Archivum Mathematicum

Erich Barvínek; Ivan Daler; Jan Franců
Convergence of sequences of inverse functions

Archivum Mathematicum, Vol. 27 (1991), No. 3-4, 201--204

Persistent URL: http://dml.cz/dmlcz/107422

Terms of use:

© Masaryk University, 1991
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

ARCHIVUM MATHEMATICUM (BRNO)

Tomus 27 (1991), 201-204

CONVERGENCE OF SEQUENCES OF INVERSE FUNCTIONS

Erich Barvínek, Ivan Daler, Jan Franců

(Received December 20, 1990)

ABSTRACT. The paper deals with a partial solution of the problem: given a convergence $f_{n} \rightarrow f_{0}$ of mappings, state conditions under which $f_{n}^{-1} \rightarrow f_{0}^{-1}$.

Notation. Let \mathbf{N} be the set of natural numbers. Let $f:(M, \varrho) \rightarrow(N, \sigma)$, $f_{n}:(M, \varrho) \rightarrow(N, \sigma)$ denote mappings of a metric space (M, ϱ) into a metric space (N, σ) for $n \in \mathbf{N} ; f_{n}$ loc $\rightrightarrows f$ means that f_{n} converges locally uniformly to f on M as $n \rightarrow \infty$, i.e. for each x of M, there is a sphere $\Omega(x, r)$ with centre x and radius $r>0$ such that f_{n} converges uniformly to f on $\Omega(x, r)$ i.e. $f_{n} \rightrightarrows f$ on $\Omega(x, r)$. By f^{-1} we denote the inverse mapping of f, provided f is an injection. Finally, if $M_{1} \subseteq M$, int M_{1} and \bar{M}_{1} denote the interior of M_{1} and the closure of M_{1}, respectively.

Main results

Theorem 1. Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of real injection functions defined on $\langle a, b\rangle \subseteq \cap_{n=1}^{\infty} \operatorname{Dom} f_{n}$. If the sequence converges uniformly to a function f_{0} on this interval, and if f_{0} is a continuous injection on $\langle a, b\rangle$ and $\langle\alpha, \beta\rangle \subseteq \cap_{k=0}^{\infty} f_{k}(\langle a, b\rangle)$, then $f_{n}^{-1} \Rightarrow f_{0}^{-1}$ on $\langle\alpha, \beta\rangle$.

Proof. Suppose that f_{0} is increasing on $\langle a, b\rangle$ and $\alpha=f_{0}(a), \beta<f_{0}(b)$. The proof in the cases when $\alpha>f_{0}(a), \beta=f_{0}(b)$ or $\alpha>f_{0}(a), \beta<f_{0}(b)$ or $\alpha=f_{0}(a)$, $\beta=f_{0}(b)$ is similar. Let $0<\varepsilon<\varepsilon_{0}=\min \left(f_{0}(b)-\beta, \beta-f_{0}(a)\right)$,

$$
g_{\varepsilon}(x)= \begin{cases}f_{0}^{-1}\left(f_{0}(x)-\varepsilon\right) & \text { for } x \in\left(f_{0}^{-1}(\alpha+\varepsilon), f_{0}^{-1}(\beta)\right\rangle \\ a & \text { for } x \in\left\langle f_{0}^{-1}(\alpha), f_{0}^{-1}(\alpha+\varepsilon)\right\rangle\end{cases}
$$

It is easy to see that the function g_{ε} is continuous on $J=\left\langle f_{0}^{-1}(\alpha), f_{0}^{-1}(\beta)\right\rangle$. We denote $\max \left(f_{0}^{-1}\left(f_{0}(x)+\varepsilon\right)-x, x-g_{\varepsilon}(x)\right)$ by $A(x, \varepsilon)$ for $x \in J, \varepsilon \in\left(0, \varepsilon_{0}\right)$ and define $A(\varepsilon)$ by $A(\varepsilon)=\max _{x \in J} A(x, \varepsilon)$. The function $A(\varepsilon)$ is non-negative and

[^0]nondecreasing on $\left(0, \varepsilon_{0}\right)$. Thus $\lim _{\varepsilon \rightarrow 0_{+}} A(\varepsilon)=\inf \left\{A(\varepsilon) \mid \varepsilon \in\left(0, \varepsilon_{0}\right)\right\} \geqq 0$. As f_{0}^{-1} is uniformly continuous on $\left\langle f_{0}(a), f_{0}(b)\right\rangle$ and $x-g_{\varepsilon}(x)=x-a \leqq f_{0}^{-1}(\alpha+\varepsilon)-a=$ $=f_{0}^{-1}(\alpha+\varepsilon)-f_{0}^{-1}(\alpha)$ holds for $x \in\left\langle f_{0}^{-1}(\alpha), f_{0}^{-1}(\alpha+\varepsilon)\right\rangle$, we can easily show that inf $\left\{A(\varepsilon) \mid \varepsilon \in\left(0, \varepsilon_{0}\right)\right\}=0$.

Let ε^{*} be an arbitrary but fixed positive number. Then there exist $\varepsilon>0$ such that $A(\varepsilon)<\varepsilon^{*}, \varepsilon<\varepsilon_{0}$ and a positive integer $n_{0}(\varepsilon)$ so that $f_{0}(x)-\varepsilon<f_{n}(x)<$ $<f_{0}(x)+\varepsilon$ whenever $n \geqq n_{0}$ for all x belonging to $\langle a, b\rangle$. Firstly we shall verify that $f_{0}^{-1}(y)-\varepsilon^{*}<f_{n}^{-1}(y)$ for every $n \geqq n_{0}$ and $y \in\langle\alpha, \beta\rangle$. Clearly, $f_{0}^{-1}(y)-\varepsilon^{*}<$ $<f_{0}^{-1}(y)-A(\bar{x}, \varepsilon)$ for $y \in\langle\alpha, \beta\rangle$, where \bar{x} is a point satisfying $\bar{x} \in J, f_{0}(\bar{x})=y$.

If $\bar{x} \in\left(f_{0}^{-1}(\alpha+\varepsilon), f_{0}^{-1}(\beta)\right\rangle$, we have $f_{0}^{-1}(y)-A(\bar{x}, \varepsilon) \leqq f_{0}^{-1}\left(f_{0}(\bar{x})-\varepsilon\right)=x_{1}$. Hence $y=f_{0}\left(x_{1}\right)+\varepsilon>f_{0}(x)+\varepsilon>f_{n}(x)$ for $x \in\left\langle a, x_{1}\right)$, which leads to the result $f_{n}^{-1}(y) \notin\left\langle a, x_{1}\right)$, i.e. $x_{1} \leqq f_{n}^{-1}(y)$.

If $\bar{x} \in\left\langle f_{0}^{-1}(\alpha), f_{0}^{-1}(\alpha+\varepsilon)\right\rangle$ we get $f_{0}^{-1}(y)-A(\bar{x}, \varepsilon) \leqq \bar{x}-(\bar{x}-a)=a \leqq f_{n}^{-1}(y)$. Analogically we can deduce the inequalities $f_{0}^{-1}(y)+\varepsilon^{*}>f_{0}^{-1}\left(f_{0}(\bar{x})+\varepsilon\right)=x_{2} \geqq$ $\geqq f_{n}^{-1}(y)$. This implies that $f_{n}^{-1} \rightrightarrows f_{0}^{-1}$ on $\langle\alpha, \beta\rangle$.

By the same way we should prove the assertion of the theorem for any decreasing function f_{0} on $\langle a, b\rangle$.

Example. Consider the nonincreasing sequence $\{n(\sqrt[n]{x}-1)\}_{n=1}^{\infty}$ of the increasing continuous functions on $\langle 1, \infty)$. Evidently $\lim _{n \rightarrow \infty} n(\sqrt[n]{x}-1)=\ln x$ on every closed interval $\langle 1, b\rangle$, where $b>1$. Applying Theorem 1 to this sequence we obtain that $\left(1+\frac{x}{n}\right)^{n} \rightrightarrows e^{x}$ on $\langle 0, \ln b\rangle \cap \cap_{n=1}^{\infty}\langle 0, n(\sqrt[n]{b}-1)\rangle=\langle 0, \ln b\rangle$.

Further we shall formulate the result of Theorem 1 in metric spaces.
Theorem 2. If $\left\{f_{n}\right\}_{n=0}^{\infty}$ is a sequence of injection mappings on a metric space (M, ϱ) and taking values in a locally compact metric space $(N, \sigma), f_{n} \rightrightarrows f_{0}$ on M, and if f_{0}^{-1} is a continuous mapping on $N_{1} \subseteq N$, then $f_{n}^{-1} \rightrightarrows f_{0}^{-1}$ on every compact set K_{0} contained in $N_{0}=\operatorname{int} N_{1} \cap \cap_{n=1}^{\infty} \operatorname{Im} f_{n}$.

Proof. Let K_{0} be a compact subset of N_{0} and K_{1} a compact set such that $K_{0} \subseteq$ \subseteq int $K_{1} \subseteq K_{1} \subseteq$ int N_{1}, then

$$
\begin{equation*}
\sigma\left(K_{0}, \overline{N-K_{1}}\right)=\Delta>0 \tag{1}
\end{equation*}
$$

(Since N is locally compact, $K_{0} \subseteq \operatorname{int} N_{1}$, int N_{1} is open, the existence of K_{1} is warranted.)

We shall show that for every positive value of ε, there exists a natural number n_{0} such that $\varrho\left(f_{n}^{-1}(y), f_{0}^{-1}(y)\right)<\varepsilon$, whenever $n \geqq n_{0}$, for all points y of K_{0}.

The mapping f_{0}^{-1} is continuous on the compact set $K_{1} \subseteq N_{1}$ and therefore it is uniformly continuous. Thus, for any fixed $\varepsilon>0$ we can find a number $\delta>0$ such that

$$
\begin{equation*}
\sigma\left(y_{1}, y_{2}\right) \delta \Rightarrow \varrho\left(f_{0}^{-1}\left(y_{1}\right), f_{0}^{-1}\left(y_{2}\right)\right)<\varepsilon \tag{2}
\end{equation*}
$$

whenever $y_{1}, y_{2} \in K_{1}$. The sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ converges uniformly to f_{0} on M, therefore, for $\delta_{0}=\min (\delta, \Delta)$, there is a positive integer n_{0} such that

$$
\begin{equation*}
\sigma\left(f_{n}(x), f_{0}(x)\right)<\delta_{0} \forall n \geqq n_{0}, \forall x \in M \tag{3}
\end{equation*}
$$

Let $y \in K_{0}, n \geqq n_{0}$ and $x_{n}=f_{n}^{-1}(y), y_{n}=f_{0}\left(x_{n}\right)$. From (3), with $x=x_{n}$, we get $\sigma\left(f_{n}\left(x_{n}\right), f_{0}\left(x_{n}\right)\right)<\delta_{0}$. Since $f_{n}\left(x_{n}\right)=y, f_{0}\left(x_{n}\right)=y_{n}$ and at the same time from (1) it follows $y_{n} \in K_{1}$, the assumptions of (2) are satisfied. The inequality $\varrho\left(f_{0}^{-1}\left(y_{n}\right), f_{0}^{-1}(y)\right)<\varepsilon$ completes the proof because $f_{0}^{-1}\left(y_{n}\right)=x_{n}=f_{n}^{-1}(y)$ is true.

Note. Theorem 1 seems to be a special case of Theorem 2. Nevertheless the authors decided to present this result because it was proved by using a different technique and besides it can give a "richer" domain of a convergence ($f_{0}(\langle a, b\rangle) \bigcap_{k=1}$ $\infty f_{k}(\langle a, b\rangle)$) than the assertion of Theorem 2 (int $N_{1} \cap \cap_{n=1}^{\infty} \operatorname{Im} f_{n}$ and int $N_{1} \subseteq$ $\left.\subseteq f_{0}(M) \subseteq N\right)$.

Corollary 1. If $f_{n}: M \rightarrow N, n=1,2, \ldots$ are bijection mappings of a compact metric space (M, ϱ) onto a metric space (N, ϱ) and f_{0} is a continuous mapping, $f_{n} \rightrightarrows f_{0}$ on M, then $f_{n}^{-1 \infty}{ }_{n=1}^{\infty}$ converges uniformly to f_{0}^{-1} on N.

Proof. The fact that the continuous bijection f_{0} is defined on the compact metric space (M, ϱ) means that f_{0} is a homeomorphism and (N, ϱ) is a compact. The assumption of Theorem 2 are fulfilled. Put $\operatorname{Im} f_{n}=N_{1}=K_{0}=N_{0}=N$.

We can also obtain Corollary 1 from [2].
Theorem 3. If $f_{n}:(M, \varrho) \rightarrow(N, \sigma), n=1,2, \ldots$ are injections, and if there exists a constant $\gamma>0$ such that the condition $\gamma \varrho\left(x_{1}, x_{2}\right) \leqq \sigma\left(f_{0}\left(x_{1}\right), f_{0}\left(x_{2}\right)\right)$ holds for every pair of points x_{1} and x_{2} of M, then from $\bar{f}_{n} \rightrightarrows f_{0}$ it follows $f_{n}^{-1} \rightrightarrows f_{n}^{-1}$ on $Y=\cap_{n=0}^{\infty} \operatorname{Im} f_{n}$

Proof. Let $y \in Y, f_{0}^{-1}(y)=x, f_{n}^{-1}(y)=x_{n}$. Then we have $\varrho\left(f_{0}^{-1}(y), f_{n}^{-1}(y)\right)=$ $=\varrho\left(x, x_{n}\right) \leqq \frac{1}{\gamma} \sigma\left(f_{0}(x), f_{0}\left(x_{n}\right)\right)=\frac{1}{\gamma} \sigma\left(f_{n}\left(x_{n}\right), f_{0}\left(x_{n}\right)\right)$. Taking into account the assumption $f_{n} \rightrightarrows f_{0}$ as $n \rightarrow \infty$, we obtain $f_{n}^{-1} \rightrightarrows f_{0}^{-1}$ on Y. Indeed, for every $\varepsilon>0$, we can find $n_{0} \in \mathrm{~N}$ such that $\sigma\left(f_{n}(x), f_{0}(x)\right)<\varepsilon \gamma$, where $n \geqq n_{0}, x \in M$. Hence $\varrho\left(f_{n}^{-1}(y), f_{0}^{-1}(y)\right)<\varepsilon$ holds for each point y of Y.

Corollary 2. Assume that $f_{n}:(M, \varrho) \rightarrow(M, \sigma), n=0,1,2, \ldots$ are bijections and there exist positive constants $\gamma \leqq \Gamma$ satisfying the condition $\gamma \varrho\left(x_{1}, x_{2}\right) \leqq$ $\leqq \sigma\left(f_{0}\left(x_{1}\right), f_{0}\left(x_{2}\right)\right) \leqq \Gamma \varrho\left(x_{1}, x_{2}\right)$ for $x_{1} \in M$ and $x_{2} \in M$. Then $f_{n} \Rightarrow f_{0}$ on M iff $f_{n}^{-1} \rightrightarrows f_{0}^{-1}$ on N.

In the following theorem let's look on our problem from another point of view.

Theorem 4. If $f_{n}, n=1,2, \ldots$ are one-to-one mappings of (M, ϱ) onto (N, σ), $\left\{f_{n}\right\}_{n=1}^{\infty}$ and $\left\{f_{n}^{-1}\right\}_{n=1}^{\infty}$ converge locally uniformly to f and g, respectively; where $f: M \rightarrow N, g: N \rightarrow M$ are continuous, then the mappings f, g are both bijections and $f=g^{-1}$.

Proof. Let $\varepsilon>0$ be an arbitrary but fixed number and x a point of M. From $f_{n}^{-1} \stackrel{\text { loc }}{\rightrightarrows} g$ it follows that for $f(x) \in M$ and $\varepsilon / 2$, there are $r>0$ and a positive integer n_{1} so that

$$
\begin{equation*}
\sigma(y, f(x))<r=>\varrho\left(g(y) f_{n}^{-1}(y)\right)<\varepsilon / 2 \tag{4}
\end{equation*}
$$

whenever $n \geqq n_{1}, y \in N$.
The mapping g is continuous at the point $f(x)$ of N. Therefore for $\varepsilon / 2$, there exists $0<\delta \leqq r$ such that

$$
\begin{equation*}
\sigma(y, f(x))<\delta \Rightarrow \varrho(g(y), g(f(x)))<\varepsilon / 2 \tag{5}
\end{equation*}
$$

where $y \in N$.
Further, because $f_{n}(x) \rightarrow f(x)$, for $\delta>0$ we can find a natural number $n_{2}(\delta)$ such that $\sigma\left(f_{n}(x), f(x)\right)<\delta$ whenever $n \geqq n_{2}$. Thus, we have $\sigma\left(f_{n}(x), f(x)\right)<$ $<\delta$ for every $n \geqq \max \left(n_{1}, n_{2}\right)$ and by using (4), (5) we obtain $\varrho(g(f(x)), x) \leqq$ $\leqq \varrho\left(g(f(x)), g\left(f_{n}(x)\right)\right)+\varrho\left(g\left(f_{n}(x)\right), f_{n}^{-1}\left(f_{n}(x)\right)\right)<\varepsilon$. Make $\varepsilon \rightarrow 0_{+}$; then $\varrho(g(f(x)), x)=0$, i.e. $g(f(x))=x$ for all x belonging to M.

In view of the symmetry properties of the assumptions, we can also prove $f(g(y))=y$ for every $y \in N$. Evidently, f and g are both bijections and $f=g^{-1}$. The proof of the theorem is finished.

References

[1] Melzak, Z. A., On the exponencial function, Amer. Math. Monthly, vol 82, 1975, 842-844.
[2] Waterhouse, William, C., Uniform Convergence and Graph Convergence, Classroom Notes, October 1976, 641-643.
[3] French, A. P., The integral definition of the Logarithm and the logarithmic series, Amer. Math. Monthly, vol 85, 1978, 580-582.

Erich Barvínek

Department of Mathematics
Faculty of Science, Masaryk University
Janáčkovo nám. 2A'
66295 Brno, Czechoslovakia
Ivan Daler
AIr traffic control research department
Smetanova 19
60200 Brno, Czechoslovakia
Jan Francú
Department of Mathematics
FS VUT
Technickí 2
61669 Brno, Czechoslovakia

[^0]: 1991 Mathematics Subject Classification: 40A30, 54E45.
 Key words and phrases: aproximation of inverse functions.

