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ABSTRACT. The paper deals with a partial solution of the problem: given a conver-
. s . -1 -1
gence fn — fo of mappings, state conditions under which f;" — f5™°.

Notation. Let N be the set of natural numbers. Let f : (M,¢) — (N,0),
n : (M,0) — (N,0) denote mappings of a metric space (M, p) into a metric
space (N, o) for n € N;f,loc 3f means that f, converges locally uniformly to
fon M asn — oo, i.e. for each z of M, there is a sphere Q(z, r) with centre z
and radius r > 0 such that f, converges uniformly to f on Q(z,r) i.e. fu =3 f on
Q(z,r). By f~! we denote the inverse mapping of f, provided f is an injection.
Finally, if M; C M, int M; and M, denote the interior of M; and the closure of
M, respectively.

MAIN RESULTS

Theorem 1. Let {f,}.., be a sequence of real injection functions defined on
(a,8) € Ny Dom fy,. If the sequence convetges uniformly to a function fo on this
interval, and if fo is a continuous injection on (a,b) and (a, 8) C N>y fi ({(a,b)),

then f71 =3 f! on (e, B).

Proof. Suppose that f is increasing on (a, b) and a = fo(a), 8 < fo(b). The proof
in the cases when a > fo(a), B = fo(b) or a > fo(a), B < fo(b) or @ = fo(a),
B = fo(b) is similar. Let 0 < € < €9 = min(fo(b) — B, B — fo(a)),

(z) = { 55 (fo(z) —¢) forz € (f7 (a+e), f5 (),
8= for z € (7 (a), f7 (e +)).
It is easy to see that the function g, is continuous on J = (fy!(a), fy 1(9)).

We denote max(f; ' (fo(z) + €) — 2,z — ge(2)) by A(z,¢) for z € J,¢ € (0,¢0)
and define A(e) by A(e) = max A(z,¢€). The function A(e) is non-negativejand
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nondecreasing on (0, o). Thus hm A(e) =inf {A(e)le € (0,£0)} 2 0. As f;!

umformly continuous on (fo(a), fo(b)) and a: —g(z)=z—aS fyl(a+e)—a=
= fo'(a +¢€) = f7(a) holds for z € (fy'(a), fy (e + ¢€)), we can easily show
that inf {A(¢)|e € (0,€0)} = 0.

Let €* be an arbitrary but fixed positive number. Then there exist € > 0 such
that A(e) < €*,e < €o and a positive integer no(€) so that fo(z) — ¢ < fa(z) <
< fo(z) + € whenever n 2 ng for all z belonging to {a,b). Firstly we shall verify
that fy!(y) —e* < f7 (y) for every n > ng and y € (a, B). Clearly, fy'(y)—¢* <
< f71(y) = A(%,¢) for y € (a, B), where Z is a point satisfying Z € J, fo(Z) = y.

If 2 € (f5 ' (a +¢€), f5'(B)), we have f7'(y) — A(Z,€) £ f5 ' (fo(2) — €) = 2.
Hence y = fo(z1) +¢€ > fo(z)+€ > fa(z) for z € (a,z1), which leads to the result
fn_l(y) ¢ (aazl)’ Le. 1‘1 _S_ fn_l(y)

112 € (/52 (2), 5 (0-+€)) e get f(0) ~ 4(2,6) S 2~ (2 -) = a < [7).
Analogically we can deduce the mequalntnes Xy +¢e* > 57 fo(2) + e) =z72
2 f7'(y)- This implies that f;! =3 f;! on (e, 8).

By the same way we should prove the assertion of the theorem for any decreasing
function fo on (a,b). O

Example. Consider the nonincreasing sequence {n({/z —1)}3%, of the increasing
continuous functions on (1,00). Evidently lim n(3{/z — 1) = Inz on every closed
n—o00

mterval (1,5), where b > 1. Applying Theorem 1 to this sequence we obtain that
1+ )" =t e on (0,Inb) NN, (0, n(¥b — 1)) = (0,Inb).

Further we shall formulate the result of Theorem 1 in metric spaces.

Theorem 2. If {f,}.>, is a sequence of injection mappings on a metric space
(M, ) and takmg values in a locally compact metric space (N o), f,. =3 fo on
M, and if f;! is a continuous mapping on Ny C N, then f;! = fy'! on every
compact set Ko contained in Ny = int Ny NN Im f,.

Proof. Let Ky be a compact subset of Ny and K; a compact set such that Ko
Cint K;.C K; Cint Ny, then

1) " o(Ko,N=K)=A>0.

(Since N is locally compact, Ko C int Ny,int N; is open, the existence of K is
warranted.)

We shall show that for every positive value of ¢, there exists a natural number
ng such that o(f71(y), f5'(¥)) < €, whenever n 2 ny, for all points y of Ko.

The mapping f; ' is continuous on the compact set K; C N and therefore it is
uniformly continuous. Thus, for any fixed € > 0 we can find a number § > 0 such
that

2 o(y1,12)8 => o(f5 (), f5' (w2)) < €
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whenever y;,y2 € Ki1. The sequence {f,}3%, converges uniformly to fo on M,
therefore, for 6o = min(6, A), there is a posmve integer ng such that

3) o(fa(z), fo(z)) < 6o Yn 2 ng, Yz € M.

Let y € Ko, n 2 no and z,, = I7Y(), yn = fo(zn). From (3), with z = z,, we
get o(fn(zn), fo(zn)) < bo. Since fa(zn) = ¥, fo(zn) = yn and at the same time
from (1) it follows y, € K, the assumptions of (2) are satisfied. The inequality

o(f5 1 (yn), £ (y)) < € completes the proof because fo‘l(yn) =z, = f7l(y) is
true. O

Note. Theorem 1 seems to be a special case of Theorem 2. Nevertheless the au-
thors decided to present this result because it was proved by using a different tech-
nique and besides it can give a “richer” domain of a convergence (fo({a, b)) k=1
oo fr({a, b))) than the assertion of Theorem 2 (int Ny NNS%,Im f, and int Ny C
C fo(M) C N).

Corollary 1. If f, : M — N, n=1,2,... are bijection mappings of a compact
metric space (M, g) onto a metric space (N, ¢) and fy is a continuous mapping,
fn =3 fo on M, then f7'7°_, converges uniformly to f5 1onN.

Proof. The fact that the continuous bijection fg is defined on the compact metric
space (M, ¢) means that fo is a homeomorphism and (N, g) is a compact. The
assumption of Theorem 2 are fulfilled. Put Imf, = Ny=Ko=No=N. O

We can also obtain Corollary 1 from [2].

Theorem 3. If f, : (M,9) — (N,0), n = 1,2,... are injections, and if there
exists a constant ¥ > 0 such that the condition ve(z1,2z2) S o(fo(z1), fo(z2))
holds for every pair of points z, and z, of M, then from f, =3 fo it follows
f;l 3fr; onY = nn—o Im fn

Proof. Let y €Y, fo'(y) = =, f7'(y) = zn. Then we have o(f7t W), ) =
= o(z,z,) £ —a(fo(z) fo(zn)) = —a(f,,(a:,.) fo(zs)). Teking into account the
assumption f, ::t fo as n — oo, we obtam 71 =3 f3! on Y. Indeed, for every

€ > 0, we can find ng € N such that o(fn(z), fo(z)) < €7, where n 2 no, z € M.
Hence o(f71(y), 5 (¥)) < € holds for each point y of Y. O

Corollary 2. Assume that f, : (M,9) — (M,0), n =0,1,2,... are bijections
and there exist positive constants vy < T satisfying the condition ve(z1,22) £
< a-(fo(:cl) fo(z2)) S To(z1, z2) for z; € M- and z3 € M. Then fa :t fo on. M Jﬂ'
f,. = f0 on N.

In the following theorem let’s look on our problem from another point of 'vi‘ew. »
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Theorem 4. If f,, n = 1,2,... are one-to-one mappings of (M, g) onto (N, o),
{fn)}oZ1 and { f71}%, converge locally uniformly to f and g, respectively, where
f:M— N,g:N — M are continuous, then the mappings f, g are both bijections
and f = 9'1

Proof. Let € > 0 be an arbitrary but fixed number and z a point of M. From

loc
f71 3 g it follows that for f(z) € M and ¢/2, there are r > 0 and a positive
integer n1 so that

() a(y, f(z)) < => o(9(y) 7' (¥)) < €/2

whenever n 2 ny, y € N.
The mapping g is continuous at the point f(z) of N. Therefore for £/2, there
exists 0 < § < r such that

(5) oy, f(z)) <6=>e(9(y),9(f(2))) < €/2,

where y € N.

Further, because fp(z) — f(z), for § > 0 we can find a natural number n2(6)
such that ¢(fa(z), f(z)) < 6 whenever n 2 ny. Thus, we have o(fa(2), f(z)) <
< 6 for every n 2 max(ny,n2) and by using (4), (5) we obtain ¢(g(f(z)),z) £
S o(9(f(2)),9(fa (@) + 0(9(fa(2)), f71(fa(2)) < €. Make € — 04, then
0(9(f(2)),z) =0, i.e. g(f(z)) = z for all  belonging to M.

In view of the symmetry properties of the assumptions, we can also prove
f(g(y)) = y for every y € N. Evidently, f and g are both bijections and f = g~!.
The proof of the theorem is finished. O
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