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ARCHIVUM MATHEMATICUM (BRNO)Tomus 29 (1993), 1 { 4CONTINUITY OF MONOTONE FUNCTIONSBoris Lavri�cAbstract. It is shown that a monotone function acting between euclidean spacesRn andRm is continuous almost everywhere with respect to the Lebesgue measureon Rn.As well known the set of all points of discontinuity of a real monotone functionis at most countable. The paper deals with the set of all discontinuity points ofa monotone function acting between euclidean spaces. We shall be concerned inorder theoretic monotonicity, so let us agree that � denotes the componentwiseordering of Rk (x � y means xi � yi for i = 1; 2; � � � ; k). If a; b 2 Rk, a � b, theset [a; b] = fx 2 Rk : a � x � bg will be called a k-cell.Let A be a nonempty subset of Rn. Then A is said to be solid , if a; b 2 A anda � x � b implies x 2 A. The smallest solid set containing A is called the solidcover of A and equalsS(A) = fx 2 Rn : a � x � b for some a; b 2 Ag:A function f : A �! R is said to be nondecreasing (respectively nonincreasing) ifx; y 2 A; x � y =) f(x) � f(y) ( respectively f(y) � f(x)):A function g = (g1; � � � ; gm) : A �! Rm is called monotone if each of its compo-nents gi : A �! R is either nondecreasing or nonincreasing.The set D of all points of discontinuity of a monotone function f : A �! Rmis not necessarily countable if n > 1. By way of example take the characteristicfunction hC : Rn �! R of the cone C = fx 2 Rn : x � 0g. However, D remainssmall also for n > 1.We need �rst a property of solid subsets of Rn.1991 Mathematics Subject Classi�cation : 26B05, 26B15.Key words and phrases: order monotone functions on euclidean spaces, solid set, solid cover,continuity, Lebesgue measure.Received June 11, 1990. 1



2 BORIS LAVRI�CProposition. The boundary of a solid subset of Rn is of Lebesgue measure zero.Proof. Let A be a solid subset of Rn. Denote by K the interior of the coneC = fx 2 Rn : x � 0g, setA� = fx 2 cl(A) : A \ (x�K) = ;g;A+ = fx 2 cl(A) : A \ (x+K) = ;g;and note that A�; A+ are closed subsets of the boundary bd(A) of A. We claimthat bd(A) = A�[A+. By way of contradiction suppose x 2 bd(A)n (A�[A+).Then there exists elements y; z 2 A such that y 2 x � K, z 2 x + K, hence xis an interior point of the n-cell [y; z] which is contained in A. This contradictsx 2 bd(A), therefore bd(A) � A� [A+ and the claim follows.Thus, we have to prove that A� and A+ are of Lebesgue measure zero. To thisend suppose that A� is nonempty, note that(1) y 62 (x�K) [ (x+K) for all x; y 2 A�;and denote by P the orthogonal projection of Rn onto the subspace E = fx 2Rn : x1 + x2 + � � �+ xn = 0g. Since by (1) P is injective on A�, there exists afunction h : P (A�) �! R such thatA� = fu+ h(u)e : u 2 P (A�); e = (1; 1; � � � ; 1)g:An easy computation shows that (1) impliesjh(u)� h(v)j � ku� vk1; u; v 2 P (A�);hence h is continuous. It follows that A� and similarly A+ is of Lebesgue measurezero, as desired. �Corollary. Every bounded solid subset of Rn is Jordan measurable.Proof. It is well known (see for example [ 1 ]) that a subset A of Rn is Jordanmeasurable if and only if A is bounded and bd(A) is of Lebesgue measure zero.�We are now in a position to prove our main result.Theorem. Let A be a nonempty subset of Rn and let f : A �! Rm be amonotone function. Then the set of all points of discontinuity of f is of Lebesguemeasure zero.Proof. The components fi of f = (f1; f2; � � � ; fm) are real-valued monotone func-tions, f is continuous at x 2 A if and only if all fi are continuous at x, hence itsu�ces to prove the theorem for m = 1. Furthermore, f can be extended on thesolid cover S(A) of A bybf (z) = supff(x) : x 2 A; : x � zg; z 2 S(A);



CONTINUITY OF MONOTONE FUNCTIONS 3so we may suppose that A is solid. Finally, since int(A) is a countable union of n-cells, we may assume by Proposition and by a homothetic argument that A = [0; e],e = (1; � � � ; 1), and that f : [0; e] �! R is nondecreasing.For every x 2 U = int([0; e]) setg(x) = infff(x + te) � f(x� te); 0 < t 2 Rg:Observe that for su�ciently small s > 0 f maps the neighborhood [x�se; x+se] �[0; e] of x into the real interval [f(x� se); f(x+ se)] containing f(x). Therefore fis continuous at x if and only if g(x) = 0. PutDk = fx 2 U : g(x) � 1kg; k = 1; 2; � � � ;and note that the set D of all discontinuity points of f satis�es D \ U = Sk2NDk.Thus, we have to prove that each Dk is of Lebesgue measure zero.We claim that Dk = cl(Dk) \ U . Take any x 2 U n Dk, and pick s > 0 suchthat [x� se; x+ se] � [0; e]; f(x + se) � f(x � se) < 1k :Note that every y 2 [x� (s=2)e; x+ (s=2)e] satis�es[y � s2e; y + s2e] � [x� se; x + se];hence g(y) � f(y + (s=2)e) � f(y � (s=2)e) < 1=k, and so y =2 Dk. Therefore,[x� s2e; x+ s2e] \Dk = ;;and the claim follows.Assume now that Dk is nonempty and let � > 0. For each �xed x 2 [0; e]consider the real function h : t 7�! f(x+ te). Since h is nondecreasing and jumpsfor at least 1=k at every t satisfying x + te 2 Dk, the set Dk \ (x +Re) contains�nitely many elements or it is empty.Remove from the line x+Re �nitely many disjoint relatively open intervals ofcommon length less than � and containing cl(Dk)\ (x+Re). Denote by R(x) theremaining set, observe that d = dist(R(x); Dk) > 0 and putT (x) = fy 2 Rn : dist(y; x+Re) < dg:From the open covering fT (x) : x 2 [0; e]g of [0; e] extract a �nite subcoveringfTi = T (xi) : i = 1; � � � ; pg. Accept T0 = ; and setUi = Ti n[j<iTj; E = fz 2 Rn : z1 + � � �+ zn = 0g:



4 BORIS LAVRI�CBy construction �n(Ui \Dk) � ��n�1(Ui \E)holds for all i (�m denotes the Lebesgue measure in Rm). It follows from�n(Dk) = pXi=1 �n(Ui \Dk) �� � pXi=1 �n�1(Ui \E) = �n�1 p[i=1Ui \E!that �n(Dk) = 0, so the proof is complete. �Applying the Lebesgue's characterization of Riemann integrable functions (see[1] or [2]) we get the folowing result.Corollary. Let A be a nonempty Jordan measurable subset of Rn and let f :A �! Rm be a bounded monotone function. Then f is Riemann integrable.References[1] Marsden, J. E., Elementary Classical Analysis, Freeman and Company, San Francisco, 1974.[2] Spivak, M., Calculus on Manifolds, Benjamin, New York, 1965.Boris Lavri�cDepartment of MathematicsUniversity of LjubljanaJadranska 1961 000 Ljubljana, SLOVENIA
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