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s~ WEAKLY REGULAR GROUP RINGS

W. B. VASANTHA KANDASAMY

ABSTRACT. In this note we obtain a necessary and sufficient condition for a ring to
be s-weakly regular
(i) When R is a ring with identity and without divisors of zero
(i) When R is a ring without divisors of zero. Further it is proved in a s-weakly
regular ring with identity and without units every element is a zero divisor.

Following Gupta a ring R is s-weakly regular if for each a € A, a € aAa?A. We
in this note obtain conditions for a group ring to be s-weakly regular. For more
about s-weakly regular rings please refer [1].

Example 1. Let Z5 = (0,1) be a field of characteristic 2 and G = (g|g® = 1) be
a cyclic group. ZoG =1{0,1,9,9%, 14+ 9,1 +¢%, g+ 9%, 1+ g+ g¢*} is the group ring
of GG over Z5. Clearly Z»G 18 s-weakly regular.

Every group ring is not s-weakly regular; by the following example.

Example 2. Let G = (glg? = 1) and Z3 = (0,1). 1 + g € Z>G; but 1 + g ¢
1+ 9Z5G. (14 ¢)?Z2G = {0}. Hence Z5G is not s-weakly regular.

Proposition 1. Let 7> = (0,1) and G = (g|¢g*® = 1). The group ring Z,G is not
s-weakly regular.

Proof. Takea=1+4g+ - -+ ¢*» 1 in Z5G clearly a ¢ aZ,Ga’Z>G. Hence Z5G
is not s-weakly regular. d

Proposition 2. Let 72 = (0,1) and G be any group such that it has an element
of order n where n is an even integer. Then the group ring Z»G is not s-weakly
regular.

Proof. Let ¢ € G with ¢® = 1; clearly a = 14+ g+ ---+ g""! € Z3G where
a ¢ aZ:Ga’Z5G. Hence the result. O
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Theorem 3. Let 7, = (0,1) and S,, be the symmetric group of degree n. The
group ring 7Sy, is not s-weakly regular.

Proof. Take o« = 1+ 23 . Lo " in ZsS,.
1 2 3 ... 5 ... 2 n
Clearly o € o735, a?Z,8,. Hence Z,5, is not s-weakly regular. O

Theorem 4. Let Z, = (0,1,...,p — 1) be a field of characteristic p and G any
group having an element of order p. Then the group ring 7Z,G is not s-weakly
regular.

Proof. Take o« = 1+ ¢+ -+ ¢*~! in Z,G where g € G with g* = 1. Clearly
o € aAa?A as o? = 0. Thus Z,G is not s-weakly regular. d

Problem. Let Z, = (0,1,...,p — 1), p a prime and G be a group having no
elements of order p. (1) Is Z,G s-weakly regular? (11) If G has elements of finite
orders say P;, i = 1,2,..., such that (p,F;) =1, i =1,2,...,1is Z,G s-weakly
regular?.

Theorem 5. Let R be a ring with identity. If R is a ring in which a® = a for
every a € R then R is a s-weakly regular ring.

Proof. Obvious; as for every @ € R we have a € aRa’R. (iea=a-1-a*-1). O

Theorem 6. Let R be a ring without identity. If for every a € R; a® = a then R
is a s-weakly regular ring.

Proof. Obvious; as for every a € Rtake a = a - a-a’a = a® € aRa’R. Hence the
theorem. d

Theorem 7. Let R be a finite ring without identity and without nilpotent ele-
ments then the ring R is a s-weakly regular ring.

Proof. We have for every a € R a € aRa’R as a” = a for some n, as R is a finite
ring and as R has no nilpotent elements. d

Theorem 8. Let R be a ring with identity and without divisors of zero. The ring
R is s-weakly regular if and only if a> = 1 or ba® - ¢ = 1 for every a € R.

Proof. Given R is a ring with identity; which has no proper divisors of zero. Now
let us assume R is s-weakly regular; to prove a? = 1 or ba’c = 1 for every a € R.
Given R is s-weakly regular, hence ¢ € aRa’R for every a € R. Thus a = aba’c
for every @ € R; if b = ¢ = 1; then we have a = a® i.e. a(1 — a?) = 0 but R has
no zero divisors; hence a? = 1. If b # 1, ¢ # 1; then a = aba®c i.e. a(1 — ba*c) = 0
since R has no zero divisors 1 = ba’c. d

Conversely if 1 = ba’c or a? = 1 for every a € R we get immediately R to be
s-weakly regular using the fact R has no zero divisors.
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Theorem 9. Let R be a ring without identity and without divisors of zero. R is
s-weakly regular if and only if for every a € R there exists b, ¢ € R with a = aba’c.

Proof. Given R is a ring without identity and without divisors of zero. Let R
be a s-weakly regular; to prove a = aba’c for every a € R. Given R is s-weakly
regular hence for every a € R we have a € aRa’R; thus a = aba’c for some b, c.0]

Conversely if a = aba’c for every a € R; we have obviously R to be s-weakly
regular as given R has no identity and zero divisors.

Theorem 10. Let R be a s-weakly regular ring with 1 and without units. Then
every element of R is a zero divisors.

Proof. Given 1 € R, R is s-weakly regular and R has no units. To prove in
R every element is a zero divisor. For every a € R we have a € aRa’R; hence
a=a-1-a*1ora=aba’c. In both cases we have a(1—a?) = 0 or a(l —ba’c) = 0;
as we are given I has no units. Hence the result. d
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