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(L,) — REPRESENTATIONS OF ALGEBRAS

ANDRZEJ WALENDZIAK

ABSTRACT. In this paper we introduce the concept of an (L, ¢)-representation of an
algebra A which is a common generalization of subdirect, full subdirect and weak
direct representation of A. Here we characterize such representations in terms of
congruence relations.

Let I be a nonvoid set. P(I) and F'(I) denote the set of all subsets of I and the
set of all finite subsets of I, respectively. We denote by P(I) the Boolean algebra
(P(I),N,U, 1,0, 1). If f is a function from X into Y, then the kernel of f, written
ker(f), is defined to be the binary relation {(a,b) € X2 : f(a) = f(b)}.

Let (A; : ¢ € I) be a system of similar algebras, and let B = [[(4; : i € I)
denote the direct product of the A;, i € I. For each i € I, we denote by p; the P
projection function from B onto A;. For two elements x,y € B we define

Ie,y) ={iel x() £y}

Definition 1. Let A be a subalgebra of [[(A4; : ¢ € I), L be an ideal of P(I) and
let ¢ C A%. We say that A is an (L, ¢)-product of algebras A;(i € I), and write
A= H(L w)(Ai i € I) iff the following conditions hold:

(A1) A is a subdirect product of the A;,i € 1,

(A2) for every z,y€ A, I(x,y) € L,

(A3) forany i € I and any »,y € A, if (z,y) € ¢, then there is z € A such that

z(4) = (i), 2(j) = y(j) for each j € I — {i}.

If L = P(I), we will write Hw(Ai cie ) for H(L,w)(Ai cie ).

Let Con(A) denote the set of all congruence relations on an algebra A. Then
Con(A) forms a complete and algebraic lattice with 04 and 14, the smallest and
the largest congruence relation, respectively.

1991 Mathematics Subject Classification: 08A05, 08A30.

Key words and phrases: finitely restricted subdirect product, full subdirect product, weak
direct product, congruence lattice, distributivity.

Received September 9, 1991.



136 ANDRZEJ WALENDZIAK

Proposition 1. Let A be a subalgebra of [[(4; : i € I) and let L be an ideal of
PI).
(i) A=TIy,(A;:i€l)iff Ais asubdirect product of A;,i€ 1.
(ii)) A = H(L oA)(Ai : i € 1) iff Ais an L-restricted subdirect product of
A, i €1 (cf [3], p. 92).
(iii) A =TI, (A; 7€) iff Ais a full subdirect product of A;,i € I (cf. [2] or
[4]).
(iv) A= H(F(I),lA)(Ai :1 € 1) iff A is a weak direct product of A;,i € T (cf.
[2] or [4]).

Proof. The first three statements are obvious.

To prove (iv), assume first that A is an (F(I), 14)-product of algebras A;(i € I).
We can see that A satisfies the following two conditions:

(Bl) if x,y € A, then I(z,y) is finite,

(B2) ifx € A, y € [[(Ai :i€I)andif I(x,y) is finite, then y € A.
It is clear that (B1) holds. To prove (B2), let « € A and y € [[(A; : ¢ € I).
Suppose that the set I(x,y) contains only one element 7;. Since A is a subdirect
product of A;(i € I), there is t € A such that ¢(i;) = y(¢1). From the condition
(A3) of Definition 1 it follows that there exists z € A satisfying z(i1) = #(i1)
and z(7) = x(¢) for each ¢ € T — {i1}. Clearly y = z, thus y € A. From this we
get by induction that (B2) holds. Then A is a weak direct product of algebras
Ai, i € I. Conversely, assume that A satisfies conditions (B1) and (B2). Then A
is a full subdirect product of A4;(¢ € I), and obviously, (A2) holds, for L = F(I).
Therefore, A =[] ip(p)1,)(Ai 1€ 1). O

Definition 2. Let A be an algebra of type 7 and ¢ C A%. Let I be a nonvoid set
and let L be an ideal of the Boolean algebra P(I). By an (L, ¢)-representation of
A we will mean an ordered pair ((A; : ¢ € I), f), where (A; : ¢ € I) is a system
of algebras of type 7 and f is an embedding from A into [[(A4; : ¢ € I) such that

F(A) = Tlip g (Ai i €1).

The mapping f; = p;o f, which is a homomorphism of A onto A; will be referred
to as the i*" f-projection.
An (L, ¢)-representation of A is called
(i) subdirect, if L = P(I) and ¢ = 04,
(ii) finitely restricted subdirect, if L = F'(I) and ¢ = 04,
(iii) full subdirect, if L = P(I) and ¢ = 14,
(iv) weak direct, if L = F(I) and ¢ = 14.
We shall now correlate (L, ¢)-representations of an algebra A with congruence
relations on A.
Let 6;(i € I) be congruences on A, and let L be an ideal of P(I). For any set
M € L, we define a congruence relation 6(M) of A by

6(M) = \(9; =5 ¢ M).
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For i € I, we set 8; = N\(0; : j € I — {i}). For some a € Con(A) and ¢ C A? we
write

o= H(LW)(HZ' ciel)
iff the following conditions hold:
(Cl)y a=A(0; :i € 1),
(C2) 14 =V@OM): M EiL), B
(C3) forall i1 €1,p C 0ol (0;08; denotes the relational product of congruences
92' and 92)

Theorem 1.

(i) Let A be an algebra and ¢ be a binary relation on A. Let I be a nonvoid
set and L be an ideal of P(I). If {(A; : i € I), [} is an (L, p)-representation
of A and if 6;(i € I) is the kernel of the i*®® f-projection f;, then 04 =
H(LW)(HZ' cie ).

(ii) Let (6; : i € I) be a system of congruences of A such that 04 = H(LW)(HZ' :
i €I). We put A; = A/0; for i € I and define the mapping f : A —
[1(A4; : ¢ € I) by setting f(x) = (x/6; : i € I). (x/0; is the congruence
class containing x.) Then {(A; : i € I), f) is an (L, ¢)-representation of A.

Proof. (i) By assumption the mapping f is one-to-one, and hence 04 = A(6; :
iel).
To prove (C2), let x,y € A. Clearly,

M={iel: fi(x)# fi(y)} =1(f(x), f(y) €L
and (z,y) € 6(M). Then (z,y) € V(6(M)) : M € L) and hence (C2) holds.
Moreover, (C3) immediately follows from (A3). Thus 04 = H(LW)(HZ' cie ).
(ii) The fact that f is an embedding is easy to check. Of course, the mapping
fi is onto for each i € I. Therefore, A = f(A) is a subdirect product of algebras
A;,i € 1. Let x,y € A. Now we prove that

(1) I(f(=), f(y)) € L.

By (C2), (z,y) € V(0(M) : M € L). Then, there exists a finite number of sets
My, ..., M, € L such that (z,y) € 6(M1)V ---V 0(M,). Observe that

(2) {iel: filx)# fily)} SMLU---UM,.
Indeed, let fi(z) # fi(y) for some i € I, and suppose on the contrary that ¢ ¢
My U---UM,. Therefore, (M) V -V O0(My,) < 6;, and hence (z,y) € 6;, i.e.
fi(z) = fi(y), a contradiction. From (2), by the definition of ideal we conclude
that {¢ € T : fi(x) # fi(y)} € L. Thus (1) is satisfied. Finally, from (C3) it follows
that for any i € I and any #,y € A, if (z,9) € f(p), then there is z € A such that
Z(4) = z(i) and 2(j) = y(j) for each j € I—{i}. Then f(A) = H(L,f(@))(Ai cie ),
(I

which was to be proved.
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Corollary 1. Let (0; : i € I) be a system of congruence relations on an algebra
A If04 = N\(0; : i € I), then
(i) (6; : ¢ € I) gives a subdirect representation of A,
(ii) (6; : 7 € I) constitutes a finitely restricted subdirect representation of A
iffla =\ (O(M): M € F(I)), )
(iii) (6; : i € I) gives a full subdirect representation of A iff 14 = 0; o 0; for all
iel,
(iv) (6; i € I) constitutes a weak direct representation of A iff 14 = \/(0(M) :
M e F(I)) and 14 = 6; 0 0; for each i € I.

Lemma 1. Let I, J be twosets of indices and L1, Lo ideals of the Boolean algebras
P(I), P(J), respectively. Let A be an algebra with Con(A) completely distributive
and let o C A%, If

04 = H(Ll,tp)(ai 11 E I) = H(LQ,LP)(Bj 1j € J)
for congruences «;,3; on A, then there exist congruences é;;(i € I,j € J) such
that, for all i and j,

o = H(L%w)(éij 1 j € J), and 3; = H(Lhtp)((sij 1t € I)

Proof. For: € I and j € J, we put 6; = a; V 3;. Let ¢ be a fixed but arbitrary
element of I. Observe that

(3) Oziz/\((%j:jEJ).

Indeed, by completely distributivity of Con(A) we have

Ozi:ai\//\(ﬁj:jEJ):/\(OzZ'\/ﬁ]':jEJ)I/\((SZ']'ZjEJ),

i.e (3) holds.
For M € Ly, we set §(M) = A(6i; : j ¢ M). Now we prove that

(4) la=\/(8(M): M € Ly).

Let z,y € A. Since (z,y) € V(B(M) : M € Ly) we can choose a finite number of
sets My,..., My € Ly such that

(2,9) € BML)V -~V B(My ).
Weset M ={jeJ:(z,y)€é;} Let j€ M andj¢g M U---UM,.Itis obvious
that §(M}y) < j; foreach k = 1,...,n. Therefore, B(M71)V---V3(M,) < é;;. Then
(z,y) € 6;;, which gives us a contradiction. Consequently, M C My U ---U M,,
and hence M € L. Thus (z,y) € 6(M) and (4) is satisfied.
For each j € J, let us write §;; for A(6ix : k € J — {j}). Clearly, &; > §; and
52']' > Bj. Since ¢ C f; o Bj, we have

(5) @ C bij 0 bij

for all j € J. From (3), (4) and (5) it follows that o; = H(L%w)(éij :J € J). The
proof that g; = H(Ll,w)(éij 24 € I) is similar. O
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Lemma 2. Let I,J be two sets of indices and Ly, Ly ideals of P(I) and P(.J),
respectively. Let A be an algebra whose congruence lattice is distributive. If

04 = H(Ll,u)(ai e J) = H(L2,1A)(5j 1j€J)
for congruences oy, f; on A, then
a; = H(LQ,lA)(O‘i Vgi:jeJ)and B = H(Ll,lA)(ai Vg ii€l)foralliandj.
Proof. Fori€ [ and j € J, weset 6;; = a; V ;. First we show that (3) holds. By
distributivity of Con(A) we have &; A é;; = a; A (e; V 3;) = @&; A B; < ;. Hence
A AN deT)=N@Né; jeT)< NG j€J)=04. Therefore, using
distributivity we get

/\(@jzjej):/\(&jz jEJ)A(aiV@i):aiA/\(éij: JEJT) = a;,

i.e. (3) is satisfied. By the proof of Lemma 1 we conclude that (4) holds. Finally,
since 14 = B; o 5; we have

(6) 1A:6ijo/\(6ij ke —1{j}),

for all j € J. From (3), (4) and (6) it follows that a; = H(L%lA)(éij :j€J). The
proof that 3; = H(Ll,lA)(éij 24 € I) is similar. d

A subset T' C Con(A) is called meet irredundant iff for all proper subsets T of
I' we have AT < AT'. An (L, p)-representation ((A; : i € I), f) of A is said to
be irredundant if the set {ker(f;):¢ € I} is meet irredundant, where f; is the *®
f-projection.

Lemma 3. Let (L, 14)-representation ((A; : i € I), f) of A be given. If |A;] > 1
for each ¢ € I, then this representation of A is irredundant.

Proof. Let 0;(i € I) be the kernel of the i*" f-projection f;. By Theorem 1,

0a = H(L,IA)(gi ciel).
We shall prove that the set {6; : ¢ € I} is meet irredundant. Suppose on the
contrary that 04 = 6; for some i € I. Then 14 = 6; 0 §; = 6;. Hence |A/6;| = 1,
and therefore |A;| = 1, since A; = A/6;. This is a contrary to the assumption.
Consequently, the representation {(A4; : ¢ € I), f) of A is irredundant. d

Let ¢ C A?. We say that o € Con(A) is p-irreducible if & # 14 and for every
system (6; : ¢ € I) of congruences on A, o = Hw(ﬁi : 1 € T) implies that there is
an element ¢ € [ such that o« = ;.

Proposition 2. Let o € Con(A4).

(i) « is 04-irreducible iff o is a completely meet irreducible element of Con(A)
(i.e. « # 14 and for allT C Con(A), if « = AT, then « € T).

(ii) « is L a-irreducible iff o is indecomposable (i.e. o« # 14 and for any 3,7 €
Con(A), ifa =FAyandly =0, then B =14 ory=14).
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Proof. The proof of statement (i) is trivial.
To prove the second statement, assume first that « i1s indecomposable. Let

a = H1A(9i :i € I) and 7 be an index of T such that 8; # 14. Clearly, o = 6; A 0;

and 14 = 6; o 6;. Since « is indecomposable and 6; # 14, we have 6, = 14.
Consequently, « = 8;, and thus we obtain that « is 14-irreducible. The converse
is obvious. d

Lemma 4. Let A be an algebra and o € Con(4).

(i) A/« is subdirectly irreducible iff o is 04-irreducible.
(ii) A/« is directly indecomposable iff « is 1 4-irreducible.

Proof. (i) It is well known that A/« is subdirectly irreducible iff o is completely
meet irreducible in Con(A). Hence in view of Proposition 2 we obtain (i).

(ii)) By Lemma 2(§ 5.2) in [5] we deduce that A/« is directly indecomposable
iff o is indecomposable. Now, using Proposition 2 we get (ii). a

Theorem 2. Let the assumptions of Lemma 1 be satisfied. Let ((A; : ¢ € I), f) be
an irredundant (L1, ¢)-representation of A and ((B; : j € J),g) be an irredudant
(L2, p)-representation of A. Suppose that each «; = ker(f;)and each ; = ker(g;)
is -irreducible. Then there is a bijection ¢ : I — J for which the following
conditions hold:

(D1) for each i € I, there exists an isomorphism

hi : Ai — Bo(iy, such that h;o f; = go(;)

(D2) o(I(f(x), f(y)) = J(g(x),9(y)) for all z,y € A.

Proof. By Theorem 1,

04 = H(Ll,w)(ai ciel)and 04 = H(LQW)(B]' cjEed).
For each 7 € I and each j € J, we set

62’]’ =o; V 6]' and Dij = A/(SZ] :

Using Lemma 1 we obtain
o = H(LQ,Lp)((Sij 1j € J) and 6] = H(Ll,tp)(éij 1 E I) .

Hence, «; = Hw(éij cj€J)and §; = Hw(éij 21 € I). Since oy is p-irreducible,
we infer that there is an index o(i) = j € J such that «; = &;. But §; is also
p-irreducible, and therefore, §; = &;; for some ¢/ = 7(j) € I. Consequently,
a; = a; V3 and §; = a0 V §;. Then a; > 3; > ;. Observe that i = ¢’. Indeed,
if i £ ¢, then a; < ayr < ey, and hence 04 = a; A a; = &;. This is a contrary to
the fact that the representation {(A4; : ¢ € I), f) of A is irredundant. Therefore,
wo(i) =i for all i € I, and similarly, ox(j) = j for all j € J. Then 7 is a two-sided
inverse of o, and this proves that ¢ is a bijection. If ¢(¢) = j, then we have

AZ'EA/OQ:DU :A/ﬁj = B;.
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The map
filz) = x/bij(z € A)
defines an isomorphism of A; with D;;, and the map
gi(x) — x/bij(x € A)

defines an isomorphism from B; onto D;;. It is easy to see that the mapping A;
defined on A4; by h;(fi(2)) = g;(x) is an isomorphism from A; onto B;.
To prove (D2), let z,y € A. We have

i€ I(f(2), [(y)) < fi(x) # fily) < hio fi(x) # hio fi(y) <
= 9o(i)(%) # 9oy (y) — (i) € J(g(x),9(y))-
Therefore, (D2) is satisfied. d

Theorem 3. Under the assumptions of Lemma 2, if ((A; : i € I), f) isan (L1, 14)-
representation of A and ((B; : j € J),g) is an (Lo, 14)-representation of A, with
each A; and each B; directly indecomposable, then there is a bijection ¢ : [ — J
and for each i € I there is an isomorphism h; from A; onto By(;) such that
9oy = hio fi for all i € 1.

Proof. The proof is similar to that of Theorem 1. Here we apply Lemmas 2, 3
and 4. d

By Theorem 2 and Lemma 4 we obtain

Corollary 2. Let A be an algebra whose congruence lattice is completely dis-
tributive. If ((A; : 7 € I), f) and {(B; : j € J),g) are two irredundant finitely
restricted subdirect representations of A with subdirectly irreducible factors, then
there is a bijection ¢ from I onto J and for each ¢ € I there is an isomorphism h;

of A; with B, (;y such that g,y = hio f; for alli € I.
From Theorem 3 we have

Corollary 3. Let A be an algebra with Con(A) distributive. Let two full subdirect
representations {(A; : ¢ € I),f) and {((B; : j € J),g) of A be given. If each
A;(1 € I) and each B;(j € J) is directly indecomposable, then there is a bijection
o : I — J and for each i € I there exists an isomorphism h; from A; onto B,
such that g,(;y = h; o f; for alli € I.

Moreover, as an immediate consequence of Theorem 3 we get

Corollary 4. Let A be an algebra whose congruence lattice is distributive. If
((A4; -1 € 1), f) and {((B; : j € J),g) are two weak direct representations of A
with all factors directly indecomposable, then there is a bijection o : I — J and
for each i € I there exists an isomorphism h; : A; — B (;y such that g,(;y = hio f;
foralli € 1.

Let ¢ € Con(A). We say that the congruences of an algebra A ¢-permute iff
for every congruences « and 5 on A, & A ¢ and 3 A ¢ permute.

It is obvious that for every algebra A the congruences of A 04-permute and
that 14-permuting is the same thing as permuting.
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Theorem 4. Let ¢ be a dually distributive element of Con(A). Suppose that the
congruences of A p-permute and Con(A) is modular and complemented. Then
there exists a system (A; : ¢ € I) of simple algebras and an embedding f from
A into [[(A4; : ¢ € I) such that {(4; : ¢ € I),f) is an irredundant (L,)-
representation of A, where L is an ideal of P(I) containing all finite subsets of

1.

Proof. By Theorem 4.3 of [1], Con(A) is atomic. Let T' be the set of all atoms of
Con(A), and let {; : ¢ € I'} be a maximal subset of I' such that a; A \/(e; 1 j €
I —{i}) = 04 for all i € I. (The existence of such maximal subset of T follows
easily by Zorn’s Lemma.) For i € I, we set

Hi:\/(oz]':j;éi) andéi:/\(ﬁj:jgéi).

From Theorem 6.6 of [1] it follows that

(7) 0a=A:i:iel).

As a consequence of Theorem 4.3 and 6.5. of [1] we have
1A:\/(ai:i61).

Since a; < 6; for all i € I, we obtain

La<\Giien=\/(0{i}):iel)<\/(0(M): MeL).
Hence 14 = V/(0(M) : M € L), and therefore (C2) is satisfied. Let i be an element
of I. Obviously we have B

la=a; Vo <0;V0;.

Since ¢ is dually distributive and the congruence of A ¢-permute, we get

p=pA(O:VO) = (N0 V (pAO) = (pAbi)o(p Nbi).
From this we conclude that ¢ C 6; o 6;, i.e. (C3) holds. Thus the system (6; :
i € I) of congruences on A satisfies conditions (7), (C2) and (C3). Therefore,
04 = H(LW)(HZ' c4 € I). We put A4; = A/6; for i € I and define the mapping
f:A—=T[(4; : i € I) by setting f(x) = (#/6; : i € I). By Theorem 1, {(4; :
i€I), f)isan (L, p)-representation of A. This representation of A is irredundant,

because the set {#; : ¢ € I} is meet irredundant. Since 6; is a coatom of Con(A),
we obtain that A; is simple. The proof 1s complete. a

As an immediate consequence of Theorem 4 we obtain

Corollary 5. (see [3], Theorem 5.1) If congruence lattice of an algebra A is com-
plemented and modular, then there is an irredundant finitely restricted subdirect
representation of A with simple factors.

It is well known that every algebra whose congruences permute has modular
congruence lattice. Therefore, we get

Corollary 6. (cf. [3], Theorem 5.2) Let A be any algebra whose congruences
permute and whose congruence lattice is complemented. Then there exists a weak
direct (and also a full subdirect) representation of A with simple factors.
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