Archivum Mathematicum

Božo Vrdoljak
On solutions of the Lagerstrom equation

Archivum Mathematicum, Vol. 24 (1988), No. 3, 111--122
Persistent URL: http://dml.cz/dmlcz/107318

Terms of use:

© Masaryk University, 1988
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

ARCHIVUM MATHEMATICUM (BRNO)

Vol. 24, No. 3 (1988), 111-222

ON SOLUTIONS OF THE LAGERSTROM EQUATION

BOŽO VRDOLJAK
(Received November 7, 1985)

Abstract

The paper deals with the behaviour of certain classes of Cauchy's solutions of the Lagerstrom equation. It considers the behaviour of solutions in the neighbourhood of an arbitrary or integral curve on a finite or infinite interval. It presents the respective sufficient conditions which grant certain behaviour of some classes of Cauchy's solutions. The results obtained refer also the approximation and asymptotic behaviour of solutions.

Key words. The Lagerstrom equation, behaviour of solutions, classes of Cauchy's solutions.
MS Classification. 34 C 05.

In this paper we shall consider the Lagerstrom equation of the form

$$
\begin{equation*}
y^{\prime \prime}+\left(\frac{2}{t}+y\right) y^{\prime}=0 \quad\left({ }^{\prime}=d / \mathrm{d} t\right) \tag{1}
\end{equation*}
$$

on interval $I=(a, b)$, where $-\infty \leqq a<\bar{b}<0$ or $0<a<b \leqq+\infty$.
The Lagerstrom equation, in different forms, has been considered by many authors. The papers $[1-4]$, as well as many others, deal with the behaviour and approximation of the solution which satisfies the boundary conditions $y(\varepsilon)=0$, $y(\infty)=1$ (or $y(\infty)=C \geqq 0)$, where $\varepsilon>0$ is small.

Let $\Gamma=\{(y, t): y=\psi(t), t \in I\}, \psi \in C^{2}(I)$, be an arbitrary or integral curve of (l) and let

$$
\sigma=\{(y, t):|y-\psi(t)| \leqq \varrho(t), t \in I\}
$$

be its neighbourhood. This paper deals with the behaviour of solutions of equation (1) with respect to set σ. There is a particularly interesting case when function ϱ is sufficiently small and tends to 0 as $t \rightarrow \infty$.

We are going to use functions $\alpha, \beta, \delta, \varphi, \varrho \in C^{1}(I), \alpha \neq 0, \delta, \varrho>0$ on I, and functions

$$
f \equiv-\frac{\alpha^{\prime}}{\alpha}-\frac{2}{t}-\beta-y, \quad g \equiv-\frac{1}{\alpha}\left[\beta^{\prime}+\beta^{2}+\beta\left(\frac{2}{t}+y\right)\right]
$$

and notations $y_{0}=y\left(t_{0}\right), y_{0}^{\prime}=y^{\prime}\left(t_{0}\right), \alpha_{0}=\alpha\left(t_{0}\right), \ldots, t_{0} \in I$.
Depending on the form of the Cauchy's conditions the study will be carried out in three parts.

1. Let us first consider the solutions of equation (1) which satisfy the initial conditions
(2) $\quad\left|y_{0}-\psi_{0}\right| \leqq \varrho_{0}, \quad\left|y_{0}^{\prime}-\beta_{0} y_{0}-\alpha_{0} \varphi_{0}\right| \leqq\left|\alpha_{0}\right| \delta_{0}, \quad t_{0} \in I$.

Theorem 1. Let Γ be an arbitrary curve.
(i) If there exist functions $\alpha, \beta, \delta, \varphi$ and ϱ such that

$$
\begin{align*}
& \left|f \varphi+g \psi-\varphi^{\prime}\right|+|g| \varrho<\delta^{\prime}-f \delta \tag{3}\\
& \left|\alpha \varphi+\beta \psi-\psi^{\prime}\right|+|\alpha| \delta<\varrho^{\prime}-\beta \varrho \tag{4}
\end{align*}
$$

on σ, then all solutions $y(t)$ of problem (1)-(2) satisfy condition

$$
\begin{equation*}
|y(t)-\psi(t)|<\varrho(t) \quad \text { for every } t \in\left(t_{0}, b\right) \tag{5}
\end{equation*}
$$

(ii) If

$$
\begin{equation*}
\left|f \varphi+g \psi-\varphi^{\prime}\right|+|g| \varrho<f \delta-\delta^{\prime} \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\left|\alpha \varphi+\beta \psi-\psi^{\prime}\right|+|\alpha| \delta<\beta \varrho-\varrho^{\prime} \tag{7}
\end{equation*}
$$

on σ, then at least one solution of the problem (1)-(2) satisfies condition (5).
(iii) In view of conditions (3) and (7) or (4) and (6) problem (1)-(2) has oneparameter class of solutions which satisfy condition (5).

Proof. Let us introduce the substitute

$$
\begin{equation*}
y^{\prime}=\alpha(t) x+\beta(t) y \tag{8}
\end{equation*}
$$

where $x=x(t)$ is a new unknown function. Equation (1) is transformed into a system of equations

$$
\begin{equation*}
x^{\prime}=f(y, t) x+g(y, t) y, \quad y^{\prime}=\alpha(t) x+\beta(t) y \tag{9}
\end{equation*}
$$

where functions f and g have already been defined.
Let $\Omega=R^{2} \times I$ and

$$
\begin{aligned}
\omega_{1} & =\{(x, y, t) \in \Omega:|x-\varphi(t)|<\delta(t),|y-\psi(t)|<\varrho(t)\} \\
-X_{i} & =\left\{(x, y, t) \in C l \omega_{1}: x_{i} \equiv(-1)^{i}[x-\varphi(t)]-\delta(t)=0\right\} \\
Y_{i} & =\left\{(x, y, t) \in C l \omega_{1}: y_{i} \equiv(-1)^{i}[y-\psi(t)]-\varrho(t)=0\right\}, \quad i=1,2
\end{aligned}
$$

Let $\tau=\left(x^{\prime}(t), y^{\prime}(t), 1\right)$ be a tangential vector for the integral curve $(x(t), y(t), t)$ of system (9) on $\partial \omega_{1}$.

Let us consider the scalar products

$$
\pi_{x_{i}}=\left(\operatorname{grad} x_{i}, \tau\right), \quad \pi_{y_{i}}=\left(\operatorname{grad} y_{i}, \tau\right), \quad i=1,2
$$

on $\partial \omega_{1}$. We have

$$
\begin{gathered}
\pi_{x_{i}}=(-1)^{i}(f x+g y)-(-1)^{i} \varphi^{\prime}-\delta^{\prime}=(-1)^{i}\left(f \varphi+g \psi-\varphi^{\prime}\right)+ \\
+(-1)^{i} g(y-\psi)+f \delta-\delta^{\prime} \\
\pi_{y_{i}}=(-1)^{i}(\alpha x+\beta y)-(-1)^{i} \psi^{\prime}-\varrho^{\prime}=(-1)^{i}\left(\alpha \varphi+\beta \psi-\psi^{\prime}\right)+ \\
+(-1)^{i} \alpha(x-\varphi)+\beta \varrho-\varrho^{\prime} .
\end{gathered}
$$

(i) In view of (3) and (4) we have

$$
\begin{aligned}
& \pi_{x_{i}} \leqq\left|f \varphi+g \psi-\varphi^{\prime}\right|+|g| \varrho+f \delta-\delta^{\prime}<0 \\
& \pi_{y_{i}} \leqq\left|\alpha \varphi+\beta \psi-\psi^{\prime}\right|+|\alpha| \delta+\beta \varrho-\varrho^{\prime}<0, \quad i=1,2 .
\end{aligned}
$$

Accordingly, $\delta \omega_{1}$ is a set of points of strict entrance of integral curves of system (9) with respect to sets ω_{1} and Ω. Hence, all solutions of system (9) which satisfy initial conditions

$$
\left|x_{0}-\varphi_{0}\right| \leqq \delta_{0}, \quad\left|y_{0}-\psi_{0}\right| \leqq \varrho_{0}
$$

satisfy also conditions

$$
|x(t)-\varphi(t)|<\delta(t), \quad|y(t)-\psi(t)|<\varrho(t) \quad \text { for every } t \in\left(t_{0}, b\right)
$$

Since, in view of (8), $x_{0}-\varphi_{0}=\frac{1}{\alpha_{0}}\left(y_{0}^{\prime}-\beta_{0} y_{0}-\alpha_{0} \varphi_{0}\right)$, then all solutions of problem (1)-(2) satisfy condition (5).
(ii) In view of (6) and (7) we have

$$
\begin{aligned}
& \pi_{x_{i}} \geqq-\left|f \varphi+g \psi-\varphi^{\prime}\right|-|g| \varrho+f \delta-\delta^{\prime}>0 \\
& \pi_{y_{i}} \geqq-\left|\alpha \varphi+\beta \psi-\psi^{\prime}\right|-|\alpha| \delta+\beta \varrho-\varrho^{\prime}>0, \quad i=1,2 .
\end{aligned}
$$

Accordingly, $\delta \omega_{1}$ is a set of points of strict exit of integral curves of system (9) with respect to sets ω_{1} and Ω. Hence, according to T. Waževski's retraction method ([5-7]), system (9) has at least one solution belonging to set ω_{1} for every $t \in I$. Consequently, problem (1)-(2) has at least one solution which satisfies condition (5).
(iii) In this case $X=X_{1} \cup X_{2}$ is a set of points of strict entrance, and $Y=Y_{1} \cup Y_{2}$ is a set of points of strict exit (or reverse) of integral curves of system (9) with respect to sets ω_{1} and Ω. Hence, according to the retraction method, system (9) has one-parameter class of solutions which belong to set ω_{1} for every $t \in I$. Accordingly, problem (1)-(2) has one-parameter class of solutions which satisfy condition (5).

For especially selected functions α, β, δ and φ we can obtain very interesting results.

B. VRDOLJAK

Corollary $1\left(\beta \equiv \frac{\psi^{\prime}}{\psi}, \psi \neq 0, \delta \equiv 1, \varphi \equiv 0, \alpha>0\right)$. (i) If
(10) $\frac{1}{\alpha}\left|\psi^{\prime \prime}+\left(\frac{2}{t}+y\right) \psi^{\prime}\right|\left(1+\frac{\varrho}{|\psi|}\right)<\frac{\psi^{\prime}}{\psi}+\psi-\varrho+\frac{\alpha^{\prime}}{\alpha}+\frac{2}{t} \quad$ on σ,

$$
\begin{equation*}
\frac{\varrho^{\prime}}{\varrho}>\frac{\psi^{\prime}}{\psi}+\frac{\alpha}{\varrho} \quad \text { on } I \tag{11}
\end{equation*}
$$

then all solutions $y(t)$ of (1) which satisfy the initial conditions

$$
\begin{equation*}
\left|y_{0}-\psi_{0}\right| \leqq \varrho_{0}, \quad\left|y_{0}^{\prime}-\frac{\psi_{0}^{\prime}}{\psi_{0}} y_{0}\right| \leqq \alpha_{0}, \quad t_{0} \in I \tag{12}
\end{equation*}
$$

also satisfy condition (5).
(ii) If

$$
\begin{align*}
\frac{1}{\alpha}\left|\psi^{\prime \prime}+\left(\frac{2}{t}+y\right) \psi^{\prime}\right| & \left(1+\frac{\varrho}{|\psi|}\right)<-\frac{\psi^{\prime}}{\psi}-\psi-\varrho-\frac{\alpha^{\prime}}{\alpha}-\frac{2}{t} \quad \text { on } \sigma \tag{13}\\
& \frac{\varrho^{\prime}}{\varrho}<\frac{\psi^{\prime}}{\psi}-\frac{\alpha}{\varrho} \quad \text { on } I \tag{14}
\end{align*}
$$

then at least one solution of problem (1)-(12) satisfies condition (5).
(iii) In view of conditions (10) and (14) or (11) and (13) problem (1)-(12) has one-parameter class of solutions which satisfy condition (5).

Corollary $2(\beta \equiv 0, \delta \equiv 1, \varphi \equiv 0, \alpha>0)$. (i) If

$$
\psi>\varrho-\frac{\alpha^{\prime}}{\alpha}-\frac{2}{t}, \quad\left|\psi^{\prime}\right|<\varrho^{\prime}-\alpha \quad \text { on } I
$$

then all solutions $y(t)$ of (1) which satisfy the initial conditions

$$
\begin{equation*}
\left|y_{0}-\psi_{0}\right| \leqq \varrho_{0}, \quad\left|y_{0}^{\prime}\right| \leqq \alpha_{0}, \quad t_{0} \in I \tag{15}
\end{equation*}
$$

satisfy also condition (5).
(ii) If

$$
\psi<-\varrho-\frac{\alpha^{\prime}}{\alpha}-\frac{2}{t}, \quad\left|\psi^{\prime}\right|<-\varrho^{\prime}-\alpha \quad \text { on } I
$$

then at least one solution of problem (1)-(15) satisfies condition (5).
(iii) If

$$
\psi>\varrho-\frac{\alpha^{\prime}}{\alpha}-\frac{2}{t}, \quad\left|\psi^{\prime}\right|<-\varrho^{\prime}-\alpha
$$

or

$$
\psi<-\varrho-\frac{\alpha^{\prime}}{\alpha}-\frac{2}{t}, \quad\left|\psi^{\prime}\right|<\varrho^{\prime}-\alpha
$$

on I, then problem (1)-(15) has one-parameter class of solutions which satisfy condition (5).

Example 1. (i) All solutions $y(t)$ of (1) which satisfy initial conditions

$$
\left|y(\varepsilon)-\left(1-\varepsilon^{2}\right)\right| \leqq \varepsilon, \quad\left|y^{\prime}(\varepsilon)\right| \leqq \varepsilon^{3} e^{-\frac{\varepsilon}{2}}, \quad 0<\varepsilon \leqq \frac{1}{4}
$$

satisfy also condition

$$
\left|y(t)-\left(1-\frac{\varepsilon^{3}}{t}\right)\right|<\varepsilon\left(2-\frac{\varepsilon}{t}\right) \quad \text { for every } t \in(\varepsilon, \infty)
$$

(ii) Equation (1) has one-parameter class of solutions which satisfy the initial conditions

$$
|y(\varepsilon)| \leqq 1+\varepsilon, \quad\left|y^{\prime}(\varepsilon)\right| \leqq \varepsilon^{2} e^{-\varepsilon}, \quad 0<\varepsilon \leqq \frac{2}{3}
$$

and condition

$$
\left|y(t)-\left(1-\frac{\varepsilon}{t}\right)\right|<\frac{\varepsilon(1+\varepsilon)}{t} \quad \text { for every } t \in(\varepsilon, \infty)
$$

Corollary $3\left(\beta \equiv 0, \delta \equiv \varrho, \varphi \equiv \frac{\psi^{\prime}}{\alpha}\right)$. Let $\psi(t)$ be an arbitrary solution of equation (1). (i) If

$$
\psi>\frac{\left|\psi^{\prime}\right|}{\alpha}+\varrho-\frac{\varrho^{\prime}}{\varrho}-\frac{\alpha^{\prime}}{\alpha}-\frac{2}{t}, \quad \frac{\varrho^{\prime}}{\varrho}>\alpha>0 \quad \text { on } I,
$$

then all solutions $y(t)$ of equation (1) with initial conditions

$$
\begin{equation*}
\left|y_{0}-\psi_{0}\right| \leqq \varrho_{0}, \quad\left|y_{0}^{\prime}-\psi_{0}^{\prime}\right| \leqq \alpha_{0} \varrho_{0}, \quad t_{0} \in I \tag{16}
\end{equation*}
$$

satisfy also condition (5).
(ii) If

$$
\psi>\frac{\left|\psi^{\prime}\right|}{\alpha}+\varrho-\frac{\varrho^{\prime}}{\varrho}-\frac{\alpha^{\prime}}{\alpha}-\frac{2}{t}, \quad \frac{\varrho^{\prime}}{\varrho}<-\alpha<0
$$

or

$$
\psi<-\frac{\left|\psi^{\prime}\right|}{\alpha}-\varrho-\frac{\varrho^{\prime}}{\varrho}-\frac{\alpha^{\prime}}{\alpha}-\frac{2}{t}, \quad \frac{\varrho^{\prime}}{\varrho}>\alpha>0
$$

on I, then problem (1)-(16) has one-parameter class of solutions satisfying condition (5).

Example 2. Let $A, T, r, \vartheta \in R, r>0, A, T>\vartheta>0$ and $\alpha \equiv \frac{\vartheta^{3}}{t^{2}}$. (i) Let

$$
\varrho \equiv r e^{A(t-T)}, \quad I_{1}=[-\infty,-\vartheta], \quad I_{2}=[\vartheta, T]
$$

The statement (i) of Corollary 3 is valid for every solution

$$
\psi(t)>-A+r+\frac{t^{2}}{\vartheta^{3}}\left|\psi^{\prime}\right| \quad \text { on } I_{1} \text { and } I_{2}
$$

The statement (ii) of Corollary 3 is valid for every solution

$$
\psi(t)<-A-r-\frac{t^{2}}{\vartheta^{3}}\left|\psi^{\prime}\right| \quad \text { on } I_{1} \text { and } I_{2}
$$

(ii) Let'

$$
\varrho \equiv r e^{-A(t+T)}, \quad I_{1}=[-T,-\vartheta], \quad I_{2}=[\vartheta, \infty)
$$

The statement (ii) of Corollary 3 is valid for every solution

$$
\psi(t)>A+r+\frac{t^{2}}{\vartheta^{3}}\left|\psi^{\prime}\right| \quad \text { on } I_{1} \text { and } I_{2}
$$

Corollary $4\left(\alpha \equiv \frac{1}{|t|}, \beta \equiv-\frac{1}{t}, \delta \equiv \varrho, \varphi \equiv|t| \psi^{\prime}+\frac{|t|}{t} \psi\right)$. Let $\psi(t)$ be an arbitrary solution of (1) and let $I \subseteq(0, \infty)$. If

$$
\begin{gathered}
\psi \geqq \varrho, \quad \varrho^{\prime}>\left|t \psi^{\prime}\right| \varrho \quad \text { or } \quad \psi \geqq 0, \\
\varrho^{\prime}>2 \varrho^{2}+\left|t \psi^{\prime}\right| \varrho \quad \text { or } \quad \frac{1}{2}\left|t \psi^{\prime}\right|+\varrho-\frac{\varrho^{\prime}}{2 \varrho}<\psi \leqq 0
\end{gathered}
$$

on I, then all solutions $y(t)$ of (1) with initial conditions

$$
\left|y_{0}-\psi_{0}\right| \leqq \varrho_{0}, \quad\left|t_{0}\left(y_{0}^{\prime}-\psi_{0}^{\prime}\right)+y_{0}-\psi_{0}\right| \leqq \varrho_{0}, \quad t_{0} \in I
$$

satisfy also condition (5). This statement is valid also when $I \subseteq(-\infty, 0)$ if function ϱ also satisfies condition $\frac{\varrho^{\prime}}{\varrho}>-\frac{2}{t}$ on I.

Example 3. Let $\psi(t) \equiv C \geqq 0, C \in R$. The statement of Corollary 4 is valid on the interval $I=(0, T]$ ($T>0$ is an arbitrarily large number) when

$$
\varrho \equiv \frac{r}{T+1-t}, \quad 0<r<\frac{1}{2} .
$$

2. Let us consider now the solutions of equation (1) satisfying the initial condition

$$
\begin{equation*}
\left|y_{0}-\psi_{0}\right|+\frac{1}{\left|\alpha_{0}\right|}\left|y_{0}^{\prime}-\beta_{0} y_{0}-\alpha_{0} \varphi_{0}\right| \leqq \varrho_{0}, \quad t_{0} \in I . \tag{17}
\end{equation*}
$$

Theorem 2. Let Γ be an arbitrary curve.
(i) Let there exist functions α, β, φ and. ϱ such that
$U \equiv(|f-\beta|+|g-\alpha|) \varrho+\left|f \varphi+g \psi-\varphi^{\prime}\right|+\left|\alpha \varphi+\beta \psi-\psi^{\prime}\right|<\rho^{\prime}-(|\alpha|+f) \varrho$ or

$$
U<\varrho^{\prime}-(\beta+|g|) \varrho
$$

on σ, then all solutions of problem (1)-(17) satisfy condition (5).
(ii) If

$$
U<-\varrho^{\prime}+(f-|\alpha|) \varrho \quad \text { or } \quad U<-\varrho^{\prime}+(\beta-|g|) \varrho
$$

on σ, then problem (1)-(17) has at least one solution satisfying condition (5).
Proof. In this case equation (1) is also transformed info system (9) by a substitute (8). Let $\Omega=R^{2} \times I$, $\omega_{2}=\{(x, y, t) \in \Omega:|x-\varphi(t)|+|y-\psi(t)|<\varrho(t)\}$, $P_{i}=\left\{(x, y, t) \in C l \omega_{2}: p_{i} \equiv(-1)^{i}[x+y-\varphi(t)-\psi(t)]-\varrho(t)=0\right\}$, $Q_{i}=\left\{(x, y, t) \in C l \omega_{2}: q_{i} \equiv(-1)^{i}[x-y-\varphi(t)+\psi(t)]-\varrho(t)=0\right\}, \quad i=1,2$.

Let τ be a tangential vector on the integral curves of system (9) on $\partial \omega_{2}$. Let us consider the scalar products

$$
\pi_{p_{i}}=\left(\operatorname{grad} p_{i}, \tau\right), \quad \pi_{q_{i}}=\left(\operatorname{grad} q_{i}, \tau\right), \quad i=1,2
$$

We have

$$
\begin{aligned}
& \pi_{p_{i}}=(-1)^{i}\left(f x+g y+\alpha x+\beta y-\varphi^{\prime}-\psi^{\prime}\right)-\varrho^{\prime} \\
& \pi_{q_{i}}=(-1)^{i}\left(f x+g y-\alpha x-\beta y-\varphi^{\prime}+\psi^{\prime}\right)-\varrho^{\prime}
\end{aligned}
$$

This can be written also as

$$
\begin{gathered}
\pi_{p_{i}}=(-1)^{i}\left[(-f+\beta+g-\alpha)(y-\psi)+\left(f \varphi+g \psi-\varphi^{\prime}\right)+\left(\alpha \varphi+\beta \psi-\psi^{\prime}\right)\right]+ \\
+(f+\alpha) \varrho-\varrho^{\prime}
\end{gathered}
$$

or

$$
\begin{gathered}
\pi_{p_{i}}=(-1)^{i}\left[(f-\beta-g+\alpha)(x-\varphi)+\left(f \varphi+g \psi-\varphi^{\prime}\right)+\left(\alpha \varphi+\beta \psi-\psi^{\prime}\right)\right]+ \\
+(g+\beta) \varrho-\varrho^{\prime}
\end{gathered}
$$

and

$$
\begin{gathered}
\pi_{q_{i}}=(-1)^{i}\left[(f-\beta+g-\alpha)(y-\psi)+\left(f \varphi+g \psi-\varphi^{\prime}\right)-\left(\alpha \varphi+\beta \psi-\psi^{\prime}\right)\right]+ \\
+(f-\alpha) \varrho-\varrho^{\prime}
\end{gathered}
$$

or

$$
\begin{gathered}
\pi_{q_{1}}=(-1)^{i}\left[(f-\beta+g-\alpha)(x-\varphi)+\left(f \varphi+g \psi-\varphi^{\prime}\right)-\left(\alpha \varphi+\beta \psi-\psi^{\prime}\right)\right]- \\
-(g-\beta) \varrho-\varrho^{\prime} .
\end{gathered}
$$

Now it is sufficient to note that we have in case (i) $\pi_{p_{i}}<0, \pi_{q_{i}}<0$ on $\partial \omega_{2}$, and in case (ii) $\pi_{p_{i}}>0, \pi_{q i}>0$ on $\partial \omega_{2}(i=1,2)$.

If we take that for functions α and β we have $\alpha \equiv \frac{\vartheta}{t^{2}}, \vartheta \in R, 0<\vartheta<1, \beta \equiv 0$ it can be, shown that the following corollaries are valid.

B. VRDOLJAK

Corollary 5 (for $\varphi \equiv 0$). Let Γ be an arbitrary curve and let

$$
\begin{equation*}
\left|y_{0}-\psi_{0}\right|+\frac{t_{0}^{2}}{\vartheta}\left|y_{0}^{\prime}\right| \leqq \varrho_{0}, \quad t_{0} \in I . \tag{18}
\end{equation*}
$$

(i) If

$$
\psi \geqq \varrho, \quad\left|\psi^{\prime}\right|<\varrho^{\prime}-\frac{29}{t^{2}} \varrho
$$

or

$$
\left|\psi^{\prime}\right|+\left(|\psi|+\varrho+\frac{\vartheta}{t^{2}}\right) \varrho<\varrho^{\prime}
$$

on I, then all solutions of problem (1)-(18) satisfy condition (5).
(ii) If

$$
\psi \leqq-\varrho, \quad\left|\psi^{\prime}\right|<-\varrho^{\prime}-\frac{29}{t^{2}} \varrho
$$

or

$$
\left|\psi^{\prime}\right|+\left(|\psi|+\varrho+\frac{\vartheta}{t^{2}}\right) \varrho<-\varrho^{\prime}
$$

on I, then at least one solution of problem (1)-(18) satisfies condition (5).
Corollary 6 (for $\left.\varphi \equiv \frac{t^{2}}{\vartheta} \psi^{\prime}\right)$. Let $\psi(t)$ be an arbitrary solution of (1) and let $\psi(t) \geqq \varrho(t)$. For $\vartheta>0(\vartheta \in R)$ and function ϱ such that

$$
\frac{\varrho^{\prime}}{\varrho}>\frac{2 \vartheta}{t^{2}}+\frac{t^{2}}{\vartheta}\left|\psi^{\prime}\right| \quad \text { on } I
$$

all solutions $y(t)$ of (1) which satisfy the initial condition

$$
\left|y_{0}-\psi_{0}\right|+\frac{t_{0}^{2}}{\vartheta}\left|y_{0}^{\prime}-\psi_{0}^{\prime}\right| \leqq \varrho_{0}, \quad t_{0} \in I
$$

satisfy also condition (5).

Example 4. Let $\psi(t) \equiv C \geqq r>0, C, r \in R$. Corollary 6 is valid for

$$
\varrho \equiv r e^{-\frac{39}{t}} \quad \text { on } I=(0, \infty)
$$

3. Let us consider also solutions of equation (1) with the initial condition

$$
\begin{equation*}
\left(y_{0}-\psi_{0}\right)^{2}+\frac{1}{\alpha_{0}^{2}}\left(y_{0}^{\prime}-\beta_{0} y_{0}-\alpha_{0} \varphi_{0}\right)^{2} \leqq \varrho_{0}^{2}, \quad t_{0} \in I \tag{19}
\end{equation*}
$$

Theorem 3. Let Γ be an arbitrary curve.
(i) If there exist functions α, β, φ and ϱ such that

$$
\begin{gather*}
H \equiv \frac{1}{2}|g+\alpha| \varrho+\left|f \varphi+g \psi-\varphi^{\prime}\right|+\left|\alpha \varphi+\beta \psi-\psi^{\prime}\right|<\varrho^{\prime}-\beta \varrho \tag{20}\\
f-\beta \leqq 0
\end{gather*}
$$

or

$$
\begin{equation*}
H<\varrho^{\prime}-f \varrho, \quad \beta-f \leqq 0 \tag{21}
\end{equation*}
$$

on σ, then all solutions of problem (1)-(19) satisfy condition (5).
(ii) If

$$
\begin{equation*}
H<-\varrho^{\prime}+\beta \varrho, \quad f-\beta \geqq 0 \tag{22}
\end{equation*}
$$

or

$$
\begin{equation*}
H<-\varrho^{\prime}+f \varrho, \quad \beta-f \geqq 0 \tag{23}
\end{equation*}
$$

on σ, then problem (1)-(19) has at least one solution satisfying condition (5).
Proof. In this case equation (1) is also transformed into system (9). Let $\Omega=$ $=R^{2} \times I$ and

$$
\omega_{3}=\left\{(x, y, t) \in \Omega: k \equiv \frac{(x-\varphi(t))^{2}}{\varrho^{2}(t)}+\frac{(y-\psi(t))^{2}}{\varrho^{2}(t)}<1\right\}
$$

Let τ be a tangential vector for integral curves of system (9) on $\partial \omega_{3}$. Let us consider the scalar product $\pi=\left(\frac{1}{2} \operatorname{grad} k, \tau\right)$. We have

$$
\begin{gathered}
\pi=(f x+g y) \frac{x-\varphi}{\varrho^{2}}+(\alpha x+\beta y) \frac{y-\psi}{\varrho^{2}}- \\
-\frac{1}{\varrho^{3}}\left[(x-\varphi) \varrho \varphi^{\prime}+(x-\varphi)^{2} \varrho^{\prime}+(y-\psi) \varrho \psi^{\prime}+(y-\dot{\psi})^{2} \varrho^{\prime}\right]= \\
=\left(f-\frac{\varrho^{\prime}}{\varrho}\right) X^{2}+(g+\alpha) X Y+\left(\beta-\frac{\varrho^{\prime}}{\varrho}\right) Y^{2}+ \\
+\frac{1}{\varrho}\left[\left(f \varphi+g \psi-\varphi^{\prime}\right) X+\left(\alpha \varphi+\beta \psi-\psi^{\prime}\right) V\right] .
\end{gathered}
$$

where

$$
X=\frac{x-\varphi}{\varrho}, \quad Y=\frac{y-\psi}{\varrho}
$$

(i) We have

$$
\begin{gathered}
\pi \leqq\left(f-\frac{\varrho^{\prime}}{\varrho}\right) X^{2}+\frac{1}{2}|g+\alpha|\left(X^{2}+Y^{2}\right)+\left(\beta-\frac{\varrho^{\prime}}{\varrho}\right) Y^{2}+ \\
+\frac{1}{\varrho}\left[\left|f \varphi+g \psi-\varphi^{\prime}\right|+\left|\alpha \varphi+\beta \psi-\psi^{\prime}\right|\right] \equiv \pi
\end{gathered}
$$

B. YRDOLJAK

In view of (20) it is valid

$$
\begin{aligned}
\pi= & \left(\beta-\frac{\varrho^{\prime}}{\varrho}+\frac{1}{2}|g+\alpha|\right)\left(X^{2}+Y^{2}\right)+(f-\beta) X^{2}+ \\
& +\frac{1}{\varrho}\left[\left|f \varphi+g \psi-\varphi^{\prime}\right|+\left|\alpha \varphi+\beta \psi-\psi^{\prime}\right|\right]= \\
& =\beta-\frac{\varrho^{\prime}}{\varrho}+\frac{1}{2}|g+\alpha|+(f-\beta) X^{2}+ \\
+ & \frac{1}{\varrho}\left[\left|f \varphi+g \psi-\varphi^{\prime}\right|+\left|\alpha \varphi+\beta \psi-\psi^{\prime}\right|\right]<0,
\end{aligned}
$$

and in view of (21) we have

$$
\begin{aligned}
\pi= & \left(f-\frac{\varrho^{\prime}}{\varrho}+\frac{1}{2}|g+\alpha|\right)\left(X^{2}+Y^{2}\right)+(\beta-f) Y^{2}+ \\
& +\frac{1}{\varrho}\left[\left|f \varphi+g \psi-\varphi^{\prime}\right|+\left|\alpha \varphi+\beta \psi-\psi^{\prime}\right|\right]= \\
& =f-\frac{\varrho^{\prime}}{\varrho}+\frac{1}{2}|g+\alpha|+(\beta-f) Y^{2}+ \\
+ & \frac{1}{\varrho}\left[\left|f \varphi+g \psi-\varphi^{\prime}\right|+\left|\alpha \varphi+\beta \psi-\psi^{\prime}\right|\right]<0
\end{aligned}
$$

(ii) We have

$$
\begin{gathered}
\pi \geqq\left(f-\frac{\varrho^{\prime}}{\varrho}\right) X^{2}-\frac{1}{2}|g+\alpha|\left(X^{2}+Y^{2}\right)+\left(\beta-\frac{\varrho^{\prime}}{\varrho}\right) Y^{2}- \\
-\frac{1}{\varrho}\left[\left|f \varphi+g \psi-\varphi^{\prime}\right|+\left|\alpha \varphi+\beta \psi-\psi^{\prime}\right|\right]=\pi
\end{gathered}
$$

In view of (22) it is valid-

$$
\begin{gathered}
\frac{\pi}{=}=\beta-\frac{\varrho^{\prime}}{\varrho}-\frac{1}{2}|g+\alpha|+(f-\beta) X^{2}- \\
-\frac{1}{\varrho}\left[\left|f \varphi+g \psi-\varphi^{\prime}\right|+\left|\alpha \varphi+\beta \psi-\psi^{\prime}\right|\right]>0
\end{gathered}
$$

and in view of (23) we have

$$
\begin{gathered}
\underline{\pi}=f-\frac{\varrho^{\prime}}{\varrho}-\frac{1}{2}|g+\alpha|+(\beta-f) y^{2}- \\
-\frac{1}{\varrho}\left[\left|f \varphi+g \psi-\varphi^{\prime}\right|+\left|\alpha \varphi+\beta \psi-\psi^{\prime}\right|\right]>0
\end{gathered}
$$

Accordingly, in case (i) $\partial \omega_{3}$ is a set of points of strict entrance, and in case (ii) $\partial \omega_{3}$ is a set of points of strict exit of integral curves of system (9) with respect to sets ω_{3} and Ω. This conclusion grants the validity of Theorem 3.

For $\beta \equiv 0$ the following corollaries can be proved.
Corollary 7 (for $\varphi \equiv 0$). Let Γ be an arbitrary curve, $\alpha(t)>0$ on I and let

$$
\begin{equation*}
\left(y_{0}-\psi_{0}\right)^{2}+\frac{1}{\alpha_{0}^{2}}\left(y_{0}^{\prime}\right)^{2} \leqq Q_{0}^{2}, \quad t_{0} \in I . \tag{24}
\end{equation*}
$$

(i) If

$$
\psi \geqq \varrho-\frac{\alpha^{\prime}}{\alpha}-\frac{2}{t}, \quad\left|\psi^{\prime}\right|<\varrho^{\prime}-\frac{1}{2} \alpha \Omega
$$

or

$$
\psi \leqq-\varrho-\frac{\alpha^{\prime}}{\alpha}-\frac{2}{t}, \quad\left|\psi^{\prime}\right|<\varrho^{\prime}+\left(\psi-\varrho+\frac{\alpha^{\prime}}{\alpha}+\frac{2}{t}-\frac{\alpha}{2}\right) \varrho
$$

on I, then all solutions of problem (1)-(24) satisfy condition (5).
(ii) If

$$
\psi \leqq-\varrho-\frac{\alpha^{\prime}}{\alpha}-\frac{2}{t}, \quad\left|\psi^{\prime}\right|<-\varrho^{\prime}-\frac{1}{2} \alpha \varrho
$$

or

$$
\psi \geqq \varrho-\frac{\alpha^{\prime}}{x}-\frac{2}{t}, \quad\left|\psi^{\prime}\right|<-\varrho^{\prime}-\left(\psi+\varrho+\frac{\alpha^{\prime}}{\alpha}+\frac{2}{t}+\frac{\alpha}{2}\right) \varrho
$$

on I, then problem (1)-(24) has at least one solution satisfying condition (5).
Example 5. Let

$$
\psi \equiv \eta-r \vartheta e^{-t}, \quad \eta \geqq r(1+\vartheta), \quad r, \vartheta>0, \quad \eta, r, \vartheta \in R .
$$

The statement (i) of Corollary 7 is valid on $I=(\vartheta, \infty)$ for

$$
\varrho \equiv r\left(1-\frac{\vartheta}{t}\right), \quad \alpha \equiv \frac{\vartheta}{4 t^{2}}
$$

Corollary $8\left(\right.$ for $\left.\varphi \equiv \frac{\dot{\psi}^{\prime}}{\alpha}\right)$. Let $\psi(t)$ be an arbitrary solution of (1) and $\alpha(t)>0$ on I. If

$$
\psi \geqq \varrho-\frac{\alpha^{\prime}}{\alpha}-\frac{2}{t}, \quad \frac{\varrho^{\prime}}{\varrho}>\frac{\alpha}{2}+\frac{\left|\psi^{\prime}\right|}{\alpha}
$$

or

$$
\frac{\left|\psi^{\prime}\right|}{\alpha}+\varrho-\frac{\varrho^{\prime}}{\varrho}-\frac{\alpha^{\prime}}{\alpha}-\frac{2}{t}+\frac{\alpha}{2}<\psi \leqq-\varrho-\frac{\alpha^{\prime}}{\alpha}-\frac{2}{t}
$$

on I, then all solutions $y(t)$ of (1) with the initial condition

$$
\left(y_{0}-\psi_{0}\right)^{2}+\frac{1}{\alpha_{0}^{2}}\left(y_{0}^{\prime}-\psi_{0}^{\prime}\right)^{2} \leqq \varrho_{0}^{2}, \quad t_{0} \in I
$$

satisfy also condition (5).

B. VRDOLJAK

Example 6. The statement of Corollary 8 is valid for every solution

$$
\psi(t) \geqq r-\frac{2}{t}
$$

$\left|\psi^{\prime}(t)\right| \leqq A$ on $I_{1}=(-\infty, 0)$ and $I_{2}=(0, T), r, A, T \in R, r, A, T>0$, with functions

$$
\varrho \equiv r e^{(\Lambda+1)(t-T)}, \quad \alpha \equiv 1
$$

Remark. The obtained results directly refer to the approximation and asymptotic behaviour of solutions when function ϱ is sufficiently small and tends to 0 as $t \rightarrow \infty$. The obtained results can also be used for the analysis of solutions of equation (1) with respect to its stability.

REFERENCES

[1] D. S. Cohen, A. Fokas and P. A. Lagerstrom, Proof of some asymptotic results for a model equation for low Reynolds number flow, SIAM J. Appl. Math. 35 (1978), 187-207.
[2] A. D. MacGillivray, On a model equation of Lagerstrom, SIAM J. Appl. Math. 34 (1978), 804-812.
[3] A. D. MacGillivray, The existence of an overlap domain for a singular perturbation problem, SIAM J. Appl. Math. 36 (1979), 106-114.
[4] A. D. MacGillivray, On the switchback term in the asymptotic expansion of a model singular perturbation problem, J. Math. Anal. Appl. 77 (1980), 612-625.
[5] B. Vrdoljak, Curvilinear "tubes" in the retraction method and the behatiour of solutions for the system of differential equations, Mat. vesnik 4 (17) (32) (1980), 381-392.
[6] B. Vrdoljak, On parameter classes of solutions for system of linear differential equations, Glasnik Mat. 20 (40) (1985), 61-69.
[7] T. Wažewski, Sur-un principe topologique de l'examen de l'allur e asymptotique des intégrales des équations différentiellés ordinaires, Ann. Soc. Polon. Math. 20 (1947), 279-313.
B. Vrdoljak, Faculty of Civil Engineering

University of Split, P. O. Box 389
58000 Split,
Yugoslavia

