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APPROXIMATION RELATIVE TO AN ULTRA 
FUNCTION 

T. D. N A R A N G * 
(Received December 10, 1984) 

Abstract. Let X be a non-empty set. A symmetric function f.XxX-+R is called an ultra 
function on X iff(x, y) ^ max {f(x, z), f(z, y)} for all x, y, z e X. If G is a subset of a set X with 
an ultra function / then an element g0 e G is said to be (i) an /-best approximation to x 6 X if 
f(x,g0) ^ f(x, g) for all g6 G and (ii) an /best co-approximation to x iff(go,g) ^ f(x,g) for 
all g e G. In this paper we extend some of the known results on best approximation and best 
co-approximation in non-archimedean normed linear spaces to approximation relative to an 
ultra function which is defined either on an arbitrary set X or on a Hausdorff topological vector 
space X over a non-archimedean valued field F. 

Key words, /-best approximation, /-best co-approximation, symmetric function and ultra 
function. 

The main aim of the present study is to extend some known results on approxima
tion in non-archimedean normed linear spaces to approximation relative to an 
ultra function which is defined either on an arbitrary set or on a Hausdorff 
topological vector space over a non-archimedean valued field. 

1. Introduction 

The notion off-best approximation in a vector space X was given by Breckner 
and Brosowski [1] and in a Hausdorff topological space X by the author in [5]. 
Taking X to be a Hausdorff locally convex topological vector space and / to be 
a continuous sublinear functional on X, certain results on best approximation 
relative to the functional/were proved in [1], [2] and [8]. We shall discussf-best 
approximation, f-best coapproximation and /-orthogonality in Hausdorff topo
logical vector spaces over non-archimedean valued fields relative to an ultra 
function / in section 2, and in section 3 we shall discuss f-best approximation 
and f-best co-approximation for an ultra function / defined on an arbitrary set X. 
When Xis a non-archimedean normed linear space andf == | | . j | , the norm on X, 
we get some of the results of [3], [4] and [6]. 

*) The author is thankful to U.G.C India for financial support. 
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2. f-Approximation in Topological Vector Spaces 

In this section we discuss f-best approximation, f-best co-approximation and 
f-orthogonality in Hausdorff topological vector spaces over non-archimedean 
valued fields relative to an ultra function f 

Let X be a Hausdorff topological vector space over a non-archimedean (n.a.) 
valued field F and fa symmetric (i.e.f(—JC) = f(jc) for all x e X) real-valued ultra 
function (i.e. f(x + y) ^ max {f(x)9 f(y)} for all x9yeX) on X. Let K be a non
empty closed subset of X and xe X. 

An element k0 e K is said to be an f-best approximation to JC in K if 

f(x - k0) =fK(x) » inf {f(x - fc): kGK}. 

We denote by PKtf(x) the collection of all such k0 e K. The set K is said to be 
f-proximinal if PKtf(x) is non-empty for each xe X9 f-semi-Chebyshev if PKtf(x) 
is atmost singleton for any xe X and f-Chebyshev if P^^fjc) is exactly singleton 
for each xeX. 

The set Kis said to bcf-infimum compact if for every x e Xand every minimizing 
net {A:.} in K (i.e. f(x — fc«) -*fK(x)) has an f-convergent subset in K. 

An element g0 e Kis said to be em f-best coapproximation of an element x e Xif 

f(g0-g)gf(x-g) 

for all g 6 K. The set of all such g0 e K is denoted by RKf(x). 
. For x j e l , x is said to be f-orthogonal to y9 x Lf y9 if 

f(x)^f(x + oty) 
for every scalar a. 

JC is said to be f-orthogonal to K, JC lf K, if x lf y for all y e K 
The following theorem gives existence of f-best approximation for a non-

hegativef. 

Theorem 1. Let K be a non-empty f-infimum compact subset of X. Then K is 
f-proximinaL • 

Proof, Let xeX then by the definition of fK(x)9 there exists a net {km} in K 
such that 

f(x-k.)->fK(x): 

Since {k*} is a minimizing net in Kand Kisf-infimum compact, there exists a subnet 
{kp} of {ka} and k0e K such that lim f(kp — fc0) = 0. Consider 

• ! • . i • • . • •• fi 

f(x - k0) <; max {f(x - fo), f(fc/. - fc0)}. 

In the limiting case this gives 
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/(* -*0) £/*(*), 
£ / ( * - * 0 ) , 

i.e./(x — fco) = A(*) and so Kis/-proximinal. 

Remark. It will be interesting to study conditions under which K is /semi-
Chebyshev and /-Chebyshev. One such conditions under which K is /-Chebyshev 
is given in section 3, Theorem 1. 

The following theorem characterizes elements of/-best approximation. 

Theorem 2. For a linear subspace G ofXt g0 e PGtf(x) if and only if(x - g0) 1 fG 

Proof, (x - g0) -J-/ G of(x - g0 + ag) ^ / ( * - g0) for all g e G, a e F 

CoroIIary. For a /wedr subspace G, PGtf(x) is empty for every x e X \ G if there 
exist no y e X \ {o} such that y lf G. 

Proof. .Suppose PGtf(x) ^ q> for some xeX\G. Let g0ePGtf(x). Then 
(x - g0) l^ iTTake y = x - g0. Then y e X \ {0} and y 1 ; G, a contradiction. 

The following theorem characterizes elements of/-best coapproximation when 
/ i s sublinear (a symmetric sublinear functional is homoneous ix.f(<xx) = | a \f(x)). 

Theorem 3. For a linear subspace G, g0
 G -&<?,/(*) if and only if G lf (x — g0). 

Proof. G l ; ( x - g0) of[g + a(x - g0)] i fig) for all g e G, a 6 F, 

o / ( * - go + a"1*) ^ f(*~xg) for all g e G, a e F, 
a # 0, 

of(x - g0 + *') ^ /feO for all g' e G, 
o / ( * - g") £ /(g0 - **) for all g" e G, 
<=>g0ei?G;/(x). 

Corollary. For a linear subspace G, RGtf(x) is empty for every xeX\G if there 
exist no y e X \ {0} such that G lfy whenf is sublinear. 

Proof. It is similar to Corollary to Theorem 2. 
The following result shows that for a sublinear / the /-orthogonality is sym

metric in X. 

Theorem 4. For a sublinear / the f-orthogonality is symmetric. 
Proof. Let x lf y. Then 

(1) f(x + ay) ^ f(x) for every scalar a, 

we are to show that y lf x i.e. 

f(y + fix) ^ f(y) for every scalar p. 

. Suppose that for some /? ?-- 0 e F, 

f(y + px)<f(y)-
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This implies 

(2) f(x + p-ly)<f(P~ly)> 
as / i s homogeneous. Then 

f(x) = / (* + p~V - fi"xy) - m a x { / ( * + J8" V), f(P~ly)}> 

as / i s symmetric (iff(x) <f(y) 

then f(x + y) == max {/(x),/O0}) = /(/T1*)-
Then (2) gives 

/(x + ^ " 1 y ) < / W , 

a contradiction to (1). Hence y ±f x. 
The following theorem shows that for a subspace G, elements of/-best approxima

tion and /-best coapproximation coincide and so there is no need to study, /-best 
co-approximation separately for a sublinear/ 

Theorem 5. Let G be a subspace of X and xe X. Then an element of fbest 
approximation to x in G is an element of f best coapproximation and vice-versa i.e. 
PftG(x) = RftG(x). 

Proof. The proof follows from Theorems 2, 3 and 4. 

3. /-Approximation in Arbitrary Sets 

In this section we discuss f-best approximation and /best co-approximation 
where/is an ultra function defined on an arbitrary set X. 

To start with we restate a few definitions of section 2 in the context of an ultra 
function defined on an arbitrary set. 

Let X be any set. A symmetric function/: Xx X -> R is called an ultra function 
on X [7] if 

f(x, y) g max {f(x, z), f(z, y)} 
for all x,y,ze X. 

Let G be a subset of a set X with an ultra function / . 
An element g0 e G is said to be fbest approximation to x e X if 

f(x,g0)£f(x,g) 
for all g e G. 

An element k0 e G is said to be fbest co-approximation of x if 

f(k0,g)^f(x,g) 
for all g 6 G. 

Regarding the uniqueness of best approximation the following result was 
proved in [3]: 
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For a linear subspace G of a n.a. normed linear space X, best approximation 
of x e X, x $ G in G when it exists is never uniquely determined unless G = {0}. 

The following example shows that in our case, /-best approximation may be 
unique. 

Let X = N, the set of natural numbers, 

f:NxN-+R, 
defined by 

f(m, n) = max \m> » } ' 
G = {1,2,3 ii : it > 1}, 

and n0 e X, n0$ G. Then it is easy to see that n is /-best approximation for n0 

and is unique. 
It is interesting to note that every element of X which is not in G has n as/best 

approximation in G. 
The following theorem characterizes the uniqueness of/best approximation: 

Theorem 1. Let E be a subset of a set X with an ultra function f and xeX. An 
f-best approximation zeE to x is unique if and only if there exist no teE such that 
f(t,z)^f(x,z). 

Proof. Firstly, suppose there exist teE such that 

f(t,z)£f(x,z). 

Then 
f(x, t) £ max {f(x, z), f(z, t)} =- f(x, z)9 

implies that t is also an /-best approximation to x, a contradiction. 
Conversely, suppose there exist no such t. Then z is unique /-best approximation 

to x. For, let if possible, there exist 0 eE, 0 j* z such that 0 is also an /-best 
approximation to x. Then 

f(x,0) = / (x , z ) = inf/(x,j>). 
ye.E 

Therefore 
f(0, z) <, max {f(0, x), f(x, z)} 

gives 
f(0, z)^f(x,z), 

a contradiction. 
The following result shows that as in section 2, there is no need to study best 

co-approximation separately in this case too. 

Theorem 2. Let Gbea subset ofXandxe X. Then an element off-best approxima
tion to x in G is an element off-best co-approximation and vice-versa. 
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Proof. Let gQ e G be an f-best approximation to x. Then 

f(x,g0)£f(x,g) 
for all g e G. Consider 

f(go»g) -S max {f(g0, *), / (* , g)} = / (* , g). 

Thus g0 e G is /-best co-approximation to x. 
Conversely, suppose g0 e G is /-best co-approximation to x. Then 

/(*o,S) .£/(*,*) 
for all geG. Consider 

f(x, g0) ^ max {f(x, g), f(g9 g0)} = f(x, g). 

Thus g0 e G is f-best approximation to x. 

Remark 1. Whenf = d, the metric on X, we get: In an ultra metric space elements 
of best approximation and best co-approximation coincide. 

Remark 2. The notions of ^approximation, best simultaneous approximation, 
proximal points of pairs of sets, strong approximation, strong co-approximation, 
farthest points and strong farthest points, available in literature can be discussed 
relative to an ultra function defined on an arbitrary set. 
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