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THE SUFFICIENT CONDITION 
OF THE ASYMPTOTIC STABILITY 

OF TWO-DIMENSIONAL LINEAR SYSTEMS 

JAN OSlCKA 

(Received June 23, 1986) 

Abstract. The differential system of second-order with variable coefficients is studied, and 
a sufficient condition of the asymptotic stability for solutions is given. 
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1. I N T R O D U C T I O N 

In the present paper we consider a system of differential equations 

dxt , N , . 
--jj- = a 1 1 (0x 1 -f a 1 2 (0* 2 , 

(1.1) 
dx2 = Я2i(0*i + a 2 2 ( 0 * 2 , 

/ 
where aik: R+ -• R (i, k = 1, 2) are functions summable on every finite segment. 

It will be assumed throughout that 

(1.2) oa12(t) > 0, ca21(t) < 0 

if t e R+, where a e { — 1, 1} and the function --------- is summable on every finite 
segment. 1 2 

Let 

(1.3) c(0 = < x ( | a 1 2 ( 0 * 2 i ( 0 l ^ ^ "^f|)T 

(1.4) h(t) = ( - ^ Y / 4 e x p [ y }(«uM + ^22W)drl (i * J; ij = 1, 2), 

(1.5) Mt) = J V|a1 2(t) f l 2 1(T)| dt. 
0 
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Lemma 1. By means of the transformations 

(1.6) xt(t) = /,(/) yt(s) (i = 1, 2), s = m 

the system (1.1) will take the form 

- ^ = *[a(s)yi+y2]> 

( L ? ) d 

• * ~~B~=~a[yi+flC(5)>'2]' 

where 
(1.8) a(s) = c(\l/~\s)) if 0 = s < s0, s0 = limtfr(r) 

f-*00 

and \//~l is the inverse to x//. 
Proof. Let (xx, x2) be an arbitrary solution of the system (1.1). In view of (1.4), 

(1.5) and (1.6) 

(1.9) l[(t) = [ l (aa ( l ) + a22(t)) + l ( l n | - ^ - | J ] /,«), 

where i # j \ i>j = 1, 2 and 

(1.10) x\(t) = l\(t) yfy) + h(t) (| n i a(0 aai(l) |)1/2yKs) 

(i = 1, 2). By substitung (1.6), (1.9) and (1.10) into (1.1) we obtain (1.7). The lemma 
is proved. 

Lemma 2. Let the function a in (1.8) be absolutely continous on every finite segment 
and let there exist st e (0, s0) and S e CO, 1) such that \ a(s) | < 8 for st = s < sQ. 
Then every solution (yt, y2) of (1.7) satisfies the estimate 

(1.11) y\(s) + y\(s) g I ± i ly\(Sl) + ^(s,)] exp [ y l - j | a'«) I ctf] 

for ^ ^ J < »y0. 
Proof. Let (yi,y2) be an arbitrary solution of the system (1.7). From (1.7) 

we have 

"-yi(*)j>Jto) ^ *ls)y2(s)y'i(s) = afo) j ^ y i f r ) + >>2(-y) y2(-*). 

Therefore 

(y\(s) + y\(s)y = -2afr) frM y2W)'. 

Integrating of this equality from st to s yields 
(1.12) yfr) + y2

2(s) = yjfo) + y f o ) + 2oc(Si) yi(Si) y2(Si) -

- 2a(s) yi(s) y2(s) + 2 } a'(0 * © y2(Z) d«. 

Let u(s) = yfo) + jpffa;. Then 2 | ̂ fr) >>2(,y) | ^ t/(y) and from (1.12) we get 
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u(s) £(l+8) u(Sl) + 8u(s) + / | a'tf) I««) <K, 
S1 

u(s) < -j-±A U(Sl) + y i - y j I a'tf) I ««) <£ 

for sv £ s < s0. Hence according to the Gronwall-Bellman lemma 

u(s) < l l A ^ s O e x p ^ - ^ } | a'tf) | d{] 

for st sS s < s0. The lemma is proved. 

2. THE ASYMPTOTIC STABILITY OF THE SYSTEM (1.1) 

Theorem 1. Let for large t the inequality 

(2.1) <5.< a 2 l ( 0 <ô2, 
*12(0 

where dt and b2 are positive constans, hold. Moreover, let the function c be absolutely 
continuous on every finite segment, 

(2.2) lim sup | c(t) | < 1, J | c'(0| df < oo 
r-*oo 0 

and 
t 

(2.3) lim J(au(T)+ a22(T))dT= -oo. 
t-*oo 0 

Then the system (1.1) is asymptotically stable. 
Proof. According to (2.2) the conditions of Lemma 2 hold. Therefore, from (1.6) 

by means of (2.1) and (2.3) we conclude that (1.1) is asymptotically stable. This 
completes the proof. 

Corollary 1. Let ali(t) = 0, al2(t) = -a2i(t) > 0 for t e R+, 

( <*22(0\ < ? L / fl22(0\| 
lim sup ( - . ,\ ) < 1, j d - . ,\ 1 < oo 
„9

 FV 2a 1 2(0/ 0
J I V 2a 1 2 (0 / | 

lim Ja22(T)dT= — oo. 
*-»ao o 

Then the system (1.1) is asymptotically stable. 
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