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ON CENTERS OF TYPE B OF POLYNOMIAL 
SYSTEMS 

ROBERTO CONTI 

(Received April 26, 1989) 

Dedicated to Academician Otakar Bor&vka on his 90th birthday 

Abstract. The continuous band of cycles surrounding a center of type B of a polynomial system 
of degree n in R2 is bounded by a number of orbits ^ n + 1. Examples 2.1, 2, 3, 4 show that 
^uch number can be = n — 1. It is conjectured that it cannot be greater than n — 1. The same 
examples show that a system of degree n can have up to n centers of type B. It is conjectured that 
the number of such centers cannot be greater than n. 
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I. .-..-v..' 

A polynomial planar system is a pair of ordinary differential equations 

<U) ±-X(x,y)9 j> = Y(x,y), 

where x = dx/df, y = dyjdt, as usual, te R, and A\ Tare polynomials of (x, y) eR* 
with real coefficients, relatively prime. By definition, the degree of (1.1) is the 
maximum degree of X, Y. 

A singular point of (1.1) is a center if there exists a neighborhood entirely 
covered by cycles surrounding the point itself. 
- Let S be a center, let Gs be the family of cycles y surrounding S and no other 
singular point and let int y denote the region interior to y. We denote by Ns the 
region 

yeGs 

It is easy to show that the boundary dNs ofNs is either empty or the finite union 
of singular points and open orbits of (1.1). 

A center will be said to be of type B if 8NS is the union of open orbits only. 
If the degree n of (1.1) is = 1 then 8NS is empty, so S cannot be of type B. 
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On the contrary, for an arbitrary integer n > 1 there are polynomial systems 
of degree n with centers of type B. This will appear from examples in Sec. 2. 

The same examples will also suggest two conjectures about polynomial systems 
with centers of type B. 

II. 

Example 2.1. 

The quadratic system 

x = -2y2 4-1, y = 2xy 

has two singular points, S' = (0, —1/^/2), S" = (0, l/>/2) and the orbits are 
represented by [exp( — x2 — y2)] y = c. Therefore S' and S" are both centers 
of type B and the straight line y = 0 represents dNs> = 8NS><. 

Example 2*2. 

Let v be a positive integer, let 

(2.1) P(x) = f\s(x
2-s2) 

1 

and let q > 0. 
The function V defined by 
(2.2) V(x, y) - exp ( - x 2 - / ) [P(x) y - «] 

is an integral of the polynomial system (1.1) of degree n = 2v + 2 with 

o ^ /*(*> J» - ~2P(x) y2 + 2qy + P(x), 
K } \Y(x9y)~l2xP(x)-P'(x)']y-2qx, 
where 

(2.4) P'(x) = 2xP(x)£a(x
2-s2)-1. 

I 

Therefore the level lines of V(x,y) = c of the surface z = F(x, y) represent the 
orbits of the system (1.1) defined by (2.3). 

Since F(x, y) '-*• 0 as x2 + y2 -* + cx>, Fmust have a minimum point S, at leasts 
necessarily lying in the region 

E = {{x,y):P(x)y-q<0} 

and one maximum point, at least, inside each of the n — 1 == 2v + 1̂  regions 
whose union is the set R2\£. Therefore (Cf. J. K. Hale [3], pp. 172-173) the 
•system has n *=* 2v -f 2 centers at least. 
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It q is close to zero E may contain other singular points than S. This does not 
happen if q is sufficiently large, so that S is a center of type B and 8NS = dE is the 
union of n — 1 = 2v + 1 orbits. 

To show this notice that the vertical isocline X(x, y) = 0 has one branch con­
tained into E, namely 

(2.5) 2P(x) y » q - [q2 + 2P2(x)]1/2. 

It has an intersection with the horizontal isocline Y(x, y) = 0, i.e., 

(2.6) x{P(x) [1 - £s (x2 - S2)"1] y - <?} = 0 
I 

at the point (0, {q - \_q2 + 2P2(0)]1/2}/2P(0)) and no other intersection if q is 
large enough. 

In fact 

-P 2 (x) [ l - £ s (x 2 - s2)"1] = ~*4v + <**4v~2 + - . + b; 
I 

so that 

max{-P2(x)[l -is(x
2 -s2yxl xeR} = / i< +oo. 

I 

Since, obviously, 
q2 + «[«2 + 2P2(x)]1/2 ^ 2tf2, x e R, 

if we take 

(2.7) 2<z2 > M, 

we have 

«2 + iW + 2P2(x)]1'2 > -P2(x) [1 - £ (x2 - s2)"1], X 6 i?, 

which means that the branch (2.5) of X(x, y) = 0 cannot intersect the horizontal 
isocline Y(x, y) = 0 at any point of 

PW[l-L(x 2 -s 2r 1 ] 3 ; -^=0. 
I 

On the other hand the rest of the vertical isocline Z(x, y) « 0 is represented by 

(2.8) 2P(x)y = q + [g2 + 2P2(x)]1/2, 

so that it is contained into R2\E. 
Therefore, if (2.7) holds, the only singular point in E is the center S = 

- (0. {q - W + 2P2(0)]1/2}/2P(0)) = (0, ( - l ) v {q - [>2 + 2(v!)*]1'2}/2(v!)2),. 
of type fl with 8NS = 3£. 

We want to complete our analysis by showing that, independently of (2.7), the 
singular points in R2\is are exactly 2v + 1 = n — I. 
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The singular points of (1.1) with X, Y defined by (2.3) are also the solutions 
(x> y)> y ¥* 0 of X(x, y) = 0, xX(x, y) + y Y(x, y) = 0 and viceversa. Therefore 
it remains to look for the solutions (x, y), y # 0, of (2.8) and 

(2.9) P'(x) y2 - xP(x) = 0. 

Since P has 2v simple zeros at x = ±s, s = 1, 2 , . . . , v, so P' has 2v — 1 simple 
zeros, namely x = 0 and x = ±a1 , 1 < OLX < 2 < a2 < ... < av < v. Therefore 
{2.9) consists of the straight line x = 0 plus v branches through the points (s, 0), 
s = 1,2, . . . ,v and their symmetricals with respect to the y-axis. Each branch 
is symmetrical with respect to the x-axis. In the half plane y ^ 0 the branch through 
(v, 0) is the graph of an analytical function x *-• y(x) defined for x ^ v, strictly 
increasing from 0 to + oo. If v > 1 the branch through (s, 0), s = 1, 2 , . . . , v - 1, 
in the half plane y ^ 0 is the graph of an analytical function x *-* y(x) defined for 
s ^ x < as, strictly increasing from 0 to -f oo. 

On the other hand, according to (2.8), the part of the vertical isocline X(x, y) = 0 
lying within R2\E is the graph of a function x H> yv(x) defined by 

(2,0) y,(x),±±W±lp*r, 
for x # ±s, s = 1, 2 , . . . , v, with vertical asymptotes at x = ±s, s = 1, 2 , . . . , v, 
and a horizontal asymptote y = l/>/2. Since 

yuxs 1 iW + 2 P 2 W r + q2 

U) . 2 P\x)tf+2P\X)y<2 w' 
y'v has an extremum at each one of the zeros of P' and >̂ (x) P'(x) < 0 otherwise. 

It follows that each branch of (2.10) meets just one of the branches of (2.9) 
and just once, so that the total number of singular points in R2\2? is n - 1 = 2v + 1 
and so they are all centers of type B. 

Example 2.3. 

Let Fbe defined by K(x, y) = exp ( - x 2 - y2) \xy - q]. Then it is easily seen 
that if 4q2 > 1 the cubic system 

x = x 4- 2qy - 2x>̂ 2, j; = -2gx - y + 2x2y 

has a center of type B at 0, and dN0 = {(x, y) : xy - q = 0}, so that 8N0 consists 
of two orbits. The other singular points are (-(1/2 4- q)1/2

9 -(1/2 + q)1/2)> 
((1/2 + q)l/2, (1/2 + q)ll2\ which are both centers of type B. 

Example 2.4. 

Let v be a positive integer, let P(x) be the polynomial of degree 2v defined by (2.1) 
and let q > 0. Then the function V defined by 

M 



ON CENTERS OF TYPE B OF POLYNOMIAL SYSTEMS 

(2.11) V(x, y) = exp ( - x 2 - y2) [xP(x) y - q\ 

is an integral of the polynomial system (1.1) of degree n = 2v + 3 with 

v ; j Y(x, y) = [2x2P(x) - P(x) - xP'(x)] y - 2$x. 

This time the region £ is defined, by 

£ = {(x, y) : xP(x) y -q < 0} 

and R2\E is the union of n — 1 = 2v + 2 unbounded regions. 
By the same argument used for the case (2.3) we see that the system (1.1) defined 

by (2.12) has at least n = 2v + 3 centers, one in E and one in each region of 
R2\£. 

Also, this time 0 is a singular point and 0 eE. 
We want to show that there are exactly 2v + 3 singular points so that they all 

are centers of type B and, in particular, dN0 = BE. 
The vertical isocline X(x, y) = 0 has one branch 

(2.13) 2xP(x)y = q - [q2 + 2x2P2(x)]1/2 

contained into E. It has an intersection with Y(x, y) = 0 at 0 and no other inter­
section if q is large enough. This can be seen by an argument similar to the one 
used for (2.3). Therefore 0 is a center of type B and 8N0 = BE is the union of 
n - 1 = 2v + 2 orbits. 

To look for singular points in R 2 \£ we can replace (2.13) by 

(2.14) 2xP(x)y =q + tq2 + 2x2P2(x)]1/2 

and 7(x, y) = 0 by xX(x9 y) + y F(x, y) = 0, i.e., by 

(2.15) [xP'(x) + P(x)] y2 - x2P(x) = 0. 

By means of arguments similar to those used for (2.3) we see that both (2.14) 
and (2.15) are composed by 2v + 2 branches each. Each branch of (2.14) meets 
only one branch of (2.15) and only once, so the total number of intersections is 
n — 1 = 2v + 2 and they all must be centers of type B. $ ... 

III. 

The number of orbits contained into 8NS for a center S of type B of a polynomia 
system of degree n is ^ it + 1. To show this recall that given an algebraic curve C 
of order k in R2 represented by /(x, y) == 0, a point (x, y) is said to be a contact: 
point on C with the vector field (X, Y) if it is a solution of the system of algebraic 
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equations 

(3.1) /(*, y) = 0, fx(x, y) X(x, y) + fy(x9 y) Y(x, y) - 0, 

i.e., if either (x, j>) is a singular point of (X, Y) on C or the vector (X, Y) is tangent 
to C at (x, j/).. 

Now let S be a center of type JB for a polynomial system. Assume that dNs, 
contains fc^n + 2 orbits. Then we could take k points, one on each orbit, and 
a circle C large enough so as to contain all such points. Then C would be divided 
by the orbits of Nsinto 2k arcs at least, each containing a contact point, so that 
there would exist 2(n + 2) contact points at least on C. This contradicts the fact 
that, by BSzout's theorem applied to (3.1) if /(x, y) = 0 represents C the number 
of solutions of (3.1) cannot be greater than 2(n + 1) unless C is an orbit, which is 
not the case. 

Let us denote by Bn the class of all the polynomial systems (1.1) of a given degree 
n > 1 having a canter 6f type B, and let fe(n) be the maximum number in Bn of 
orbits c dNs. 

From what precedes and from the examples of Sec. 2 it follows 

(3.2) n - U k(n) ^ n + 1, n = 2, 3, ... 

For n = 2 we have 
fc(2) = 1. 

In fact, when n = 2, JV5 is a convex region (Cf. W. A. Coppel [2]), so if dN^ 
contained two orbits they ought to be two parallel straight lines, so that their 
union would be an isocline of the system and consequently it ought to contain 5. 

On the other hand I was unable to find examples of polynomial systems of degree 
n > 2 with a center S of type B and more than n — 1 orbits c 8NS. 

All these facts suggest the conjecture that (3.2) can be replaced by k(ri) = n — 1„ 
n « 2, 3 ... 

IV. 

The number of centers of type B for systems in the class Bn has a maximum bin)* 
obviously ^ n2. 

It can be shown (Cf. R. Conti [1]) that 

fc(2) = 2. ' 

The examples of Sec. 2 show that 

n ^ h(n), n = 2, 3 , . . . 

but, again. I was unable to find examples showing that b(ri) can be greater than n% 

so it seems reasonable to conjecture that b(ri) = n, n = 2, 3 , . . . 
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