbol{a} and \boldsymbol{b} are triangles in L satisfying (A), (I), (U) and (LF) then the 3-diamond generated by the lower 3-diamond ($a_{2}, b_{2}, c_{0}, c_{1}$) must be trivial. This gives

$$
\left[c_{0} \wedge\left(a_{2} \vee b_{2}\right)\right] \vee\left[c_{1} \wedge\left(a_{2} \vee b_{2}\right)\right]=q_{02} \wedge q_{12} \wedge a \wedge b
$$

where

$$
q_{i j}=a_{i} \vee a_{j} \vee p, \quad a=a_{0} \vee a_{1} \vee a_{2} \quad \text { and } \quad b=b_{0} \vee b_{1} \vee b_{2} .
$$

Therefore

$$
\begin{aligned}
c_{0} \vee c_{1} & =c_{0} \vee c_{1} \vee\left(q_{01} \wedge q_{02} \wedge a \wedge b\right)= \\
& =\left[c_{0} \vee c_{1} \vee\left(q_{01} \wedge q_{02}\right)\right] \wedge a \wedge b= \\
& =\left[c_{0} \vee\left(q_{02} \wedge\left(c_{1} \vee q_{01}\right)\right)\right] \wedge a \wedge b \\
& =\left(c_{0} \vee q_{02}\right) \wedge a \wedge b= \\
& =a \wedge b \geqq \\
& \geqq c_{2} .
\end{aligned}
$$

§3 DISCUSSION

One would obviously have liked to show that we can assume $0_{a}=0_{b}$ and $a=b$. This however is impossible for as Jónsson (private communication) has observed, 2-dimensional Hall-Dilworth gluings of vector space lattices can produce both Arguesian and non-Arguesian lattices. In the non Arguesian case one needs $0_{a} \neq 0_{b}$.

Andras Huhn has asked if there exists a partial (modular) lattice configuration whose exclusion would characterize Arguesian lattices. The author cannot answer this question at present. Its answer should be connected with the projectivity of
the "correct" version of the Desarguean implication. Our version seems to lack that property.

Finally the author feels that one should be able to add $a_{i} \vee a_{j} \vee p=a_{i} \vee a_{k} \vee p$ to the conditions on the triangles. He (obviously) has no proof of this at this time.

REFERENCES

[1] C. Hermann and A. Huhn, Lattices of normal subgroups which are generated by frames, Colloq. Math. Soc. Janos Bolayi 14 (1974), Lattice Theory, 97-136.
[2] A. Huhn, Two notes on n-distributive lattices, Colloq. Math. Soc. Janos Bolayi 14 (1974), Lattice Theory, 137-147.
[3] G. Grătzer, B. Jonsson and H. Lakser, The amalgamation property in equational classes of modular lattices, Pacific J. Math. 45 (1973), 507-524.
[4] B. Jonsson, On the representation of lattices, Math. Scand. 1 (1953), 193-206.
[5] B. Jonsson, Modular lattices and Desargues' theorem, Math. Scand. 2 (1954), 295-314.
[6] B. Jónsson, The class of Arguesian lattices in selfdual, Alg. Univ. 2 (1972), 396.
[7] B. Jónsson, and G. S. Monk, Representations of primary Arguesian lattices, Pacific J. Math. 30 (1969), 95-139.

A. Day
Dept. of Math., Lakehead University
Thunderbay, Ontario, Postal Code P7B5E1
Canada

[^0]: *) This research has been supported by the NSERC, Operating Grant A-8190.

