Archivum Mathematicum

Jan Osička

The sufficient condition of the asymptotic stability of two-dimensional linear systems

Archivum Mathematicum, Vol. 24 (1988), No. 2, 83--85

Persistent URL: http: //dml.cz/dmlcz/107313

Terms of use:

© Masaryk University, 1988

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

THE SUFFICIENT CONDITION OF THE ASYMPTOTIC STABILITY OF TWO-DIMENSIONAL LINEAR SYSTEMS

JAN OSIČKA

(Received June 23, 1986)

Abstract

The differential system of second-order with variable coefficients is studied, and a sufficient condition of the asymptotic stability for solutions is given.

Key words. Asymptotic stability.
MS Classification. 34 DO 5

1. INTRODUCTION

In the present paper we consider a system of differential equations

$$
\begin{align*}
& \frac{\mathrm{d} x_{1}}{\mathrm{~d} t}=a_{11}(t) x_{1}+a_{12}(t) x_{2} \tag{1.1}\\
& \frac{\mathrm{~d} x_{2}}{\mathrm{~d} t}=a_{21}(t) x_{1}+a_{22}(t) x_{2}
\end{align*}
$$

where $a_{i k}: R^{+} \rightarrow R(i, k=1,2)$ are functions summable on every finite segment.
It will be assumed throughout that

$$
\begin{equation*}
\sigma a_{12}(t)>0, \quad \sigma a_{21}(t)<0 \tag{1.2}
\end{equation*}
$$

if $t \in R^{+}$, where $\sigma \in\{-1,1\}$ and the function $\frac{a_{21}}{a_{12}}$ is summable on every finite
segment.
Let

$$
\begin{equation*}
c(t)=\sigma\left(\left|a_{12}(t) a_{21}(t)\right|\right)^{-1 / 2}\left[\frac{1}{2}\left(a_{11}(t)-a_{22}(t)\right)+\frac{1}{4}\left(\ln \left|\frac{a_{21}(t)}{a_{12}(t)}\right|\right)^{\prime}\right] \tag{1.3}
\end{equation*}
$$

$$
\begin{equation*}
l_{i}(t)=\left(\left|\frac{a_{i j}(t)}{a_{j i}(t)}\right|\right)^{1 / 4} \exp \left[\frac{1}{2} \int_{0}^{t}\left(a_{11}(\tau)+a_{22}(\tau)\right) \mathrm{d} \tau\right] \quad(i \neq j ; i, j=1,2) \tag{1.4}
\end{equation*}
$$

$$
\begin{equation*}
\psi(t)=\int_{0}^{t} \sqrt{\left|a_{12}(\tau) a_{21}(\tau)\right|} \mathrm{d} \tau \tag{1.5}
\end{equation*}
$$

J. OSIČKA

Lemma 1. By means of the transformations

$$
\begin{equation*}
x_{i}(t)=l_{i}(t) y_{i}(s) \quad(i=1,2), s=\psi(t) \tag{1.6}
\end{equation*}
$$

the system (1.1) will take the form

$$
\begin{aligned}
& \frac{\mathrm{d} y_{1}}{\mathrm{~d} s}=\sigma\left[\alpha(s) y_{1}+y_{2}\right] \\
& \frac{\mathrm{d} y_{2}}{\mathrm{~d} s}=-\sigma\left[y_{1}+\alpha(s) y_{2}\right]
\end{aligned}
$$

where

$$
\begin{equation*}
\alpha(s)=c\left(\psi^{-1}(s)\right) \quad \text { if } 0 \leqq s<s_{0}, s_{0}=\lim _{t \rightarrow \infty} \psi(t) \tag{1.8}
\end{equation*}
$$

and ψ^{-1} is the inverse to ψ.
Proof. Let (x_{1}, x_{2}) be an arbitrary solution of the system (1.1). In view of (1.4), (1.5) and (1.6)

$$
\begin{equation*}
l_{i}^{\prime}(t)=\left[\frac{1}{2}\left(a_{11}(t)+a_{22}(t)\right)+\frac{1}{4}\left(\ln \left|\frac{a_{i j}(t)}{a_{j i}(t)}\right|\right)^{\prime}\right] l_{i}(t), \tag{1.9}
\end{equation*}
$$

where $i \neq j, i, j=1,2$ and

$$
\begin{equation*}
x_{i}^{\prime}(t)=l_{i}^{\prime}(t) y_{i}(s)+l_{i}(t)\left(\left|a_{12}(t) a_{21}(t)\right|\right)^{1 / 2} y_{i}^{\prime}(s) \tag{1.10}
\end{equation*}
$$

($i=1,2$). By substitung (1.6), (1.9) and (1.10) into (1.1) we obtain (1.7). The lemma is proved.

Lemma 2. Let the function α in (1.8) be absolutely continous on every finite segment and let there exist $s_{1} \in\left(0, s_{0}\right)$ and $\delta \in(0,1)$ such that $|\alpha(s)|<\delta$ for $s_{1} \leqq s<s_{0}$. Then every solution $\left(y_{1}, y_{2}\right)$ of (1.7) satisfies the estimate

$$
\begin{equation*}
y_{1}^{2}(s)+y_{2}^{2}(s) \leqq \frac{1+\delta}{1-\delta}\left[y_{1}^{2}\left(s_{1}\right)+y_{2}^{2}\left(s_{1}\right)\right] \exp \left[\frac{1}{1-\delta} \int_{s_{1}}^{s}\left|\alpha^{\prime}(\xi)\right| \mathrm{d} \xi\right] \tag{1.11}
\end{equation*}
$$

for $s_{1} \leqq s<s_{0}$.
Proof. Let (y_{1}, y_{2}) be an arbitrary solution of the system (1.7). From (1.7) we have

$$
-y_{1}(s) y_{1}^{\prime}(s)-\alpha(s) y_{2}(s) y_{1}^{\prime}(s)=\alpha(s) y_{1}(s) y_{2}^{\prime}(s)+y_{2}(s) y_{2}^{\prime}(s)
$$

Therefore

$$
\left(y_{1}^{2}(s)+y_{2}^{2}(s)\right)^{\prime}=-2 \alpha(s)\left(y_{1}(s) y_{2}(s)\right)^{\prime}
$$

Integrating of this equality from s_{1} to s yields

$$
\begin{gather*}
y_{1}^{2}(s)+y_{2}^{2}(s)=y_{1}^{2}\left(s_{1}\right)+y_{2}^{2}\left(s_{1}\right)+2 \alpha\left(s_{1}\right) y_{1}\left(s_{1}\right) y_{2}\left(s_{1}\right)- \tag{1.12}\\
-2 \alpha(s) y_{1}(s) y_{2}(s)+2 \int_{s_{1}}^{s} \alpha^{\prime}(\xi) y_{1}(\xi) y_{2}(\xi) \mathrm{d} \xi .
\end{gather*}
$$

Let $u(s)=y_{1}^{2}(s)+y_{2}^{2}(s)$. Then $2\left|y_{1}(s) y_{2}(s)\right| \leqq u(s)$ and from (1.12) we get

ON THE ASYMPTOTIC STABILITY OF LINEAR SYSTEMS

$$
\begin{aligned}
u(s) \leqq(1+\delta) u\left(s_{1}\right)+\delta u(s)+\int_{s_{1}}^{s}\left|\alpha^{\prime}(\xi)\right| u(\xi) \mathrm{d} \xi \\
u(s) \leqq \frac{1+\delta}{1-\delta} u\left(s_{1}\right)+\frac{1}{1-\delta} \int_{1_{1}}^{s}\left|\alpha^{\prime}(\xi)\right| u(\xi) \mathrm{d} \xi
\end{aligned}
$$

for $s_{1} \leqq s<s_{0}$. Hence according to the Gronwall-Bellman lemma

$$
u(s) \leqq \frac{1+\delta}{1-\delta} u\left(s_{1}\right) \exp \left[\frac{1}{1-\delta} \int_{s_{1}}^{s}\left|\alpha^{\prime}(\xi)\right| \mathrm{d} \xi\right]
$$

for $s_{1} \leqq s<s_{0}$. The lemma is proved.

2. THE ASYMPTOTIC STABILITY OF THE SYSTEM (1.1)

Theorem 1. Let for large the inequality

$$
\begin{equation*}
\delta_{1}<\left|\frac{a_{21}(t)}{a_{12}(t)}\right|<\delta_{2} \tag{2.1}
\end{equation*}
$$

where δ_{1} and δ_{2} are positive constans, hold. Moreover, let the function c be absolutely continuous on every finite segment,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \sup |c(t)|<1, \quad \int_{0}^{\infty}\left|c^{\prime}(t)\right| d t<\infty \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \int_{0}^{t}\left(a_{11}(\tau)+a_{22}(\tau)\right) \mathrm{d} \tau=-\infty \tag{2.3}
\end{equation*}
$$

Then the system (1.1) is asymptotically stable.
Proof. According to (2.2) the conditions of Lemma 2 hold. Therefore, from (1.0) by means of (2.1) and (2.3) we conclude that (1.1) is asymptotically stable. This completes the proof.

Corollary 1. Let $a_{11}(t)=0, a_{12}(t)=-a_{21}(t)>0$ for $t \in R^{+}$,

$$
\lim _{t \rightarrow \infty} \sup \left(-\frac{a_{22}(t)}{2 a_{12}(t)}\right)<1, \quad \int_{0}^{\infty}\left|d\left(-\frac{a_{22}(t)}{2 a_{12}(t)}\right)\right|<\infty
$$

and

$$
\lim _{t \rightarrow \infty} \int_{0}^{t} a_{22}(\tau) \mathrm{d} \tau=-\infty
$$

Then the system (1.1) is asymptotically stable.

J. Osička
Department of Mathematics
J. E. Purkyne University
66295 Brno, Jandỉkkovo nám. 2a
Czechoslovakia

