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Abstract. In the paper the oscillatory proper solutions of nonlinear differential equations are
studied. There are given sufficient conditions for the existence of such solutions vanishing at
infinity. '
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Consider the differential equétion

(1) y(") =f(t,}’a---,y("~l)), nz 4.
Let R = (— o0, ®), R, = [0, ), n, be the entire part of n/2, D, = R, x R",
N={1,2..} '

In all the paper we shall suppose that f: D, — R fulfils the local Carathéodory
conditions, there exists o € {0,1} such that

@ C (=D S, %y, %)X, 20 in D,

holds and n + « is odd; n, is even.

Denote C¥(I), I = R, the set of all continuous function which have continuous
derivatives up to the order k on I. L,,.(R.) is the set of all functions, defined on R, ,
integrable on every finite segment of R, . ,

By a solution of (1) defined on I = R, we shall mean a function y e C"~1(I)
for which y®~1 is absolutely continuous on each segment of the interval I and y-
satisfies (1) for almost all 7€ I. Let y be a solution of (1) defined on [7, ®), 0< 7.
y is called proper if for large ¢: sup | ¥(s)| > 0 holds. y is called singular if there

tSs<o
exists b € (#, o) such that y = 0 on [b, ) and sup | y(s) | > O for t € [#, b). The
: tss<b
proper (singular) solution y is called oscillatory if there exists an increasing sequence:
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M. BARTUSEK

of its zeros tendmg to oo (to b). In the other case y is called nonoscillatory. The
solution y = 0 on R, is called trivial.

In the two last decades a great effort is devoted to the study of proper solutions
of (1), (2). One of the important problems consists in the study of conditions
under which the proper solution of (1), (2) tends to zero for ¢ — oo (sce 31, [6],
[71, [9]- Our goal lies in studying this problem for oscillatory solutions.

-The problem of vanishing of a solution y for t - oo is very closely tied to the
validity of the condltlon R

) ‘ I(y) = jo[y("")(t)]z dt <

as it is shown in [3, 7]. Moreover, if I(y) = oo for an oscillatory proper solution y
and for f being continuous on D,, then "~ js unbounded, and under the va11d1ty
of some assumptions on f; y is unbounded, too (see-[3]).

First, let us state an mequahty of Kolmogorov— Horny type

Lemma LIt —0<a<b< o, k=2, yeC" a, b], y*~ Y lsabsolutecon-
tinuous, v; = max | y(”(t)l for i=0,1,...,k—1, v, >| y"‘)(t)l for almost all

te [a, b]. Let y") have a zero in [a, b] for i = 1,2,. Kk — 1 Then

(k+i=1) (k-1i) k. i/k
v, £ 2% M,’,‘J,;voi,,g{,k/, z_o1 k

Kiguradze [6] proved this statement for y e C*[a, b] when proving his lemma 9.1,
In our case the proof is’ the same.

. Now, we give two existence theorems for oscillatory proper solutions tending
to zero for t — co which generalize some results in [4].

Theorem 1. Suppose that there exist positive numbers ¢, M and functionsa : R, —

—+R,,g:[0,¢e] » R+ suich thataeLloc(RJ,), ge C[0, &], g(0) = 0, g(x) > Ofor
x > 0 and

@ aOexDSIfx, ) SMT x| o R, x[~ae]

halds and let one of the folio»h‘ng assumptibns be valid

e e=L a®=g3
e - y | T g " (1+£)

2° . Ae[l, ), gx)=x* lim¢" a(t) =
R . v .. t=o
- 3° PR a = 09, a(t),= M1 >0 . fo’_‘ ‘te R‘.*.‘
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ON OSCILLATORY SOLUTIONS

Then there exists an oscillatory proper solution y of (1), deﬁned in some neighbourhood
of o and y fulfils the conditions

) : lim y?1t) =0, i=0,1,...,n—1.

t—

Proof. Let « = 1 and A = 1 in the case 1°. We can suppose, that g is non-
decreasing for 1° without loss of generality. Let us define functions f: D, = R
and g: R, - R,
' X = Xx; for | x| S e,

X; = gsign x; for | x;| > &, i=12,...,n
f(t’xls-”’xn)=f(txfla°”:xn) fOr lx1| ée’
6) = a(t) | x, |*sign x; + f(t, %,,..., %) for [x;]| > e,
g(x) = g(x) for 1°, g(x) = x* for 2°.
From these definitions and from (4) we have in both cases 1° and 2° in D,
M a0 g(x ) S U x,0x) ] S al) | x|} + Mne £ M, | x|* + Mne,

where M1 is a suitable constant. Thus, with resﬁect to [8, Th. - 1.1, 1.3] and
[7, Lemma 1.5] there exists a non-trivial solution y of the differential equation

® ¥ =ft, y, ...,y )
defined on R, and satisfying (3); such solution fulfils
) lim y(t) =

. t—o0

in case 2°. As according to (4) singular solutions do not exist, yis proper. Further,
with respect to (7) the equation (8) has only oscillatory proper:solutions (see so
called Property A, [6, Consequence of Th. 14.1]) and the relation (9) follows
the case 1° from Theorem 4 of [3] (this theorem is proved only for fe C%(D,), but
if f fulfils the local Carathéodory conditions, the proof is similar). Thus (9) is
valid in both cases and y is oscillatory proper. It is clear from (7), (8), (9), that y™
is bounded for almost all f on R, and according to Lemma 1 (5) holds. It is clear
that with respect to (6) y is a solution of (1), too. For « = 0 the proof is similar.
We must use Property B (see [6]) instead of Property A and [2] instead of [3]
The theorem is proved.

Theorem 2. Let there exist a number ¢.> 0 and functionsa: R, - R, ,d: R, -
- R, g:R, > R,, h:R?*' > R,, such that a,deL,(R;), geCR,),
g is nondecreasing, g(x) > 0 for x > 0, h(., Xy, ..., X,,) € Li,o(R}) for arbitrary
X1y .ees X0 € Ry, b is nondecreasing with respect to the last ny variables.” Further,
let at least one of the cases 1°,2° from Theorem 1 be valid and
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(10) If(t9 X1 ...,X,,)' § d(t)iillx‘l ~on R+ X[-—S, 8]",
a(t)g(l X1.|) é |f(t,X1,...,x)| é h(ts | xl Ia ooy | xno DX

¢5)) x{1+ Z | %] onJ -
. i=np+1
2n - 2"0 - 1

— _ s+ 1 n—s=1 —
hold where J = R, x[—¢, eJ'*! xR > Vi B "2, =1

and s =ny — 2
(s = no — 1) in.the case 1° (2°). Then there exists an oscillatory proper solution y
of (1) defined in some neighbourhood of oo such that
(12) lim yO(t) =0, i=0,1,..,s
t—> o
holds. If J = D,, then this solution is defined on R, .
Proof is similar to that one of Theorem 1, only we use

f(t, Xiyoooy X,,) = f(t, .‘fl, ceey fs+1,x,+2, ooy x,,) f0r|x1 | é €
=a(t)| x; |*sign x; + f(t, Xy, o0y Kguys Xoi20 00, %) fOr [ x| > 8

instcad of (6). If J = D,, we use directly f instead of f.

" Remark. If the inequality (10) is omited from the assumptions of Theorem 2,
then there exists a solution of (1) with the property (12) which is either oscillatory
proper or oscillatory singular. This conclusion follows from the proof and from
the fact that nonoscillatory singular solutions do not exist (see Kiguradze’s lemma
[6, lemmas 14.1, 14.2]). -

In the rest of the paper we shall study the differential equations of the fourth
order,n = 4, a = 1.

: Leﬁima 2. Let n=4, o = 1-and let y be an oscillatory proper solution of ¢))
‘or which (3) holds. Then lim y)(t) = 0, i = 1, 2. If, moreover, there exist ¢ > 0

t— o

and a continuous function g : R, — R, such that g(x) > 0 for x > 0 and
1 ‘ A
Tﬁ‘g(' x ) 1S, xq, x5, x5, x4) | on Ry x[—¢, g]*

hold, then lim y(t) = 0,j = 0, 1,2 is va]id

Proof tl;:ﬁne z2(t) = =y'(t) ¥(1) +2 j 4 (t)]2 dt, te R, . Then (see (1), (2))
2O = =yOx0 + DOP, () = -y )y + YOy ®),
27(t) = =y W) + [y 20 for almost all 7€ R, .
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ON OSCILLATORY SOLUTIONS
In [3] it was proved for fe C°(D,) that | z | are nonincreasing
13) 1limz9%) =0, i=1,2, limy'(t)) =0,  [t]y*®(®)y@®)]dt < o
0

t— t~w

hold. This statement can be proved for f fulfilling the local Carathéodory condi- -
tions similarly.

It was proved in [1] that there exist sequences {;}, ke N, i =0,1,2,3 and

te{—1, 1} such that 0 < 1) <tl <12 <t} <t)yy, limtf = o0, yO@) =0,
k-
(=D'ty®(t) <0 on [t th), i=1,23 (=) 1yP(®) >0 on (4, 04, j=
=0,1,2, ©p"(f) < 0 on [t2, 12,,] hold. Thus | y"(¢)| is over the tangent (under
the tangent) on [t 2] ([ 241 ])s
(14 |y’ (")) is nonincreasing on [t3, t7+1] ([15, 13]), ke N.
Put
M=t =t A=t -t Ay=t—t, Ada=8—-1,
Lo = [, t2], I = [, ], I, = [, 17].

First, we prove that the sequence of the absolute values of local extremes of

" — {| y"() 1}? is non-increasing. If 4;, > 4,3, then by use of (14) we have

(15) [V (G-D 121y = I | y"(®)1de 2 I [y"@) 1 dt =1y 1.

Iic2

If 4,, £ 4,5, then by use of (14) we have
L@ = [1y'(1de < 1y s

I

B GIERA HIREI (] S ECEEINGIES =
and thus

|y"(tk NEIRXGIEIPAH] "3 z |y ).

From this and from (15), in both cases, the sequence {l y”(t,,) [}{ is non-increasing.
We prove by the indirect proof that lim y"(¢) = 0. Thus, with respect to the last

t— o
result we can suppose, that there exists a constant M > 0 such that

(16) 1y(t)|1=zM, keN
holds. By virtue of (3), (14) and (16) we have '

0 >k§1 ‘tixtyu(t)]z,dt 2"2 {I [y (tk) ” ] dt +

+"‘j' nedy teer — ¢ 2 o R NS
V'(t) ——— | dt Z 4 () t;),
3 Ay — 4is .
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an Y dui,< .
As '
(a8 - M=yl =I§ |y"(6) 1At < | y"(t2) | des S 1"t | dias
then according to (17)
a19) lim | y"(t3) | = o
k- o

Thus, by use of (14)

2 Az ' ) " ”
ly”’(t;)l—z"-=]j|y @2 - t)dtéljly (N]dt =
(20) - =YD+ 1Y (R =0,

lim 4, = 0. From this and from (17) M = —ft—max ., —1t) < . By use of

k-

Levin’s lemma [6 Lemma 4.7] and (3) we have

0 tk+1 tk+1

I 7 (t))2 ar = Z I ') dr < Z M’ 5 O'@)*de £

@n B < M2 j(y"(t)2 dt < oo0.
V]

As the function z is nondecreasing; it is clear that z(c0) < oo and (see (13) and (2))

0 o0 0

jotz[y"(t)]?gdt = 2;‘0 :(0 ;[0[}:”(1)]2 dtdedt 265 ;\' ‘! z"(t)dtdtdt < oo.
If we use this resulf an& Carlson’s inequality [5], we get
17018 3 2[{ [OF & [P OF 41 < o.
jThu,s, by virtue of (i8) and (20)

] M -] 2
@ ©>3 JIyOldzg) 4
S114n
~Let N; = N be the set of indexes k such that Ak > A4, . Then it follows from (22)
that ) 4, < ©o. If A* < 44, by use of (17) we have

keN;
Z Ak > z Akl <-00.

- keN-=Np ' -keN—Ny

Thus

© Y 4, < oo, Y A+ Ay < o
keN . k&N -
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ON OSCILLATORY SOLUTIONS

which contradicts the fact that limt = co. This contradiction proves that

t—
lim y"(z) = 0.
t— o0
Now we prove by indirect proof that lim y(¢t) = 0. Thus suppose without loss
t— o
of generality that y(z}) = M, > 0, ke N. Let s be an arbitrary number, s £ ¢,

s £ M,. Define numbets 7, 77 in the following way: 0 < o< <t

[y | = 2 , |y@)| =5, keN, J, = [ti,12]. Then there exists an index
k0 € N such that (see (13): lim z"(z) = 0)

=
(3) s2glynlss, DOOISs, =123 tel, kzk
holds. Moreover, 'ck — 75 = 1/2 because

s[2 =1y | — 1 y@)| = ,{ Y@ 1de < s = w).
From this and from (23), (13) we have

© > Jtly“)(t) y(t) | dt _Z_kio jg(l y®ODIy@|de 2

cs
2

v

@-t)=o, c= mn gXx).
s/25xSs

s

This contradiction proves the theorem.

Remark. It follows from the proof of the lemma 2 that the sequences of the
absolute values of local extremes of y* and y" — {| ¥ (t2) 1}, {|¥"(¢tD) |}, k € Nare
nonincreasing.

By use of Lemma 2 the existence Theorem 2 can be generalized.

Theorem: 3. Let n = 4, « = 1, there exist number ¢ > 0 and functions g : R?> -
- R,,d:R, > R, h:R> > R, such that g e Co(R>%), g is nondecreasing with
respect to the first argument, g(x,, x,) > 0 for x, > 0,de L, (R,), h(., x;, x,) €
€ L,,(R,) for arbitrary x,, X, € R, ‘and h is nondecreasing w1th respect to the last
two variables. Further, let (10) be valid and -

(24) mg(lxd,sz DS Xy, X2, X3, %) | on R, xe[—e, 6]2,
lf(tsxlaxz’x35x4)léh(t’lx1[5|x2")(l+|x3|3+|x4l). on R+X‘IIXRA

where J = [g, ¢]?, J, = [ —¢, €]°. Then there exists an oscillatory proper solution y
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of (1), defined in some neighbourhood of oo such that
(25) limy®() =0, i=0,1,2

t—=*
holds. If J = R? and J, = R3, then this solution is defined on R,
Proof. The statement of the theorem can be proved similarly to Theorem 2,
Where Wev put f(t, X1 ~'x2’ X3, x4) = f(t3 xly-fZ’x_:&’ X4), g(xI’ x2) = g(xl, XZ); xi

are given by (6). Thus — (%, |, 1%, ) S |7 %1, %3, %5, %) | on R, x R

x[—e, ¢]. Then the existence of the solution y of (8), defined on R, , is guar-
anteed. We must consider two facts, only. First, we can see that the assumptions
of Lemma 2 are fulfilled and thus (25) is valid if y.is oscillatory proper. The
second fact consists in the conclusion that the proper solution y must be oscil-
latory. Let us prove this fact. According to Kiguradze’s lemma every nonoscil-
latory proper solution with the property (3) must fulfil the conditions

(26) yO)#£0 i=0,1,2,3, |[p(t)] is increasing,
| ¥'(¢) | is decieasing in some neighbourhood of co,
limy¥9(1) =0, j=2,3.

t= oo

Suppose, that for y (26) holds Thén we have for a sufﬁciently large T © >

b 1
>y @) = §1y®) | dr 2 J —7EL@LIYE® l)dt>KI g dr=0. K=
= min g(t,s) > 0, where ¢, = max |y'(¢)|. This contradxctlon shows that
0Ssse; Tst<o0

every proper solution is oscillatory. The theorem is proved.
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