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Abstract. Some inequalities relating the slope of a function and mean values are completely 
solved. Characterizations of the exponential function are obtained. 
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Recently B. Poonen [2] has characterized (up to multiplicative constants) the 
exponential function e* in terms of the system of (simultaneous) inequalities 

min {f(x), f(y)) <i / 0 ? " f(x) £ max (/(*), /GO). y x 

In this paper we treat separately the above two inequalities as well as others in close 
connection (as we shall see) with these. As a result we obtain nondifferentiable 
and also discontinuous solutions and sharper bounds for the particular case 
of the exponential functions. 

Our first aim, to begin with, is to study functions f:R-+R satisfying, for all 
x < y 

(i) /oo - /(*) < fix) + m 
y - x - 2 

Examples of such functions are given in the following: 

Lemma 1. Given any function g : R -+ R which is non-increasing then f(x) » 
== g(x) e* is a solution of (1). „ • • 

Proof. First we show that the exponential function satisfies (1), i.e., for all 
x < y 

e> - ex e* + & 
w . y - x ~ 2 ••• 

6? 



C. ALSINA, J. L. GARCIA ROIO 

In fact, consider h : [0, oo) -* R given by h(t) = (t - 2) e' + / + 2. Since A has 
non-negative derivative for f ^ 0 and vanishes at t = 0 we have 0 = h(0) g A(f)» 
for t > 0, and from this taking t = >> — x the inequality (2) follows at once. Now 
let us take g : R-> R to be any non-increasing function and consider f(x) = g(x) ex. 
lfx<y then g(x) = /(x) e~* £ f(y) e~y = g(y), i.e., /(x) ^ /0>) e*~y. Therefore 
by (2) we have 

f{y) - /(*) < f(y)-f(y)e*-> = / ( ^ * y - g * < /O0_ ** + ey
 = 

y - x "" )> - * e y 3 / - ^ ~ e y 2 

' _ /O0**~y + /O0 . . / ( * ) + /QQ 
2 2 

i.e., (1) holds. 
We will show that the example given above constitutes, in fact, the general 

solution of (1). 

Theorem 1. A function f: R -+ R satisfies (I) if and only if f can be represented 
in the form fix) = g(x) ex where g: R -* R is a non-increasing function: 

Proof. Sufficiency follows from Lemma 1. To prove necessity, if/satisfies (1) 
let us take h e (0,2) and y = x + h in (1), i.e. 

fix + h) - /(x) ^ /(x) - /(x + h) 
h = 2 

or equivalently 

/(x + /og/(x)l±nr, 
and by iteration 

(3) /(x + nfc) ^ /(x) ( | 4 T T ' f 0 r n = h 2 ' -

If f > 0 is fixed there exists a large n0 such that for n > n0 we have Art = 
» t/n e (0,2) and by (3) if we let n tend to infinity we eventually get 

fix + 0 ^ /(x) <?', 
whence 

/(x + f )e -* - ' :g / (x )e -V 

i.e., gix) = /(x) *~* is non-increasing. 
Using the previous theorem it is easy to construct non-monotonic and dis

continuous solutions of (1). As corollaries we will present the following results 
needed in the sequel: 

Corollary 1. A continuous function f:R->R satisfies (1) if and only if there 
exists a continous non-increasing function g : R - • R such that fix) = gix) ex. 
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Corollary 2. A dijferentiable function f: R-+ R satisfies (1) if and only iff(x) « 
= g(x) ex, where g : R-+ R is any dijferentiable non-increasing function. In this 
case (1) is equivalent to the inequality 

(4) / '(*) S fix), for all x in R. 

Remark 1. The procedure used in the proof of Theorem 1 can also be applied 
to the more general inequality 

(1)' / 0 ° ~ / ( X ) g max (/(*), /GO), 
y-x 

for x < y, yielding actually the same result. Indeed, (1)' can be rewritten, setting 
h = y — x, as either 

f(x + h)SV + *)/(*) 
or 

f(x + h)S j ^ T fix), for h € (0,1), 

according as max (/(x), f(x + A)) is respectively f(x) or / (x + A). 
By iterating we obtain in all cases 

(3') /(* + nh) Z J 1 ^ /(*), 

for h e (0,1) and some integer r between 0 and n. But 

(1 + h)n < ( 1 + hy < = (1 4- h + h2 + ...)", 
~ (1 - ft)n"r ~ (1 - *)" 

and setting now, as in Theorem l,hn= t/ne (0,1) for large «, and observing that 
the outside expressions of the preceding chain of inequalities both tend to e\ we 
eventually obtain, as in Theorem 1, for any positive t 

AX + i) < £>'/(*). 

In particular we see that the more generality of inequality (1)' with respect 
to (1) is actually apparent, corollaries 1 and 2 can also be stated for (1)* in place 
of (1), and, at the same time, (1) gives a sharper bound than (1)' for exponential 
functions. 

7 

Remark 2. If we now play the same game this time with (1)' replaced by 

(1)' m i n ( / ( x ) , / O 0 ) g / ( ^ " ^ ( x ) 

for x < y, we obtain exactly (3)' with the inequality sign reversed. This entails 
fix + t) £ e'f(x) so that (1)' and (1)* together imply / ( * + r) - . *'/(*). Setting 
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x ** 0, we see that the only solutions of (1)' and (1)" are exactly the functions 
f(x) = Ke* for any constant K. This is just another proof of the result of B. Poonen 
[1] answering a problem proposed by D. Shelyupsky [2]. 

Now we fix our attention in the inequalities, for all x < y 

<5) Q £ / W - /<*> * fM + /<y> 
~~ >> — x "" 2 

Conditions (5) are equivalent to the fact that/satisfies (1) and/ is nondecreasing. 
If this is the case then we have. 

Theorem 2. A function/: R-+R satisfies (5) if and only iff can be represented in 
the form f{x) = g(x) ex

9 where g : R -+ R is a continuous non-increasing function 
such that for all x in R and for all t > 0 

<6) g(x + i) £ e-'g(x). 

Proof. In view of the previous results we just need to prove that any solution/ 
of (5) is continuous. In fact, a s / i s increasing, if x0 happens to be a discontinuity 
point for/, taking x = x0 - h and y = x0 + h, for small positive h say h ^ 1, 
then by (5) we would have 

0 g /(x, + » ) - / ( » , - fc) g. /(«, + ft) + /(*, - ft) ^ + fc) ^ (Xo + 1} 
2h 2 

Then the term (f(x0 + h) - / (x0 — h))/2h tends to infinity when we let h go to 
zero from the right, while this same term remains bounded by f(x0 + 1). Thus / 
must be continuous. Note that (6) follows from Theorem 1 and the fact that / is 
increasing. * 

Corollary 3. A differentiable function f\R-*R satisfies (5) if and only if for 
allx 

(?) r f .. 0 g / ' (* ) ^S/(*); 

and this holds if and only iff can be represented in the form f(x) = g{x) ex where 
g i R-+ R is a differentiable function such that g(x) ^ —g'(x) ^ 0. 

Remark 3. Both Theorem 2 and corollary 3 obviously hold if we replace 

' 0 ' & (5) by max (/(*), f(y)), or, more generally, by any mean lying 

between these two explicit ones. 

Theorem 3. Let M be a continuous two-place function from R* xRR* into R+ 

such that M{ki x) ** x9 for allx j * 0* A function f: R -» R* satisfies the inequalities 
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(7) M(f(X),f(y))^^^^M^m, 

for all x < y, if and only if 

f{x) = Ke*, where K^O 

and M satisfies 

(8) M{x, y) < y~* forallx<y; 
x J/ \i\y — lnx 

Proof. If/satisfies (7), since M(f(x), f(y)) ^ 0 we have that/satisfies (5) and 
therefore, by Theorem 2, / i s continuous. In view of (7) and the continuity of/ 
and M the differentiability of/follows at once and, moreover, / '(*) = /(*), i.e., 
fix) = Kex, with # ^ 0. Then substituting /(x) = Kex into (7) we obtain (8). 

Remark 4. Theorem 3 obviously holds if we replace y% i n (?) bY a ny 

mean lying between it and max ifix), fiy)). 

Corollary 4. A function / : i? -* # + satisfies 

if and only if fix) = Xex, wftere £ ^ 0. 
Proof. We have to observe just that the geometric mean satisfies (8),i.e., is 

bounded above by the logarithmic mean, and this follows because of the inequality 
f̂t/2 «g ̂ x __ i)//j for h > 0, which can easily be checked by looking at the 

corresponding series expansions. 
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