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ARCHIVUM MATHEMATICUM (BRNO)Tomus 29 (1993), 135 { 143(L;') { REPRESENTATIONS OF ALGEBRASAndrzej WalendziakAbstract. In this paper we introduce the concept of an (L; ')-representation of analgebra A which is a common generalization of subdirect, full subdirect and weakdirect representation of A. Here we characterize such representations in terms ofcongruence relations.Let I be a nonvoid set. P (I) and F (I) denote the set of all subsets of I and theset of all �nite subsets of I, respectively. We denote by P(I) the Boolean algebrahP (I);\;[; 0; ;; Ii. If f is a function from X into Y, then the kernel of f , writtenker(f), is de�ned to be the binary relation f(a; b) 2 X2 : f(a) = f(b)g.Let (Ai : i 2 I) be a system of similar algebras, and let B = Q(Ai : i 2 I)denote the direct product of the Ai, i 2 I. For each i 2 I, we denote by pi the ithprojection function from B onto Ai. For two elements x; y 2 B we de�neI(x; y) = fi 2 I : x(i) 6= y(i)g:De�nition 1. Let A be a subalgebra of Q(Ai : i 2 I), L be an ideal of P(I) andlet ' � A2. We say that A is an (L;')-product of algebras Ai(i 2 I), and writeA =Q(L;')(Ai : i 2 I) i� the following conditions hold:(A1) A is a subdirect product of the Ai; i 2 I,(A2) for every x; y 2 A, I(x; y) 2 L,(A3) for any i 2 I and any x; y 2 A, if (x; y) 2 ', then there is z 2 A such thatz(i) = x(i), z(j) = y(j) for each j 2 I � fig.If L = P (I), we will write Q'(Ai : i 2 I) for Q(L;')(Ai : i 2 I).Let Con(A) denote the set of all congruence relations on an algebra A. ThenCon(A) forms a complete and algebraic lattice with 0A and 1A, the smallest andthe largest congruence relation, respectively.1991 Mathematics Subject Classi�cation : 08A05, 08A30.Key words and phrases: �nitely restricted subdirect product, full subdirect product, weakdirect product, congruence lattice, distributivity.Received September 9, 1991.



136 ANDRZEJ WALENDZIAKProposition 1. Let A be a subalgebra of Q(Ai : i 2 I) and let L be an ideal ofP(I).(i) A = Q0A(Ai : i 2 I) i� A is a subdirect product of Ai; i 2 I.(ii) A = Q(L;0A)(Ai : i 2 I) i� A is an L-restricted subdirect product ofAi; i 2 I (cf. [3], p. 92).(iii) A = Q1A(Ai : i 2 I) i� A is a full subdirect product of Ai; i 2 I (cf. [2] or[4]).(iv) A = Q(F (I);1A)(Ai : i 2 I) i� A is a weak direct product of Ai,i 2 I (cf.[2] or [4]).Proof. The �rst three statements are obvious.To prove (iv), assume �rst that A is an (F (I); 1A)-product of algebras Ai(i 2 I).We can see that A satis�es the following two conditions:(B1) if x; y 2 A, then I(x; y) is �nite,(B2) if x 2 A, y 2Q(Ai : i 2 I) and if I(x; y) is �nite, then y 2 A.It is clear that (B1) holds. To prove (B2), let x 2 A and y 2 Q(Ai : i 2 I).Suppose that the set I(x; y) contains only one element i1. Since A is a subdirectproduct of Ai(i 2 I), there is t 2 A such that t(i1) = y(i1). From the condition(A3) of De�nition 1 it follows that there exists z 2 A satisfying z(i1) = t(i1)and z(i) = x(i) for each i 2 I � fi1g. Clearly y = z, thus y 2 A. From this weget by induction that (B2) holds. Then A is a weak direct product of algebrasAi; i 2 I. Conversely, assume that A satis�es conditions (B1) and (B2). Then Ais a full subdirect product of Ai(i 2 I), and obviously, (A2) holds, for L = F (I).Therefore, A = Q(F (I);1A)(Ai : i 2 I). �De�nition 2. Let A be an algebra of type � and ' � A2. Let I be a nonvoid setand let L be an ideal of the Boolean algebra P(I). By an (L;')-representation ofA we will mean an ordered pair h(Ai : i 2 I); fi, where (Ai : i 2 I) is a systemof algebras of type � and f is an embedding from A into Q(Ai : i 2 I) such thatf(A) = Q(L;f('))(Ai : i 2 I).The mapping fi = pi�f , which is a homomorphismof A onto Ai will be referredto as the ith f-projection.An (L;')-representation of A is called(i) subdirect, if L = P (I) and ' = 0A,(ii) �nitely restricted subdirect, if L = F (I) and ' = 0A,(iii) full subdirect, if L = P (I) and ' = 1A,(iv) weak direct, if L = F (I) and ' = 1A.We shall now correlate (L;')-representations of an algebra A with congruencerelations on A.Let �i(i 2 I) be congruences on A, and let L be an ideal of P(I). For any setM 2 L, we de�ne a congruence relation �(M ) of A by�(M ) =^(�j : j 62M ):



(L;') { REPRESENTATIONS OF ALGEBRAS 137For i 2 I, we set ��i = V(�j : j 2 I � fig). For some � 2 Con(A) and ' � A2 wewrite � = Q(L;')(�i : i 2 I)i� the following conditions hold:(C1) � = V(�i : i 2 I),(C2) 1A = W(�(M ) :M 2 L),(C3) for all i 2 I, ' � �i���i (�i���i denotes the relational product of congruences�i and ��i).Theorem 1.(i) Let A be an algebra and ' be a binary relation on A. Let I be a nonvoidset and L be an ideal of P(I). If h(Ai : i 2 I), fi is an (L;')-representationof A and if �i(i 2 I) is the kernel of the ith f-projection fi, then 0A =Q(L;')(�i : i 2 I).(ii) Let (�i : i 2 I) be a system of congruences of A such that 0A = Q(L;')(�i :i 2 I). We put Ai = A=�i for i 2 I and de�ne the mapping f : A !Q(Ai : i 2 I) by setting f(x) = (x=�i : i 2 I). (x=�i is the congruenceclass containing x.) Then h(Ai : i 2 I); fi is an (L;')-representation of A.Proof. (i) By assumption the mapping f is one-to-one, and hence 0A = V(�i :i 2 I).To prove (C2), let x; y 2 A. Clearly,M = fi 2 I : fi(x) 6= fi(y)g = I(f(x); f(y)) 2 Land (x; y) 2 �(M ). Then (x; y) 2 W(�(M )) : M 2 L) and hence (C2) holds.Moreover, (C3) immediately follows from (A3). Thus 0A =Q(L;')(�i : i 2 I).(ii) The fact that f is an embedding is easy to check. Of course, the mappingfi is onto for each i 2 I. Therefore, �A = f(A) is a subdirect product of algebrasAi; i 2 I. Let x; y 2 A. Now we prove that(1) I(f(x); f(y)) 2 L :By (C2), (x; y) 2 W(�(M ) : M 2 L). Then, there exists a �nite number of setsM1; : : : ;Mn 2 L such that (x; y) 2 �(M1) _ � � � _ �(Mn). Observe that(2) fi 2 I : fi(x) 6= fi(y)g � M1 [ � � � [Mn :Indeed, let fi(x) 6= fi(y) for some i 2 I, and suppose on the contrary that i 62M1 [ � � � [Mn. Therefore, �(M1) _ � � � _ �(Mn) � �i, and hence (x; y) 2 �i, i.e.fi(x) = fi(y), a contradiction. From (2), by the de�nition of ideal we concludethat fi 2 I : fi(x) 6= fi(y)g 2 L. Thus (1) is satis�ed. Finally, from (C3) it followsthat for any i 2 I and any �x; �y 2 �A, if (�x; �y) 2 f('), then there is �z 2 �A such that�z(i) = �x(i) and �z(j) = �y(j) for each j 2 I�fig. Then f(A) =Q(L;f('))(Ai : i 2 I),which was to be proved. �



138 ANDRZEJ WALENDZIAKCorollary 1. Let (�i : i 2 I) be a system of congruence relations on an algebraA. If 0A = V(�i : i 2 I), then(i) (�i : i 2 I) gives a subdirect representation of A,(ii) (�i : i 2 I) constitutes a �nitely restricted subdirect representation of Ai� 1A = W(�(M ) :M 2 F (I)),(iii) (�i : i 2 I) gives a full subdirect representation of A i� 1A = �i � ��i for alli 2 I,(iv) (�i : i 2 I) constitutes a weak direct representation of A i� 1A = W(�(M ) :M 2 F (I)) and 1A = �i � ��i for each i 2 I.Lemma 1. Let I; J be two sets of indices and L1; L2 ideals of the Boolean algebrasP(I), P(J), respectively. Let A be an algebra with Con(A) completely distributiveand let ' � A2. If0A = Q(L1;')(�i : i 2 I) = Q(L2;')(�j : j 2 J)for congruences �i; �j on A, then there exist congruences �ij(i 2 I; j 2 J) suchthat, for all i and j,�i = Q(L2;')(�ij : j 2 J); and �j =Q(L1;')(�ij : i 2 I):Proof. For i 2 I and j 2 J , we put �ij = �i _ �j . Let i be a �xed but arbitraryelement of I. Observe that(3) �i =^(�ij : j 2 J) :Indeed, by completely distributivity of Con(A) we have�i = �i _^(�j : j 2 J) =^(�i _ �j : j 2 J) =^(�ij : j 2 J);i.e (3) holds.For M 2 L2, we set �(M ) = V(�ij : j 62M ). Now we prove that(4) 1A =_(�(M ) :M 2 L2) :Let x; y 2 A. Since (x; y) 2 W(�(M ) : M 2 L2) we can choose a �nite number ofsets M1; : : : ;M2 2 L2 such that(x; y) 2 �(M1) _ � � � _ �(Mn) :We set M = fj 2 J : (x; y) 62 �ijg. Let j 2M and j 62M1 [ � � �[Mn. It is obviousthat �(Mk) � �j for each k = 1; : : : ; n. Therefore, �(M1)_� � �_�(Mn) � �ij. Then(x; y) 2 �ij , which gives us a contradiction. Consequently, M � M1 [ � � � [Mn,and hence M 2 L2. Thus (x; y) 2 �(M ) and (4) is satis�ed.For each j 2 J , let us write �ij for V(�ik : k 2 J � fjg). Clearly, �ij � �j and��ij � ��j . Since ' � �j � ��j , we have(5) ' � �ij � ��ij ;for all j 2 J . From (3), (4) and (5) it follows that �i = Q(L2;')(�ij : j 2 J). Theproof that �j = Q(L1;')(�ij : i 2 I) is similar. �



(L;') { REPRESENTATIONS OF ALGEBRAS 139Lemma 2. Let I; J be two sets of indices and L1; L2 ideals of P(I) and P(J),respectively. Let A be an algebra whose congruence lattice is distributive. If0A = Q(L1;1A)(�i : i 2 J) = Q(L2;1A)(�j : j 2 J)for congruences �i; �j on A, then�i = Q(L2;1A)(�i _ �j : j 2 J) and �j =Q(L1;1A)(�i _ �j : i 2 I) for all i and j.Proof. For i 2 I and j 2 J , we set �ij = �i_�j. First we show that (3) holds. Bydistributivity of Con(A) we have ��i ^ �ij = ��i ^ (�i _ �j) = ��i ^ ��j � �j . Hence��i ^V(�ij : j 2 J) = V(��i ^ �ij : j 2 J) � V(�j : j 2 J) = 0A. Therefore, usingdistributivity we get^(�ij : j 2 J) =^(�ij : j 2 J) ^ (�i _ ��i) = �i ^^(�ij : j 2 J) = �i ;i.e. (3) is satis�ed. By the proof of Lemma 1 we conclude that (4) holds. Finally,since 1A = �j � ��j we have(6) 1A = �ij �^(�ij : k 2 J � fjg) ;for all j 2 J . From (3), (4) and (6) it follows that �i = Q(L2;1A)(�ij : j 2 J). Theproof that �j = Q(L1;1A)(�ij : i 2 I) is similar. �A subset � � Con(A) is called meet irredundant i� for all proper subsets �0 of� we have V� < V�0. An (L;')-representation h(Ai : i 2 I); fi of A is said tobe irredundant if the set fker(fi) : i 2 Ig is meet irredundant, where fi is the ithf-projection.Lemma 3. Let (L; 1A)-representation h(Ai : i 2 I); fi of A be given. If jAij > 1for each i 2 I, then this representation of A is irredundant.Proof. Let �i(i 2 I) be the kernel of the ith f-projection fi. By Theorem 1,0A = Q(L;1A)(�i : i 2 I) :We shall prove that the set f�i : i 2 Ig is meet irredundant. Suppose on thecontrary that 0A = ��i for some i 2 I. Then 1A = �i � ��i = �i. Hence jA=�ij = 1,and therefore jAij = 1, since Ai �= A=�i. This is a contrary to the assumption.Consequently, the representation h(Ai : i 2 I); fi of A is irredundant. �Let ' � A2. We say that � 2 Con(A) is '-irreducible if � 6= 1A and for everysystem (�i : i 2 I) of congruences on A, � = Q'(�i : i 2 I) implies that there isan element i 2 I such that � = �i.Proposition 2. Let � 2 Con(A).(i) � is 0A-irreducible i� � is a completely meet irreducible element of Con(A)(i.e. � 6= 1A and for all � � Con(A), if � = V�, then � 2 �).(ii) � is 1A-irreducible i� � is indecomposable (i.e. � 6= 1A and for any �; 
 2Con(A), if � = � ^ 
 and 1A = � � 
, then � = 1A or 
 = 1A).



140 ANDRZEJ WALENDZIAKProof. The proof of statement (i) is trivial.To prove the second statement, assume �rst that � is indecomposable. Let� = Q1A(�i : i 2 I) and i be an index of I such that �i 6= 1A. Clearly, � = �i ^ ��iand 1A = �i � ��i. Since � is indecomposable and �i 6= 1A, we have ��i = 1A.Consequently, � = �i, and thus we obtain that � is 1A-irreducible. The converseis obvious. �Lemma 4. Let A be an algebra and � 2 Con(A).(i) A=� is subdirectly irreducible i� � is 0A-irreducible.(ii) A=� is directly indecomposable i� � is 1A-irreducible.Proof. (i) It is well known that A=� is subdirectly irreducible i� � is completelymeet irreducible in Con(A). Hence in view of Proposition 2 we obtain (i).(ii) By Lemma 2(x 5.2) in [5] we deduce that A=� is directly indecomposablei� � is indecomposable. Now, using Proposition 2 we get (ii). �Theorem 2. Let the assumptions of Lemma 1 be satis�ed. Let h(Ai : i 2 I); fi bean irredundant (L1; ')-representation of A and h(Bj : j 2 J); gi be an irredudant(L2; ')-representation of A. Suppose that each �i = ker(fi)and each �j = ker(gj)is '-irreducible. Then there is a bijection � : I ! J for which the followingconditions hold:(D1) for each i 2 I, there exists an isomorphismhi : Ai ! B�(i); such that hi � fi = g�(i)(D2) �(I(f(x); f(y))) = J(g(x); g(y)) for all x; y 2 A.Proof. By Theorem 1,0A = Q(L1;')(�i : i 2 I) and 0A = Q(L2;')(�j : j 2 J).For each i 2 I and each j 2 J , we set�ij = �i _ �j and Dij = A=�ij :Using Lemma 1 we obtain�i = Q(L2;')(�ij : j 2 J) and �j = Q(L1;')(�ij : i 2 I) :Hence, �i = Q'(�ij : j 2 J) and �j = Q'(�ij : i 2 I). Since �i is '-irreducible,we infer that there is an index �(i) = j 2 J such that �i = �ij. But �j is also'-irreducible, and therefore, �j = �i0j for some i0 = �(j) 2 I. Consequently,�i = �i _ �j and �j = �i0 _ �j . Then �i � �j � �i0. Observe that i = i0. Indeed,if i 6= i0, then ��i � �i0 � �i, and hence 0A = �i ^ ��i = ��i. This is a contrary tothe fact that the representation h(Ai : i 2 I); fi of A is irredundant. Therefore,��(i) = i for all i 2 I, and similarly, ��(j) = j for all j 2 J . Then � is a two-sidedinverse of �, and this proves that � is a bijection. If �(i) = j, then we haveAi �= A=�i = Dij = A=�j �= Bj :



(L;') { REPRESENTATIONS OF ALGEBRAS 141The map fi(x)! x=�ij(x 2 A)de�nes an isomorphism of Ai with Dij , and the mapgj(x)! x=�ij(x 2 A)de�nes an isomorphism from Bj onto Dij . It is easy to see that the mapping hide�ned on Ai by hi(fi(x)) = gj(x) is an isomorphism from Ai onto Bj .To prove (D2), let x; y 2 A. We havei 2 I(f(x); f(y)) $ fi(x) 6= fi(y) $ hi � fi(x) 6= hi � fi(y) $$ g�(i)(x) 6= g�(i)(y) $ �(i) 2 J(g(x); g(y)) :Therefore, (D2) is satis�ed. �Theorem 3. Under the assumptions of Lemma2, if h(Ai : i 2 I); fi is an (L1; 1A)-representation of A and h(Bj : j 2 J); gi is an (L2; 1A)-representation of A, witheach Ai and each Bj directly indecomposable, then there is a bijection � : I ! Jand for each i 2 I there is an isomorphism hi from Ai onto B�(i) such thatg�(i) = hi � fi for all i 2 I.Proof. The proof is similar to that of Theorem 1. Here we apply Lemmas 2, 3and 4. �By Theorem 2 and Lemma 4 we obtainCorollary 2. Let A be an algebra whose congruence lattice is completely dis-tributive. If h(Ai : i 2 I); fi and h(Bj : j 2 J); gi are two irredundant �nitelyrestricted subdirect representations of A with subdirectly irreducible factors, thenthere is a bijection � from I onto J and for each i 2 I there is an isomorphism hiof Ai with B�(i) such that g�(i) = hi � fi for all i 2 I.From Theorem 3 we haveCorollary 3. Let A be an algebra with Con(A) distributive. Let two full subdirectrepresentations h(Ai : i 2 I); fi and h(Bj : j 2 J); gi of A be given. If eachAi(i 2 I) and each Bj(j 2 J) is directly indecomposable, then there is a bijection� : I ! J and for each i 2 I there exists an isomorphism hi from Ai onto B�(i)such that g�(i) = hi � fi for all i 2 I.Moreover, as an immediate consequence of Theorem 3 we getCorollary 4. Let A be an algebra whose congruence lattice is distributive. Ifh(Ai : i 2 I); fi and h(Bj : j 2 J); gi are two weak direct representations of Awith all factors directly indecomposable, then there is a bijection � : I ! J andfor each i 2 I there exists an isomorphism hi : Ai ! B�(i) such that g�(i) = hi �fifor all i 2 I.Let ' 2 Con(A). We say that the congruences of an algebra A '-permute i�for every congruences � and � on A, � ^ ' and � ^' permute.It is obvious that for every algebra A the congruences of A 0A-permute andthat 1A-permuting is the same thing as permuting.



142 ANDRZEJ WALENDZIAKTheorem 4. Let ' be a dually distributive element of Con(A). Suppose that thecongruences of A '-permute and Con(A) is modular and complemented. Thenthere exists a system (Ai : i 2 I) of simple algebras and an embedding f fromA into Q(Ai : i 2 I) such that h(Ai : i 2 I); fi is an irredundant (L;')-representation of A, where L is an ideal of P(I) containing all �nite subsets ofI.Proof. By Theorem 4.3 of [1], Con(A) is atomic. Let � be the set of all atoms ofCon(A), and let f�i : i 2 Ig be a maximal subset of � such that �i ^W(�j : j 2I � fig) = 0A for all i 2 I. (The existence of such maximal subset of � followseasily by Zorn's Lemma.) For i 2 I, we set�i =_(�j : j 6= i) and ��i =^(�j : j 6= i) :From Theorem 6.6 of [1] it follows that(7) 0A =^(�i : i 2 I) :As a consequence of Theorem 4.3 and 6.5. of [1] we have1A =_(�i : i 2 I) :Since �i � ��i for all i 2 I, we obtain1A �_(��i : i 2 I) =_(�(fig) : i 2 I) �_(�(M ) :M 2 L) :Hence 1A = W(�(M ) :M 2 L), and therefore (C2) is satis�ed. Let i be an elementof I. Obviously we have 1A = �i _ �i � ��i _ �i :Since ' is dually distributive and the congruence of A '-permute, we get' = ' ^ (�i _ ��i) = (' ^ �i) _ (' ^ ��i) = (' ^ �i) � (' ^ ��i) :From this we conclude that ' � �i � ��i, i.e. (C3) holds. Thus the system (�i :i 2 I) of congruences on A satis�es conditions (7), (C2) and (C3). Therefore,0A = Q(L;')(�i : i 2 I). We put Ai = A=�i for i 2 I and de�ne the mappingf : A ! Q(Ai : i 2 I) by setting f(x) = (x=�i : i 2 I). By Theorem 1, h(Ai :i 2 I); fi is an (L;')-representation of A. This representation of A is irredundant,because the set f�i : i 2 Ig is meet irredundant. Since �i is a coatom of Con(A),we obtain that Ai is simple. The proof is complete. �As an immediate consequence of Theorem 4 we obtainCorollary 5. (see [3], Theorem 5.1) If congruence lattice of an algebra A is com-plemented and modular, then there is an irredundant �nitely restricted subdirectrepresentation of A with simple factors.It is well known that every algebra whose congruences permute has modularcongruence lattice. Therefore, we getCorollary 6. (cf. [3], Theorem 5.2) Let A be any algebra whose congruencespermute and whose congruence lattice is complemented. Then there exists a weakdirect (and also a full subdirect) representation of A with simple factors.
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