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GENERALIZED STURM—LIOUVILLE EQUATIONS 

STEFAN SCHWABIK 

(Received November 22, 1985) 

Abstract. The Sturm -Liouville equation is treated within the frame of generalized ordinary 
differential equations. This concept allows discontinuities in the solutions as well as in their derivat­
ives. An integral identity is derived for obtaining comparison results of Sturm type for generalized 
Sturm—Liouville systems. 

Key words. Generalized linear differential equations, Sturm-Liouville system, strong impulses, 
zeros of solutions, comparison theorem for generalized Sturm—Liouville systems. 
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INTRODUCTION 

Recently there have been some efforts at generalizing the concept of the classical 
Sturm —Liouville equation 
(l) - W O O ' t Y - W ^ o 

with a positive function m in such a way that the requirement of continuity of the 
derivative v' of a solution or even of continuity of the solution itself have been 
withdrawn. For results in this direction see e.g. [1], [2], [4], [5], [6]. 

For example K. Kreith in [4] studies the system 

(2) V'=y-+imt-tdy 

te(a,b), a <tx < ... < tn < b where the terms Rt5(t - tt) are called "weak" 
linear impulses leading to discontinuities in z (i.e. in the derivative) and the terms 
Qi5(t — tt) are called "strong" linear impulses which produce discontinuities in the 
solution v. Of course, a precise meaning of the concept of the solution of such 
a system has to be given. K. Kreith in [4] solved this problem via the generalized 
Priifer transformation and the corresponding transformed equations. 
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S. SCHWABIK 

Our aim is to present generalizations in this direction for the original equation (1) 
using the theory of generalized linear differential equations which has been deve­
loped in [7]. 

Let us write (1) in the usual form of a system 

1 
V = m(t) *' 

z' = p(t) V 
oг ІП the integгal form 

(3) f(í) = •• "(c) + } ! ч 

<Г m(z) 

z(т) dт. 

z(.) = 
t 

= z(c) + í p(т) v(т) dт, c,te(a, ,b). 

The coefficients m andp are assumed to be elements of LJ0C(a, b) where (a, b) a R 
is an interval and the function m is positive. Denoting 

*W - J -̂ TvT d t ' P<*> = IPW d T ' ' 6 < * ' & > 
c W V T I c 

we can rewrite the system (3) to the Stieltjes form 

(4) v(t) = v(c) + iz(T)dR(T), 
c 

t 

z(t) = z(c) + J V(T) 6P(T), c, t e (a, b). 
c 

The system (4) is equivalent to the original equation (1) in the following sense: 
if v : [a, 0] -» -R is a solution of (1) on an interval [a, 0] *z (a, b) and if we take 
z(t) •> v'(t) m(t) T 6 [a, p] (m(t) v'(t) is absolutely continuous on [a, /}]) then the 
couple (v, z) satisfies (4) for every c, t e [a, /?], and vice versa, if the couple (v, z) 
satisfies (4) for every c, t e [a, /?] then v and z are absolutely continuous on [a, P] 
and v satisfies (1) almost everywhere on [a, /?]. 

It should be mentioned that in our case the functions R and P belong to the 
class ACl0C(a, b) and R is strictly increasing. 

Now we generalize the system (4) by imposing on the "coefficients" R and P 
the following assumptions: 

(5) R,PeBVl0C(a,b) 

(6) R is strictly increasing. 

Let us denote A(t) == (Jjr), 5
(0) ; A(t) is a 2x2-matrix, var J A < oo for 

[a, P] c (a, b) and following the notation used in [7] the system (4) can be written 
simply in the vector form 
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GENERALIZED STURM-LIOUVILLE EQUATIONS 

(7) dx = d[A] X9 

where JC = (i;, z)T e R2. 
A function x : [a, fi\ -> R2 is a solution of (7) on [a, p\ if for every c, t e [a, /?] 

the equality 

x(0«*(c) +jd[yl(T)]x(T) 
c 

holds. 
Let us shortly mention some fundamental results concerning the equation (7); 

these results can be found in [7]. 
(i) Every solution x : [a, /?] -+ R2 of (7) is a function of bounded variation on 

(ii) The initial value problem 

(8) dx = d[A] x9 x(c) = x0eR2
9 ce [a, J?] cz (a, 6) 

has a unique solution on [a, 0\for every xQ e R2
9 c e [a, /?] i/am/ ow/y //"/he matrices 

I — A~A(t)9 I+A+A(t) are regular for every t e (a, /?], f e [a, /?), respectively. 
(The notation z1"-4(0 * -4(0 - A(t - ) = A(0 - lim A(x)9 A+A(t) =- A(/ +) -

•- • • . t - » i -

— 4̂(0 = Jim -4(T) — A(0 is used here. Lis the 2 x 2 identity matrix.) 
T-*f + 

(iii) 7/* x : [a, /?] -+ R2 is a solution of (7) then all the onesided limits x(<x +), 
x(t +), x(p - ) , x(f - ) , / 6 (a, fi) exist and 

,' x(t+) = [T+A+A(t)\x(t)9 . >e[a,j?], 
* ( / - ) = [ / - A -A(0] x(t)9 te [a,/?]. 

For technical reasons let us now state an additional condition on (5) and (6). 
We will assume in the sequel that 

(9) R(t - ) = R(t), P(t +) = P(0, t e (a, b). 

Using (9) we have 

<--M-Ao,-7(,,H-Aw,:)., 
and 

/ + + / 1, A*Җt)\_(l,A+RЏ)\ 

Hence both the matrices / - A'A(t)9 I +A*A(t) are regular for every te (a, b) 
and by (ii), on every [a, /?] c (a9 b) there exists a uniquely determined solution x 
of the initial value problem (8) for every x0 e R2

9 ce [a, /?]. 
From now on, instead of (7) we will use the more specific notation 

dt; = z dR9 
( , o ) d,-.d». 
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Let us recall that the couple (v, z) of functions v, z: [a, /?] -* R is a solution 
of (10) on [a, /3] c (a, b) if for every c, t e [a, /3] the equalities 

v(t) = v(c) + \z(T)dR(T), 
c 

z(l) = z(c) + jt<T)dP(T) 
c 

are satisfied. 
Moreover, if JC = (t;, z)T is a solution of (7) on [a, /?] then by (iii) we get for the 

components v9 z 
v(t+) = v(t) + A+R(t)z(t), 
z(t+) = z(t), te[a,P) 

and 
v(t - ) = v(t), 
z(t - ) = 2(0 ~ A ~P(t) v(t), t e (a, fi]. 

Hence every solution (v, z)T of (7) exhibits discontinuities at the points of dis­
continuity of the functions R and P where the component v is continuous from the 
left and A+v(t) = v(t +) - v(t) = J+J?(0-:(0> the component z is continuous 
from the right and A~z(t) = z(t) - z(/ - ) = A~P(t) v(t). 

Taking this construction into consideration we can have a short look back at the 
situation described by K. Kreith in [4]: the equations in question have the form (2). 
For a given de (a, b) let us define HJ(t) = 0 for / £ d, HJ(t) = 1 for t > d and 
H+(t) = 0 for / < d, H+(t) = 1 for t = d. 

For te(a,b) denote 

« 0 - J 1 i r d t + tfiiH.7(0. c m(T) ,*! 

-P(0-Jl<t)dT + t j l l H*(0. 
e 1=1 

where c e (<f, b) is fixed. 
The assumptions (5) and (9) are obviously satisfied in this situation and if 

meL}oe(a, b) is positive and Q( ^ 0 then also (6) holds. Let us mention that the 
requirement g, ^ 0, i = 1, . . . ,n is also stated in [4]. The above mentioned 
properties of a solution of (7) imply that in the case of this choice of the 
"coefficients" R and P, the solution exhibits discontinuities and (10) describes the 
case of both "weak" and "strong" linear impulses for the generalized Sturm-
Liouville equation. Finally, let us mention that in the frame of the theory of 
generalized linear differential equations (see [7]) used here the order of jumps for 
the two components is in a sense pre-determined. This depends in our case on the 
assumption (9), which causes the "first" jump (i.e. a discontinuity from the left) 
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for the 2-component and the "second" jump (discontinuity from the right) for 
the t>component of a solution. If we assumed R(t +) = -R(/), P(t —) = P(t) for 
/ 6 (a, b) instead of (9) then this order would be inverse. If it is not assumed that 
the coefficients R and P have onesided discontinuities from different sides for R 
and P, the theory also works but technical difficulties can occur for algebraic 
reasons given by the requirement of the regularity of the matrices / + A*A(f\ 
J - _4~,4(t) (see (ii)). 

SOME PROPERTIES OF SOLUTIONS 
OF THE SYSTEM (10) 

Lemma 1. Assume that (v9 z) is a nontrivial solution of the system (10) on an 
interval [a, b] such that V(OL) = 0, v(t) > 0 for te (a, p) where ft e (a, b) and 
v(P +) g 0. Then Z(OL) > 0 and z(p) < 0. 

Proof. 1. Clearly Z(OL) # 0 . Otherwise the solution (v9z) would be trivial. 
Assume that z(a) < 0. Then also Z(OL +) = z(ot) < 0 and there exists a 8 > 0 

r t 

such that z(x) < 0 for x e [a, a + 8] and v(t) = v(a) + J z(x) dR(x) - J z(x) d-R(t) < 0 
a c 

for / e [a, a + 8~] since R is strictly increasing. This contradicts the assumption 
v(t) > 0 for / e (a, P) and consequently z(a) > 0. 

2. Since v(t) > 0 for / e (a, P) and i? is continuous from the left we have v(fi) =-
- v(P - ) ;> 0. 

a) Assume that z(p) = 0. Then v(P +) = v(P) + A+R(fi)z(p) = v(P)£0 by 
he assumption and v(P) = 0. Hence the solution (v9 z) is trivial, a contradiction. 

b) Assume that z(P) > 0. We have 

v(P+) = v(P) + A+R(p)z(P). 

If A+R(P) > 0 then this relation yields the contradictory inequality v(fi +) > 0. 
If A*R(P) = 0 then by the same relation we obtain v(P +) =- i;(/0 =- 0 and 
z(p - ) = z(jJ) - A~P(Jl) v(p) = z(j3) > 0. Hence 2 is continuous from the left 
at the point P and consequently there exists 8 > 0 such that z(x) > 0 for T 6 
e [j? - 5 , q]. By definition of a solution of (10) we have in this case 

- fi 
v(t) = v(P) + J z(x) dR(x) = - J z(x) dR(x) < 0 

fi t 

for t e [j8 — 5, /?] since 1? is strictly increasing. This again contradicts the as­
sumption v(t) > 0 for t e (a, /?). 

Since* by a) and b) the assumption z(P) ^ 0 leads to contradictions, we neces­
sarily have z(P) < 0. 
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Remark 1. Essentially the same reasoning yields also that if (v9 z) is a solution 
of (10) on [a, p] such that v(<x) = 0, v(t) < 0 for t e (a, P)9 P e (a, b) and v(p +) = 0 
then z(a) < 0 and z(p) > 0. 

Let us mention that in the situation described by Lemma 1 the point p e (a, b) 
plays the role of the "right consecutive zero" to the point a for the first component v 
of the solution of (10). The point P e (a, b) is the first point to the right of a at 
which the first component of the solution (v9 z) of (10) changes its sign. 

In fact, if (v9 z) is a solution of (10) such that at some point P in the interval of 
definition of this solution we have v(t) > 0 for t e(P — 5, P) where 8 > 0 and 
v(p +) £ 0 then v(t) < 0 for te(P;fi + A) for some A > 0 if v(P +) < 0. If 
K/J +) = 0 then Lemma 1 yields z(P) < 0 and since z(P +) = z(P) there is a A > 0 
such that z(0 < 0 for t e [jS, p < A]. Hence for t e [p, P + A) we have 

..;• P+* 

vit) = v(P) + J z(x)dR(x) = v(P) + J Z(T)CIK(T) + 
p a 

t 

+ Jz(t)dR(T) 
0+6 

t t 

for every 0 < 8 < A and evidently J Z(T) dR(x) < J Z(T) d.R(T) < 0 for every 8 s.t. 
0+8 fi + dt 

0 < 8 < 8t < t where 8l is fixed. Passing to <5 -> 0+ we obtain 
p+* t 

v(t) = v(P) + lim J [z(T)dfl(T) + J z(x)dR(xj] < 
s->o+ p p+d 

< v(P) + z(p) A+R(p) + J Z(T) dR(x) < v(P +) = 0, 
P + Si 

i.e. on (/?, P + A) the function i;(0 is negative and v indeed changes its sign at the 
point p. 

Lemma 2. Assume that R9 P9tt9P : (a9 b) -+ R satisfy (5), (6) and (9). For a given 
interval [a, p] c (a9b)9 a < p let us assume that R($ = £(t)9 P(t) = P(t) for 
te(*,P). 

Let the couple (v9 z) be a solution of (10) on [a, /?]. Define v9 z : [a, /?] -+ R as 
follows: 

v(t) = i*0 for / e (a, jB], v(<x) = v(<x +) - 4+5(a) z(a), 
5(0 = z(0 for r e [a, p)9 z(P) = zQS - ) + J^O?) 605). 

r/ie/i the couple of functions (v9 z) is a solution of the system 

dv = zdJR, 

dz = v dP 
on [a, P]. • 

Proof. It is clear that for every c9te (a, p) we have 
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v(t) =v(c) + J 2(T) dR(x), 2(0 = 2(c) + f v(x) dP(x) 
c c . 

because 

j Z(T) dR(T) = / Z(T) d5(T), / v(T) d^(T) = J «(T) dP(T)9 , 
c c c c 

for every c91 e (a, j8). 
For /e(a,/?) and every 5 > 0, 5 < f - a we have v(t) = t?(f) = t;(a) + 

+ $z(T)dR(T) = t;(a) +75(T)dil(T) + J 2(T)d£(T) = t;(a).+*J s(T)d[*(T) - £ ( T ) ] + 
a a . . a + 5 a 

+ \ z(x) dR(x). Since"} 2(T) d[R(x) - R(xj] = lim"} ... = 2(a) [.d+J?(a) -A+S(«)~] 
a ' -\ . a i d-*0+ a 

(see [7], 1.4.12 Theorem) we have' 

v(t) = t;(a) + A+R(<x) z(a) - zJ+£(a) z(a) + j Z(T) d£(T) = 
I a 

| =£(a) + $z(T)dR{T)\ 
a 

for I1 e (a, P) and 

2(/) = z0) = z(a) + f Z(T) dP(T) = 2(a) + J* 2(T) dP(x) 
a a 

since P(tx) = P(a) by (9). 
Similarly we can verify in the remaining cases that for every c9 te[cc9 j(?] we 

have 

~(t) = v(c) + I 2(T) dR(x\ 
c 

~z(t) = ~z(c) + iv(x)dP(x), 
C 

i.e. that the assertion of the Lemma holds. 

Corollary 1. Assume that R9P : (a, b) -»R satisfy (5), (6) and (9) and that the 
couple of functions {v9 z) is a solution of (10) on the interval [a, b)9 a e (a9 b) such 
that Z(OL) # § and z(pXj; 6 for some fie (a, 6). 77te/x f/iere ex/sfs R :(a9h) -* R 
satisfying (5), (6) and (9) swcfr that R(t) = R(t)for t e (a, j8] and fAat the solution 
v9zof ; 

. . ' . . , . . :. dt? = zdRr , ' 

•< d z — tfdP i 

on the interval [a, A) which coincides with v9 z on (a, P) satisfies 

0(a) = Ay v(p +) = B, 
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where A £ v(a +) //z(a) > 0, A £ v(a +) i/z(a) < 0, B ^ i?(J?) //z(j?) < 0 am/ 
5^i;(/J)i /z(i?)>0. 

Proof. Let us consider the case when z(a) > 0, z(fi) < 0, and take A £ v(a +), 
B ^ t>(/?) arbitrary. For the other cases mentioned in the assertion of the lemma 
a similar proof can be given. 

Define 

R(t) = R(t) for t e (a, 0], 

R(t) = R(t) + R(a +) - R(a) - ** +* ~ ^ for < e(a, a], 
z(a) 

Then 

Ä(0 = Җt) - K(0 +) + R(ß) + B
 z(^

ßУ for t€(ß, b). 

á*Җa) = R(a +) - U a ) + Я(a +) - Я(a) - i<- í -± l_£j . 

t>(a +) - A ^ Q 

г(a) 

аnd 

J^(/?) » *(/? +) - R(fi +) + *(/?) + B ^ - *(/» ~- B ^ }> 0, 

and R satisfies (5), (6) and (9). By Lemma 2, for v, z coinciding with 0, z on (a, 0) 
we have 

•nd 

m - - < « + ) - d+Д(a)z(a) - t*x +) - i í ü ± L - £ z ( a ) 

ц+) = m + à+ß(ß) m = m + B

г ( / У -</») = ß, 

since 9(0) = $(/*-):-* t>(0 - ) - v(fi) and 2(/J) - 2(0 - ) + J*"P(/f) v(/J) -
«* z(0 - ) + -4+-P(̂ ) i>U?) == zO?). Thus the corollary is proved. 

Remark 2. Lemma 2 and Corollary 1 enables us to make changes in the co­
efficients of (10) in such a way that a given solution (P, Z) of (10) on a certain 
interval [a, 0] <z (a, b) remains unchanged except the values of v(a) and z(0) 
which are changed. 
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A COMPARISON RESULT 

Let us consider two systems of the form (10), i.e. 

di; as zdRk9 

( 1 0 t ) dz==t>dPk, A: = 1,2 

where the functions Rk9 Pk satisfy the assumptions (5), (6) and (9). 

Lemma 3. If(vk9 zk)9 k = 1, 2 are solutions of (I0k) on an interval [a, P] <= (<*» *) 
then the following identity is satisfied: 

W0*a(0d[P a (0 - Pi(0] + J*i(0*a(0d[Ri(0 - R2(0] -
« m 

(11) =».(/?) z2(fi) - t>.̂ a) z2(a) - v2(fi) z.(/5) + t>2(a) zt(a). 

Proof. Using the substitution theorem for Perron—Stieltjes integrals (see 
Theorem 1.4.25 in [7]) we have by (102) 

(12) j't>.(0dz2(0 = jvL(t) d[J v2(x)dP2(T)] - J t>.(0t>2(0 dP2(0-
« « « « 

On the other hand, by (lOi) we have 

W 0 d * a ( 0 - J(*i(«) + f zL(T)dRi(T))dza(0 = 
m « 

(13) - »t(a)(z2(/?) - z2(a)) - J(J Z.(T) dKt(T)) dz2(0-
« a 

For the integral on the right hand side of this equality the Dirichlet formula for 
Perron-Stieltjes integrals (see Theorem 1.4.32 in [7]) can be used, i.e. we get 

f (f *i(t) dRi(T)) daa(0 - f ( W O dz2(T)) dRt(0 + 
« « m t 

+ I J - z a ( 0 z i ( 0 / T R i ( 0 - I J+za(0-Ti(0-4+Ri(0; 

since <d+za(0 « 0 and A~Rt(t) = 0 for every / e (a, b) n [a, 0] we obtain by (13) 
the equality 

f *i(0dza(0 - »i(«)fe(» - *a(«» + f (f ^i(0dza(T))dRi(0 =-
« « t 

- »i(«)(*a(W " --(«)) + J zL(t){z2(fi) - z2(t))dRL(t) m 
m 

- *i(«)(-a<» - -a(«» + -aW J *i(0dItt(O - J *»(0 *a(0 dKt(0 -= 
« a 

(14) - f.(a) (z2(/?) - z2(a)) + z2(fi)(t>.(/») - t>.(a)) - J 2 . (0 z2(0 dRt(t). 
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Since the left hand sides of (12) and (14) coincide, we obtain the identity 

J Vl(t) v2(t) dP2(t) + J z t(0 z2(t) 6Rx(t) = 
a at 

= 0,(0.) (z2(P) - 22(a)) + z2(p) (v,(P) - v,(oc)) = 
(15) = r-(a) Z2(a) + vx(P) z2(P). 

Using the same procedure for the integral J v2(t) dzt(t) we obtain the identity 

I »i(0 v2(t) dP.(t) + J" z.(f) z2(t) dR2(i) = -t>2(a) z.(a) + v2(p) z.(/?), 
a a 

and subtracting this from (15) yields (11). 

Definition. If (v, z) is a maximal nontrivial solution of (10) defined on (a, b) and 
[a, j8] c (a, b) then we say that it has not a zero in (a, p) if either 

t?(a) = 0, v(t) > 0 for t e (a, P), v(p <) ^ 0 
or 

»(«) ^ 0, v(t) < 0 for f e (a, 0), v(P +) = 0. 

Otherwise we say that the solution (v, z) has a zero in (a, P). 

Remark 3. Let us mention that the solution (i?, 2) has a zero in (a, P) if there 
exists t e (a, p) such that 0 belongs to the interval with endpoints i?(f), v(t +) or 0 
is an internal point of the interval with endpoints v(ct), v(<x +) or 0 is an internal 
point of the interval with endpoints v(p), v(P +). For systems with "strong" 
impulses this concept replaces the case when the solution of the "classical" systeml 
has a zero in the open interval (a, P). In fact for classical equations the first com­
ponent of a solution is continuous and all intervals mentioned above are degene­
rated. Hence at the points a and P these intervals cannot contain an internal point 
and the only possibility ist that the solution crosses the zero axjs. 

,, Theorem 1. Assume that - o o ^ f l < 6 ^ +Af and that R,Pke BVloJa,b), 
i = 1, 2, R is strictly increasing R(t - ) = R(t), Pk(t +) = Pk(t) for t e (a, b). 
For the systems 

k -= 1,2 j 
(16*) áv = 2 d.ќ, ďz = v åPк, 

assume that , 

(П) P2 — Pi is nonincre 

and that the couple (vl9 zx) is a solution of (161) on the interval \oi,b), a < cc such 
that 

v^a) £ 0, vx(t) > 0 for t e (a, P), vx(q +) g 0, a < p < b. 
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Jf(v2, z2) is a maximal solution of(\62) on (a, b) then one of the following cases can 
occur: 

A The solution (v2, z2) has a zero in (a, /?). 
B varf (P2 - Pj) = 0 for every P' < P and there exists AeR such that 

v2(t) = XVl(t)9 z2(t) = kzx(t) for t e [a, fi]. 
Proof. Corollary 1 implies that without loss of generality we may assume that 

Vl((x) = 0,vx(t) > 0 for / e (a, P) and vx(fi +) = 0 because Zj(a) > 0 and zt(P) < 0 
by Lemma 1. . 

Assume that the solution (v2, z2) of (162) does not satisfy A, i.e. that we have 
eg. 

v2(a) = 0, v2(t) > 0 for t e (a, p) and v2(P +) = 0. 

The other possible case with converse inequalities can be treated similarly. 
By the identity (11) we have for y e [a, b) 

tfifr) z2W - v2(y) zx(y) + v2(<x) zx(a) = 

= /»i(0»2(0d[P2(0-Pi(0]-
a 

For y -> p — we obtain 

-v2(P +) z,(P) + v2(tx) z-(a) = J vt(t) v2(t) d[P2(0 - Px(0], 
a 

because P-,P2 are continous from the right at p and vx(fi +) = 0.' Since by 
Lemma 1 zt(a) > 0, zx(P) < 0 the left hand side of this inequality is nonnegative 
and the right hand side is nonpositive since P2 — Pt is nonincreasing and 
^i(0 v2(t) = 0 for t e [a, /?]. Hence 

08) W0»i(0a[-Pa(0---Pi(0]=0 
a 

and V2(OL) z^a) — v2(P +) zx(P) = 0. The left hand side of this equality is the sum 
of two nonnegative terms, hence we immediately have 

v2(z) = 0, v2(p +) = 0. 

Let us note that by Lemma 1 we have also z2(a) > 0 and z2(P) < 0. Using (18) 
and the fact that v^(t) v2(t) > 0 for t e (a, P) we obtain 

var£ (P2 - PJ = 0, a < c < d < P 

and this relation holds also for c = a because the functions Pt, Pa are continuous 
from the right. Hence 

J^aWdPaW-J^WdP^t) ; 
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for every t e [a, P) and this yields by the definition of the solution for / 6 [a> p) 

v2(t)=lz2(z)dR(x), 
« 

t t 

-2(0 = *2(0t) + Jf2(t)dP.(T) « Az.(a) + J»2(T)dP!(T), 
a a 

where k = z2(a):z!(a) > 0. Hence (v2, z2) is a solution of (16^ such that v2(a) -» 
= XV^OL) = 0, z2(a) = yzt(a) and consequently by unicity and by the linear 
structure of the solutions of (16t) we get 

»2(0 = A»i(0, zii?) = ^ i ( 0 for all t e [a, /?). 

Since vx, v2 are continuous from the left we have also v2(fi) = Xvi(P) and 
22(j8 - ) m* Az^p - ) . Using the equalities vx{fi +) = 0, t;20J +) = 0 we have 
further 

vt(fi +) = vM) + A+R(P) z,(P) = 0, i.e. vt(p) = --4+-R(/?) *i(j8) 

and similarly also 
t>2()3) = -A+R(P)z2(P) = -XA+R(P)zt(P). 

Therefore if A+R(p) > 0 then we can simply conclude that z2(p) = Xzx(p). If 
A+R(p) = 0 then t>i(j8) = v2(p) = 0 and we have for k = 1, 2 

zk(/0 = lim (z^ ) + j t>*(T) dP,(T)) = zk(0 - ) + lim t;*(j8) [f\(/0 - Ph(s)] * 
s-+fl- t s~+fi~ 

= zk(P - ) . 

Hence we obtain again z2(j8) = z2(j8 - ) = Xzt(fi - ) = kzx(P). 

Remark 4. Let us shortly reconsider the case of the classical Sturm—Liouville 
f 1 f 

equation (1). Let us set R(t) = f —— dT, Pk(t) = \pk(x) dT, / e (a, b), c e (a, b) 
c m(T) c 

is fixed, k = 1, 2 where m e Z,/oc(a, 6), mfr) > 0, T e (a, 6), pk e L}oc(a, b), k = 1, 2. 
Then the equations (16*) are equivalent to 
(19*) -(m(t)v')' +pk(t)v = 0. 

(17) from Theorem 1 is equivalent to the requirement p2(t) g />i(0> t e (a, *)• The 
assumption on (vx, zt) from the Theorem 1 reduces to 

vt((x) = 0, v,(t) > 0 for / e (a, P), vt(p) « 0 

for the solution vx of (190 0I* [<*>*]• 
A from the conclusion has the form 
A* There exists s e (a, P] such that v2(s) = 0 

and instead of B we have 
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B' px(t) = p2(t) for t e [a, /J] and there exists y e R such that t?2(0 ** Ar-O) 
for t e [a, /J]. 

Hence for the case of classical equations Theorem 1 gives the classical and well-
known result (see e.g. [6] or any classical textbook on ordinary differential 
equations). 

It should be also mentioned that in the proof of Theorem 1 only integrations 
are involved without using any derivative. The proof can be transfered to the case 
of classical equations (19*) also solely in terms of integrations. Hence this result 
for differential equations can be reached without differentiation. 
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