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ARCHIVUM MATHEMATICUM (BRNO)Tomus 30 (1994), 9 { 16CLOSURE CONDITIONS OF COMMUTATIVITYV. J. Havel, J. KloudaAbstract. There are investigated some closure conditions of Thomsen type in 3-webs which gurantee that at least one of coordinatizing quasigroups of a given 3-webis commutative.We will pose the following question: Which is a necessary and su�cient condi-tion (in form of a conditional identity with constants) for a given quasigroup Q tobe isotopic with a commutative quasigroup? We shall show that such a conditionis the ful�lling of a closure condition of Thomsen type (with constants) in the3-web over Q. x1 Thomsen closure conditionwith respect to two constant linesLetQ= (Q; �) be a quasigroup of order > 1 andWQthe 3-web overQ. The set ofall points is Q�Q and the three line pencils are ff(a; y)jy 2 Qgja 2 Qg (horizontallines), ff(x; b)jx 2 Qgjb 2 Qg (vertical lines) and ff(x; y)jx � y = cgjc 2 Qg (skewlines). We designate these lines briey by l (1)a , l (2)b , l (3)c , respectively. Let in Q thecommutativity x � q = q � x for all x; q 2 Q be valid. This quasigroup identity canbe expressed geometrically by special labelings of both pencils of vertical lines andhorizontal lines: for every x 2 Q, the points l (2)q u l (1)x , l (1)q u l (2)x must lie on thesame skew line. We use the symbol u for denotation of the intersection point oftwo lines from di�erent pencils.1991 Mathematics Subject Classi�cation : Primary 05B30, Secondary 20N05.Key words and phrases: coordinatizing quasigroups of a 3-web, 3-web closure conditions withrespect to constant lines, commutative quasigroups.Received June 3, 1992.



10 V. J. HAVEL, J. KLOUDA�l (2)x1 �l (2)x2 �l (1)q l (2)ql (1)q u l (2)q �l (1)x2AAAAAAAAA �l (1)x1AAAAAAAAAAAAA Fig. 1Further denotations:AB for the line containing distinct points A,B (if it exists),Ai for the line containing the point A and belonging to the i-th pencil.1. Choose a constant element q 2 Q. Thus l (1)q , l (2)q are constant lines and thevalidity of x � y = y � x for all x; y 2 Q implies the validity of the following closurecondition in WQ(cf. Fig. 2)X2 = Y 2) �(X3 u l (1)q )2 u Y 1�3 = �(Y 3 u l (1)q )2 uX1� :� �����l (1)q �'''*v �444444444 � l (2)qh44444444444444 X YFig. 22. Let in a 3-web W = (P;L;L
1

;L
2

;L
3

) there hold the closure conditionX2 = Y 2) �(X3 u v)2 u Y 2�3 = �(Y 3 u h)2 uX1�3with constant lines v 2 L
1

, h 2 L
2

( the Thomsen condition with respect toconstant lines v, h ; denotation: Tv;h). We assert that, consequently, there is acommutative coordinatizing quasigroup of W.



CLOSURE CONDITIONS OF COMMUTATIVITY 11Single coordinatizing quasigroups of W are determined if we choose three bi-jections �i : Li ! Q, i 2 f1; 2; 3g, where Q is a set such that # Q is the order ofW. Then the corresponding quasigroup operation is derived from the concurrencyof lines as follows: x � y = z , ��1

1

(x), ��1

2

(y), ��1

3

(z) go through the same point.Put Q = h (recall that h is a point set), �
1

: L
1

! Q, l 7! luh, �
2

= L
2

! Q, l 7!(luv)3uh whereas �
3

rests arbitrary. Thus x � y = z , �
3

(z) = �x1u (y3uv)2�3.u l AAAAAAACu lh � �v h��
1

(l) �
2

(l)Fig. 3�v �[[[[[[l (3)x�y� h�AAAAAAAAA �y x Fig. 4� �''''' Vl (3)x�y� W�NNNNNNNl (3)y�x�v �'''''''''' � h'''''''''''''''' X = x Y = y Fig. 5



12 V. J. HAVEL, J. KLOUDAWe assert that x � y = y � x holds for all x; y 2 Q: in fact, if we put in theclosure condition X = x, Y = y, then we construct the points V = (Y 3uv)2uX1,W = (X3u v)2uY 1 so that, as the conclusion of the closure condition, V3 = W3and consequently x � y = ��1 (W3) = y � x. Thus we obtainedTheorem 1. Among coordinatizing quasigroups of a given 3-web W there existsa commutative quasigroup, if and only if there is a prominent vertical line v and aprominent horizontal line h such that, in W, the Thomsen closure condition Tv;his valid.Remark 1 (on universal Thomsen closure condition, cf. [3], pp. 199-200). Let in a3-webW the universal Thomsen closure condition T hold (i.e., the above Thomsenclosure condition Tv;h for all vertical lines v and all horizontal lines h). Choose �
1

,�
2

, �
3

such that the corresponding coordinatizing quasigroup will be a loop, withneutral element 1. Then (cf. Fig. 6) 1 �w = u � y, 1 � v = u � x, x � w = y � v so thatx � (u � y) = y � (u � x). Putting u = 1 we obtain x � y = y � x. Thus the equalityx � (u � y) = y � (u � x) can be rewritten as (y � u) � x = y � (u �x) and the loop underconsideration is a commutative group.(1; w) � l (2)w ����(1; v) �l (1)

1 l (2)v ����� (y; v)� � l (2)u''''''''''' l (3)v l (1)x �'''''''''''''''' l (3)w(1; u) (x; u) (y; u)Fig. 6Now let one of coordinatizing loops of a given 3-web W be a commutativegroup. Write the assumptions of the universal Thomsen closure condition T asx
1

� y
2

= x
2

� y
1

, x
1

� y
3

= y
3

� y
1

(cf. Fig. 7).



CLOSURE CONDITIONS OF COMMUTATIVITY 13� l (2)y3 �NNP�l (1)x1 l (2)y2 �[[̂� l (2)y1444444444 l (1)x2 �NNNNNNNNNNNN l (1)x3Fig. 7From this it follows that x
2

� y
3

= x
2

� (x�1

1

� x
3

� y
1

) = (x�1

1

� x
3

) � (x
2

� y
1

) =(x�1

1

� x
3

) � (y
1

� x
2

) = x
3

� y
2

, i.e. the conclusion of T .Remark 2 (on preserving of the commutativity by all loop isotopies):All loop isotopies of a given commutative loop L preserve commutativity if L isa commutative group (so that, consequently, every loop isotopic to a commutativegroup is also a commutative group).Examples of commutative loops distinct to groups: central nilpotent loops ofclass 2 (they are found �rstly by Geritt Bol in 1937, cf. [6]) or totally symmetricloops.Now we start with a given commutative quasigroupQ= (Q; �), choose arbitrarypermutations �, �,  of Q and form the isotopic quasigroup Q0 = (Q; �0) such that(x�0y) = �(x)��(y) for all x; y 2 Q. Thus the commutativity ofQ0, x�0y = y�0x, canbe written as �1

��(x)��(y)� = �1

��(y)��(x)� or, more simply,x�'(y) = y �'(x)with ' = ��1 �. As �, � were arbitrary, also ' is arbitrary. Let a be a �xed elementof Q. If we put y = a we get x � '(a) = a � '(x) so that '(x) = L�1

1

R'( a)

(x),' = L�1

1

R'( a)

and ' is not arbitrary. It results that in a general case not allquasigroup isotopies preserve the commutativity (cf. [5], p. 17).x2 Thomsen closure conditionwith respect to four constant linesHere we start with a 3-webW in which two vertical lines v
1

, v
2

and two horizon-tal lines h
1

, h
2

are �xed. By a Thomsen closure condition with respect to constantlines v
1

, v
2

, h
1

, h
2

(denoted by Tv1;v2;h1;h2) we shall mean the assertion��(P1 u h
1

)3 u v
1

�2� u ��(P2 u v
2

)3 u h
2

�1� 2 P3for all points P of W (cf. Fig.8) :
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v
2[[[[P2 u v

2\\\\\\\\\\\\ �(P2u v
2

)3 u h
2h

2�h
1P1u h

1

[[[[[[[�v
1

(P1u h
1

)3 u v
1 �Fig. 8where A = �(P1u h

1

)3 u v
1

�2 u �(P2 u v
2

)3 u h
2

�1.Let W be a 3-web satisfying Tv1;v2;h1 ;h2 . If we choose P = v
1

u h
1

then theconclusion of Tv1;v2;h1 ;h2 claims ��(P1uh
1

)3uv
1

�2u��(P2uv
2

)3uh
2

�1� = v
2

uh
1

�i.e. (v
1

u h
2

)3 = (v
2

u h
1

)3 (assertion (a)). If we take as a new position of Pthe point �P = P3 u v
1

then ��(�P1 u h
1

)3 u v
1

�2� u ��(�P2 u v
2

)3 u h
2

�1� =h
1

u �(�P2u v
2

)3u h
2

�1�, so that (�P2u v
2

)3 = �(�P3u h
1

)1u h
2

�3 (assertion (b)).If we take as a new position of P the point �P = P2u v
1

, then �P3 =��(= �P2 u v
2

)3 u h
2

�1 u h
1

�3 (assertion (c)).We see that Tv1;v2;h1;h2 ) Tv1;h1 and, by Theorem 1, there exists a commutativecoordinatizing quasigroup of W.The direct proof that Tv1;v2;h1;h2 implies the existence of a commutative coordi-natizing quasigroup ofW uses the following labeling of lines ofW: Let Q be chosenas (the point set) v
1

. Let a = v
1

u h
1

be the label of both v
1

; h
1

and b = v
1

u h
2the label of v

2

and h
2

. A vertical line v and a horizontal line h have the same labelx 2 v
1

if and only if x 2 h, x3u v
1

2 v.Assertion (a) can be written as a � b = b � a, assertion (b) as x � a = a �x togetherwith x�b= b�x for all x 2 Q (so that a; b lie in the centre C of (Q; �)). It is easily seenthat the label of the skew line through ��(P1uh
1

)3u v
1

�2�u��(P2u v
2

)3uh
2

�1is �(b � y)�b� � �a�(x � a)� (cf. Fig. 9). As a; b 2 C, this label is equal to y �x and the



CLOSURE CONDITIONS OF COMMUTATIVITY 15commutativity of the quasigroup operation is veri�ed.� y[[[[[[]x � yx �[[[[[[b � yb �(b � y)�bb�a [[[[[[x � a � a�(x � a)a �[[[[[[[̂ NNNN�(b � y)�b� � �a�(x � a)Fig. 9Let there be given a commutative quasigroup Q = (Q; �) of order > 1. Choose(mutually distinct) elements a; b 2 Q. In the 3-webW over Q investigate the linesf(x; y)jx = ag, f(x; y)jx = bg, f(x; y)jy = ag, f(x; y)jy = bg and denote them byv
1

; v
2

; h
1

; h
2

.For every x; y 2 Q start with the point P = (x; y) and construct the points(x; a), �a; a�(x � a)�, (b; y), �(b � y)�b; b�, �(b � y)�b; a�(x � a)�. As a�(x � a) = x,(b �y)�b = y, the �nal point is (y; x). Both points (x, y), (y; x) must lie on the sameskew lines because of commutativity of the quasigroup operation. Thus Tv1;v2;h1 ;h2holds in W. We shall express the result in the following theorem.Theorem 2. There exists a commutative coordinatizing quasigroup of a given3-web W if and only if there are (mutually distinct) vertical lines v
1

; v
2

and (mu-tually distinct) horizontal lines h
1

; h
2

such that W satis�es the closure conditionTv1;v2;h1;h2 . References[1] Pickert, G., Projektive Ebenen, Berlin - Heidelberg - New York, 1975.[2] Bruck, R. H., What is a loop?, Studies in Modern Algebra, Prentice - Hall (1963), 59-99.



16 V. J. HAVEL, J. KLOUDA[3] Belousov, V. D., Elements of the theory of quasigroups and loops (in Russian), Kishinev,1967.[4] Havel, V., 3-webs (in Czech), Kni�znice Vys. u�c. techn. (Brno) A-17 (1978), 209-242.[5] Golovko, I. A., Closure conditions in quasigroups (in Russian), Izv. Akad. Nauk Mold. SSR(1971/3), 172.[6] Bol, G., Gewebe und Gruppen, Math. Ann. 114 (1937), 414-431.[7] Ilse, D., Lehmann, I., Schulz, W., Gruppoide und Funktionalgleichungen, Berlin, 1984.V. J. Havel and J. KloudaDepartment of MathematicsTechnical UniversityKrav�� hora 21602 00 Brno, CZECH REPUBLIC
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