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CONVERGENCE OF SEQUENCES OF I N V E R S E FUNCTIONS 

ERICH BARvfNEK, IVAN DALER, JAN FRANCU 

(Received December 20, 1990) 

ABSTRACT. The paper deals with a partial solution of the problem: given a conver­
gence fn —• /o of mappings, state conditions under which f„x —• f^1. 

Notation. Let N be the set of natural numbers. Let / : (M, g) —• (N, <r), 
fn : (My g) —> (N, c) denote mappings of a metric space (M, g) into a metric 
space (N, a) for n £ N;/n loc : 4 / means that fn converges locally uniformly to 
/ on M as n —• oo, i.e. for each x of M, there is a sphere ft(x, r) with centre x 
and radius r > 0 such that fn converges uniformly to / on Q(x, r) i.e. fn z3 / on 
£2(x,r). By / - 1 we denote the inverse mapping of / , provided / is an injection. 
Finally, if Mi C M, int Mi and Mi denote the interior of Mi and the closure of 
Mi, respectively. 

MAIN RESULTS 

Theorem 1. Let {/n}^.-i be a sequence of real injection functions defined on 
(a, 6) C D£Li Dom fn. If the sequence converges uniformly to a function f0 on this 
interval, and if fo is a continuous injection on (a, 6) and (a, (3) C n£L0/* ((a>^))> 
then Z"1 r.4 ZT1 on (a,/?). 

Proof. Suppose that /o is increasing on (a, b) and a = /o(a), P < fo(b). The proof 
in the cases when a > /o(a), /? = f0(b) or a > /o(a), /? < fo(b) or a = /o(a), 
/J = /0(&) is similar. Let 0 < e < e0 = min(/0(6) - 0, ft - /o(<*)), 

.»«(*) = { /0-Ҷ/o(«) - e) for x Є (fõl(c + e), fõHß)), 

а t<я*€(fïl{а),fïl{а + є)). 

It is easy to see that the function ge is continuous on J = (/0"
1(ar), /oT1(r^))-

We denote m a x ( / ^ 1 ( / 0 ( x ) + e) - x,x - £/c(ar)) by -4(x,6:) for a: € J,e € (0,£o) 
and define A(e) by -4(e) = max A(xye). The function .A(e) is non-negative and 

a?€J 
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nondecreasing on (0,£o). Thus lim A(e) ~ i n f {-4(e)|£ G (0,eo)} ^ 0. As f0
l is 

£ - 0 + 
uniformly continuous on (/o(a), /o(6)) and x - ge(x) = x ~ a ^ / 0

1 ( a + e) — a = 
= / ( ^ ( a + £)"" / o " 1 ^ ) h°lds for x € ( / ^ ( a ) , /o^v** + e))> w e c a i- easily show 
thatinf {A(e)\e € (0,£0)} = 0. 

Let e* be an arbitrary but fixed positive number. Then there exist e > 0 such 
that A(e) < e*,e < e0 and a positive integer n0(e) so that f0(x) — e < fn(x) < 
< f0(x) + e whenever n ^ no for all x belonging to (a, 6). Firstly we shall verify 
that f0

l(y) - e* < f„l(y) f o r e v e r y n _ n0 and y € (a, /?). Clearly, f0
x(y) - e* < 

< f0
X(y) - A(x,e) for y 6 (a,/?), where x is a point satisfying x £ J , / 0 (x) = y. 

If x 6 (/o-^o + e ) , / , , - 1 ^) ) , we have f0\y) - A(x,e) = f0\f0(x) - e) = xx . 
Hence y = / 0 (x i ) + e > /o(x) + e > fn(x) for x G (a, xi), which leads to the result 

If x G ( /o-^oj . /o-^a + c)) ^ get / ^ M - A O M ) ^ * - ( « - a ) = a g / " - ( y ) . 
Analogically we can deduce the inequalities f0

 l(y) + £* > / 0
 1 ( / 0 (x) + e) = X2 ^ 

= /» H?)- This implies that / - 1 =t /Q"1 on (a,/?). 
By the same way we should prove the assertion of the theorem for any decreasing 

function f0 on (a, 6). • 

Example. Consider the nonincreasing sequence {n( y/x — l)},?Li of the increasing 
continuous functions on (l ,oo). Evidently lim n(y/x — 1) = lnx on every closed 

n—*oo 
interval (1,6), where 6 > 1. Applying Theorem 1 to this sequence we obtain that 
(1 + £)» z} e* on (0,ln6) n n ~ = 1 ( 0 , n ( ^ - 1)) = (0,ln6). 

n 

Further we shall formulate the result of Theorem 1 in metric spaces. 

Theorem 2. If {/n}^.-0
 , s a sequence of injection mappings on a metric space 

(My Q) and taking values in a locally compact metric space (N, <r), fn =3 /o on 
M} and if f0

l is a continuous mapping on N\ C N, then f~x =$ f0
l on every 

compact set K0 contained in N0 = int N\ D D^L^m fn. 

Proof Let K0 be a compact subset of N0 and K\ a compact set such that K0 C 
C int K\C K\ C int N\, then 

(1) <r(KOyN-K\) = A>0. 

(Since N is locally compact, Ko C int Ni,int Ni is open, the existence of K\ is 
warranted.) 

We shall show that for every positive value of e, there exists a natural number 
no such that Q(fn

1(y)yf0
1(y)) < c> whenever n^n0t for all points y of Ko* 

The mapping f0
l is continuous on the compact set K\ C Ni and therefore it is 

uniformly continuous. Thus, for any fixed e > 0 w e can find a number 6 > 0 such 
that 

(2) *(yi,y2)« = > e(foHyi)JoHy*)) < * 
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whenever yi,y2 E K\. The sequence {/nJJTLi converges uniformly to f0 on M, 
therefore, for 60 = min(6, A), there is a positive integer no such that 

(3) *(/„(*),/o(*)) < « o V n ^ n0, V* € M. 

Let y E K0} n ^ n0 and xn = fn
x(y)y yn = /o(*n). From (3), with x = arn, we 

get 0-(/n(xn),/o(xn)) < 60. Since /n(arn) = y, / 0 (x n ) = yn and at the same time 
from (1) it follows yn E K\} the assumptions of (2) are satisfied. The inequality 
Q(f0

l(yn)> f0
X(y)) < e completes the proof because f0

l(yn) = xn = / n
x ( y ) i s 

true. • 

Note. Theorem 1 seems to be a special case of Theorem 2. Nevertheless the au­
thors decided to present this result because it was proved by using a different tech­
nique and besides it can give a "richer" domain of a convergence (f0((a} b)) (V-=i 
°°/*({<*, 6))) than the assertion of Theorem 2 (int Ni DH^^Imfn and int Ni C 
C /o(M) C N). 

Corollary 1. If fn : M —• N, n = 1,2,... are bijection mappings of a compact 
metric space (M, Q) onto a metric space (N, Q) and f0 is a continuous mappingy 

fn =4 / 0 on M, then fn
l
n
<>

=:l converges uniformly to f0
l on N. 

Proof The fact that the continuous bijection f0 is defined on the compact metric 
space (M, Q) means that f0 is a homeomorphism and (N, Q) is a compact. The 
assumption of Theorem 2 are fulfilled. Put Imfn = Ni = K0 = N0 = N. D 

We can also obtain Corollary 1 from [2]. 

Theorem 3. If fn : (M}Q) -+ (N,<r)> n = 1,2,... are injections, and if there 
exists a constant y > 0 such that the condition JQ(X\}X2) 5: <r(f0(xi)}f0(x2)) 
holds for every pair of points x\ and x2 of M, then from fn =3 /o it follows 
f^^f^onY^n^0Imfn 

Proof Let y 6 Y, f0\y) = x, f^(y) = xn. Then we have Q(f0
l(y)Jn

l(y)) -

= e(*>*n) ^ -<fo(*) , /o(*n)) = -<r(/n(xn) , /0(xn)) . Taking into account the 
7 7* 

assumption fn =1 /o as n -> oo, we obtain /"* =t /J" on y . Indeed, for every 
£ > 0, we can find n0 E N such that <r(fn(x)} f0(x)) < ey} where n ^ n0, ar € M. 
Hence Q(f~l(y), f0

l(y)) < e holds for each point y of Y. D 

Corollary 2. Assume that / n : (M}Q) -» (M,(T) , n = 0 ,1 ,2 , . . . are bisections 
and there exist positive constants y ^ T satisfying the condition 7f(21,22) ^ 
^ *(/o(*i), fo(x2)) ^ r,p(a:i, «2) for x\ € M and z 2 6 M. Tien / n =4 UeaMiff 
f-l=tfilanN. • 1 

In the following theorem let's look on our problem from another point of vi&W. 
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Theorem 4. If fn, n = 1 ,2 , . . . are one-to-one mappings of (M, Q) onto (N, <r), 
{ / n } ^ ! anc* {fn 1)<n=i converge locally uniformly to f and g, respectively, where 
f : 14 -+ N, g \ N -* M are continuous, then the mappings / , g are both bisections 
andf = 9~l-

Proof* Let e > 0 be an arbitrary but fixed number and x a point of M. From 
loc 

f~i r=t p it follows that for f(x) 6 M and e/2, there are r > 0 and a positive 
integer n\ so that 

(4) *(yt f(x)) < r = > g(g(y)fn
1(y)) < e/2 

whenever n ^ m , y € N. 
The mapping # is continuous at the point f(x) of N. Therefore for e/2, there 

exists 0 < 6 ^ r such that 

(5) <x(y, / (*)) < 6 = > e(g(y)) g(f(x))) < e/2 , 

where y € N. 
Further, because /n(#) —* /(#)> for 6 > 0 we can find a natural number n2(£) 

such that <r(fn(x), f(x)) < 6 whenever n ^ ri2. Thus, we have <r(fn(x),f(x)) < 
< S for every n ^ max(ni,H2) and by using (4), (5) we obtain g(g(f(x)),x) ^ 
$ Q(9(f(x))ig(fn(x))) -r- Q(g(fn(x)),fn

1(fn(x))) < e. Make e - 0+, then 
Q(9(f(x))ix) = 0) i-e- 9(f(x)) = * f° r aU x belonging to M. 

In view of the symmetry properties of the assumptions, we can also prove 
f(9(y)) = y f° r every y € N. Evidently, / and y are both bijections and / = g~~l. 
The proof of the theorem is finished. D 
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