Archivum Mathematicum

Samy A. Youssef; S. G. Hulsurkar
On connectedness of graphs on Weyl groups of type A, (n > 4)

Archivum Mathematicum, Vol. 31 (1995), No. 3, 163--170

Persistent URL: http://dml.cz/dmlcz/107537

Terms of use:

© Masaryk University, 1995

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz


http://dml.cz/dmlcz/107537
http://project.dml.cz

ARCHIVUM MATHEMATICUM (BRNO)
Tomus 31 (1995), 163 — 170

ON CONNECTEDNESS OF GRAPHS ON WEYL GROUPS OF
TYPE An(n > 4)

SAMY A. YOUSSEF, S. G. HULSURKAR

ABSTRACT. A graph structure is defined on the Weyl groups. We show that
these graphs are connected for Weyl groups of type Ay for n > 4.

1. INTRODUCTION.

We have defined a graph structure on Weyl groups through the root system
associated with them. The planarity and the other properties of such graphs has
been studied elsewhere ( [1] and [2] ). The motivation for these graphs come from
the method employed in proving the truth of Verma’s conjecture on Weyl’s dimen-
sion polynomial [3] which arose in connection with the irreducible representations
of algebraic Chevalley groups and their Lie algebras. A certain matrix was defined
there which imposes a new partial order on Weyl groups. That matrix has been
also explored by Chastkofsky [4]. The same matrix is the weighted incidence ma-
trix for our definition of graphs on Weyl groups. We prove in this paper that such
graphs are connected for Weyl groups of type A, for n > 4. The graphs on Weyl
groups of type Ay, As, Az and By are disconnected. In fact, they consist of isolated
points and isolated edges. Except these graphs other graphs on Weyl groups seem
to be connected as supported by the data on Weyl groups of type Bs,Cs, Bs, (4
and Dy. We end up the paper with a conjecture on the connectedness of graphs
on Weyl groups. We use the definitions, notations and the results given by [5],
and also results from [6].

2. THE SUBGROUP {l;.

Let A be a real root system in a real vector space F of dimension n with a
positive definite inner product (,). Let aj,as, ..., an be the simple roots and
W(A) be the Weyl group associated to A. Then W(A) is generated by R;,i =
1,2,...,n where R; = Rq,,i = 1,2,... ,n. We also write W in place of W(A).
Let A1, Aa, ..., Ay be the fundamental weights of A i.e., (A, a}/) = J;; (Kronecker
delta) where o = 2a/(a, @) for @ € A. Suppose X = > Za; and X' = > 7\,
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are root lattice and weight lattice respectively and 7 is the set of integers. Here
X’ C X. Let D be the group of translations T, for A € X acting on F or X
defined by 7\ = x + A. Similarly, D’ be the group of translations 7y for A € X’.
Suppose W and W’ are the groups generated by W, D and W, D’ respectively. W’
is the affine Weyl group associated with A. It 1s known that W' is generated by
Ry, Ri,..., R, where Ry = Rq,T-qa, and —ag is the short dominant root in A.

The fundamental domain of W’ in E is E® where
EAZ{$EE| (x’az\'/)zoa (x,—oz(\)/)gl, 1§Z§n}a
We call £ the fundamental simplex. £ has the usual property: any ¥ € & has
a unique image in £2 under the action of the group W’. Let oy be the unique
element of W of maximal length. For fixed j, let A; = {a;|1 < i< n,i+# j}, then
W (A;) is the Weyl group for the root system A;. Let ¢; be the unique element of
maximal length in W(A;). If —ayf = >~ n;ay then write it as  n;af = 0 and
i=1 i=0
define Jy = {j|n; = 1}. The group W acts as the permutation group on the set of
simplices {(E®)¥|w € W'}. The stabilizer  of E is given by Q@ = {v;T»,|j € Jo}
where v; = 0¢0;, j € Jo. The group  is isomorphic to the subgroup Qo = {v;|j €
Jo} of W. This subgroup €2y is important for our discussions. For ¢ € W, let
I, = {i|l <i<n,£(cR;) < £(c)} where £(0) is the length of o. For o € W, define
8o = 32 N and €, = d,07 1.
iel,

3. A GrarpE I'(IW) ON W.

We define a graph T'(W) on W whose vertices are elements of W. A point
z € FE is called W-regular if z lies in the interior of a Weyl chamber. This is
also equivalent to D(z) # 0 where D(x) is the Weyl’s dimension polynomial at
r e FE. FororeW wewrite 0 — 7 iff —€50, + €7 is W-regular. It is known
that only one of —¢,0, + €, and —€,4, + €5 is W-regular [3]. For o, 7 € W with
o # 1 we define an unordered pair (o, 7) to be an edge in the graph T'(WW) on W iff
either ¢ — 7 or 7 — . This definition of graph depends upon the root system.
Therefore the correct notation for the graph is T(W(A)) but we write T'(A) or
(W) depending upon the context. For z € F and o € W | let 2(?) be the unique
image of zo in the fundamental domain of D. It can be easily shown that

(3.1) 2(07) = (2(0))(7)

for o,7 € W. If z € E® then 29 = zo+ Ts_.. Further ) e EA for v € Q.
From eqn.(3.1), we can easily obtain dyo = dy0 + 6, for o € W and v € Qy which
simplifies to

(3.2) €yo = €y + oyt
This leads to the following

Lemma 3.1. Let o,7 € W and v € Qy. Then 6 — 7 iff vo — 7. In
particular, (o, 7) is an edge in T(W) iff (yo,y7) is an edge in T(W).
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Proof. We have —€yo0, + €47 = (—€00o + €;)y " from eqn. (3.2). This shows that
—€o0 + €7 1s W-regular iff —e 55, + ¢+ is W-regular, which proves the lemma.

d

4. SOME RESULTS ON {2g.

First we prove a result for v; € Qy which holds for all Weyl groups associated
with the irreducible root system.

Lemma 4.1. Let v; = ogo;. Then v; is characterized by the following property:
v; is the unique element for which £(v;) = L(og) — L(0;),L(v; R;) < £(v;) and
L(v; Ri) > L(v;) for i # j, holds.

Proof. The relation v; = opo; easily gives the equality £(vy;) = £(og) — £(0;) since
L(ogo) = (o) — £(c) holds for any element o € W. Suppose £(y;R;) < £(v;)
for some @ # j, then v; = 7 R; where {(v;) (v;) + 1. Since O'j_l = oj, we
have og = v;o; and therefore {(oo) = £(vjo;) = £(v; Rioy) < U(v;) + £(Rioj) <
;) +€(o5) =1 = L(yj) +L(o;) =2 < L(v;)+L(oj) = L(o0), a contradiction. Hence
L(y;Ri) > L(v;) for 1 # j. If £(v; R;) > £(v;) also then +; is identity, which is a
contradiction. Therefore £(y; R;) < £(%;).

Now we prove the uniqueness. Suppose 7 has the property ¢(r) = £(co) —
L(o;),L(TR;) > £(r) for i # j and £(TR;) < £(r). We show that 7 = ;. Since
L(TR;) < £(7), we must have 7 # id. We show that

(4.1.1) Uroy) =L(T) + L(o;)

If (7) = 1 then 7 = R; and the equality follows easily, we assume ¢(7) > 1. Note
that if we write 7 = 7j7{ where £(7) = £(75) + £(7]) then £(r{R;) < £(r{) and
LT R;) > £(m) for i # j, otherwise we get a contradiction for the condition on 7.
Suppose

(4.1.2) Uroj) < L)+ L(oj)

Since £(1) > 1 we can write 7 = T R where

(4.1.3) Ur)=L(m) +4(m)+1, L) >0
Choose 7 such that

(4.1.4) Urioy) =L(m)+ Loy), ((Rrpmioj) < l(rioj)

This is possible because of the assumptions in eqn.(4.1.2). The choice of 1 shows
that

(4.1.5) U(Rymioj) = (1) + (o) = 1

By writing any reduced expression for 71,0; and applying “exchange condition”
to 1o we conclude from eqn.(4.1.4) that Rymo; is equal to either mo; or 7'10'}
where 7] has one generator less than that of expression for 7 and similarly for ¢/,
and therefore £(7{) < £(m1). In fact, £(r) = £(m1) — 1 and £(0}) = {(0;) — 1. This
can be proved as follows. If Rymo; = 7{0; then {(m{c;) < £(r]) + {(0;) and also
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Ur{o;) = £(m)+L(o;)—1 from eqn.(4.1.5) which gives £()—1 < {(7]) < £(m1) and
we get the result for 7. Similarly the claim for o} can be proved. If Rymo; = 10
holds then Ry = 7 where {(Rrm1) < €(m1), a contradiction to eqn.(4.1.3). If
Rymio; = 7'10'} then Rpm = 7'10'}0']' = 1 Ry for some £ # j, since E(O’}O’j) =1
because o; is the unique element of maximal length in W(A;) and ¢ € W(A;).
In this case we have 7 = m Rm = T2 Ry for some £ #£ j, and £(TRy) = {(mam) <
£(r2) +£(m) < £(7) from eqn.(4.1.3). Again a contradiction to the assumptions on
7. This proves eqn.(4.1.1). Therefore, we have {(r0;) = {(7) + £(0;) = £(0q) from
the condition on 7. Since o is the unique element of maximal length in W, we
must have 70; = 0g l.e. T = 0¢0; = 7; since 0; = O'j_l. This completes the proof
of the lemma 4.1. O

From now on we restrict our discussions to Weyl groups of type A,,. Let A,_;
denote the Dynkin diagram obtained by omitting the nth node in the Dynkin
diagram of A, . Therefore, if ay, a9, ..., a, are the simple roots corresponding to
A, then a1, s, ..., ap_1 are the simple roots for A,,_;. Let W(Ay) and W([In_l)
denote the corresponding Weyl groups. We have the following

Lemma 4.2. The subgroup Qo of W(Ay) is a cyclic group of order (n+ 1) gen-
erated by v1 = RoRn—1... ReRy. Further all the nonidentity elements of Qg do

not lie in W(An_1).
Proof. We have following correspondence from [5], page 661:
(421) A+ /\j = /\k(modX/) iff Vi = Yk

where y; = ogo; and oy is the maximal element in the group W(A;) where A; =
{7 # i}. It is known that for A,, X/X' is a cyclic group of order (n + 1)
generated by A; + X’. Therefore, by the correspondence in equn. (4.2.1), p is
generated by v; = opoy. It is easy to see that {(y;) = n, since the length of
the maximal element in W(A,) is n(n + 1)/2. TFurther, {(v1 R1) < ¢(y1) and
Ly Ri) > €(y1) for i £ 1. One can easily verify that the element R, R,_1... Ry
of W(A,) satisfies the conditions. Then by Lemma 4.1, we must have v; =
R,Ry,_1...RoR1. The element v = 71_1 = R1Ry... R, is also a generator of Q.
We have R;y17v = vR; for i = 1,2,...,n — 1. This gives Rn'yi = 'yiRn_l for
i=1,2,...,n— 1. Therefore, we have R, = ¥'R,,_1y " fori =1,2,... ,n— 1.
Now R,_; for ¢ = 1,2,...,n — 1 lies in W([In_l) and if any one of 4% for i =

1,2,...,n—1lies in W(An_l) then R, € W(An_l). A contradiction. Therefore

yifori=1,2,...,n—1and v* = y~! do not lie in W (A, _1). O

The above lemma 4.2 leads to the decomposition of W (A,) given below.
Lemma 4.3. Let v = RiRy ... R,. Then W(A,) 1is disjoint union of
W(An_l), ")/ W(An_l), ey ”an(An_l)

Proof. Recall that [W(A,)| = (n+1)!. Consider Qyo for ¢ € W(A,_1). Then
Qoo = {o,70,...,7"0}. Now none of yio for i = 1,2,...,ncan lie in W(A,_1)
sincey'o =7 € W(A,_1) impliesy' = 707! € W (A, _1) which contradicts lemma

4.2. Also |Qpo| = n + 1. The cosets {Qpo|o € W(A,_1)} are n! in number and
they make up for n!(n+1),i.e., (n+1)! elements. Therefore W(A,) = {Qyo|o €
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W(A,—_1)}. This shows that W(A,) = {Yoli=0,1,... ,n,0 € W(A,_1)} which
can be written as W(A4,) = {yYW(A,-1)|¢ = 0,1,... ,n} and this completes the
proof. O

Corollary 4.3. Every coset of Qg in W (A,,) contains a unique element of W (A,,_1).

Remark. We can consider the Dynkin diagram obtained by deleting the first
node in the Dynkin diagram of A, which we can denote by fln_l. Then all the
results mentioned in lemma 4.2 and lemma 4.3 are valid with A,,_; replaced by
fln_l and ~ replaced by ;.

Now we come to our crucial lemma for proving the connectedness of T'(A,,).

Lemma 4.4. In W(Ay), for n > 4 we have R,_3Rn_4 — RyRn_1Rn_2Rp_1.
In other words, forn >4, (Ry_3Rn—4, RnRn—1Rn—2R,_1) is an edge in T(A,).

Proof. We have from [6] (pages 205-206) ,
Ai=er+-+e—(i/(n+1))(er 4+ engr), Q= €; — €41,

for ¢ = 1,2,....n where ¢; are the orthonormal basis of the Euclidean space of
dimension (n 4 1). From this it easily follows that for n > 4,

(441) Anc1F+ A2 —Apca=ap_3+2ap_9+ 2ap_1 + @y
This gives
(442) (An—l + ATL—Z)Rn—an—ZRn—an + ((5 - An—4)Rn—4Rn—3 = 6Rn

In fact it is easy to verify that eqn.(4.4.2) gives eqn. (4.4.1) after using \;R; =
/\Z'—(Sijozj, aiRi+1 = a;taig, a; R;_1 = ay+a;_1,and OzZ'Rj = ay forj ;ﬁ +1,:—1.
Now eqn.(4.4.2) implies R,_sRp_4 — RpRn_1Rn_2Rp_1 since R, is W-regular
as it 1s in the interior of a Weyl chamber. O

5. CONNECTEDNESS OF I'(4,).
We state our main result in the following
Theorem 5.1. The graph T'(Ay,) for n > 4 is connected.

Proof. The proof is by induction on n. The graph T'(A4) is connected as it can be
easily verified by the fusion method described in [7] applied to the claws of T'(A4)
given in the appendix. Suppose T'(A,_1) for n > 4 is connected. We show that
['(A,) is connected. The subgraph I'(A,_;) of T'(4,) can be taken as I'(4,_1)
as A,_1 is of same type as A,_;. Suppose C is a connected component of T'(4,)
containing the connected subgraph F([In_l). From lemma 3.1, it easily follows
that v'C' is again a connected component for v € €.

From lemma 4.4, for n > 4, we have (R,_3Rp_4, RnRn_1Rn_2Rn_1) is an
edge in T'(A,). This edge lies in C as R,_3R,_4 € W(A,_1). Now the edge
(’)/Rn_an_4, ’)/Ran_an_an_l) which is same as (R1R2 N Ran_an_4, R1R2

..Rp_3Rn_1) lies in vC'. But the vertex Ry Ra ... Rp_3R,_1 lies in C as it is an
element of W([In_l). In other words, the vertex Ri1Rs...Rp_3R,_1 € CN~C.
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This implies C' = 4C', which in turn gives C = 4'C for i = 1,2, ... ,n. Therefore C
is stable under the group €2, since v generates {2g. We conclude that C' has all the
elements of ¥'W (A, _1) for i = 0,1,...,n, as vertices. By lemma 4.3, W (A,) is
union of 'in(fln_l) for i =0,1,2,... n. Therefore, C' contains all the elements
of W(A,,) as vertices. This proves I'(A,,) is connected for n > 4. O
The theorem suggests the following conjecture on the connectivity of T'(WW) for
any Weyl group W.
Conjecture. If A is an irreducible root system then T'(W(A)) is a connected
graph except when A 1is of type Ay, Az, A3 and Bs.

This conjecture is strongly supported by the graphs of the Weyl groups of type
G9, B3, C3, B4, Cy and D, for which we have the complete data with us.

Appendix

A pair of vertices u,v of a graph I' are said to be fused if the two vertices u, v
are replaced by a new vertex w such that every edge incident on either u or v or
on both is incident on w. Take any vertex v, of a graph and fuse all the vertices
adjacent to it. Take this fused vertex and fuse it with all the vertices adjacent
to it. Repeat this process till it is impossible to fuse the vertices any more. This
method gives a connected component of the graph I' containing the vertex vg. In
this way we can find all the connected components of the graph I'. In particular,
if all the vertices of I' are fused into a single vertex then I' is connected. We have
applied this method to the graph T'(A4) to conclude that it is connected.

Let Ty be a subgraph with vertices vy, vy, ..., v, and edges (vg, v1), (vo, va), ...,
(vo,vn). We call I'y a claw with centre vg. We write this claw as (vo,v1,...,v,)
where the centre vy is underlined. In general (ui,us,...,u;, ..., u,) denotes a

claw with centre u;.

Our computation of edges in T'(1¥) naturally gives the claws whose number is
less than the order of W. In general, the values of —¢,5, + ¢, with ¢ fixed and
T varying gives a claw with centre o. Listed below are the claws in T'(44). By
applying the “fusion” method to these claws we find that T'(A4) is connected.

The generators of W (A4) are Ry, Ro, Rs and Ry with relations R} = R3 = R3 =
RZ = id, (Rle)S = (R2R3)3 = (R3R4)3 = id, R1R3 = R3R1,R1R4 = R4R1 and
RaR4y = R4Rs where id is the identity element of W(Ay). If Ry Ry, ... R;,, is an
element of W(A4) then we write it as i1is...4,. The claw (3,3423 3121, 34121)
means the subgraph of T'(A4) with edges (3423, 3), (3423, 3121) and (3423, 34121)
where 3,3423,3121 and 34121 are elements of W(A4).




ON CONNECTEDNESS OF GRAPHS 169

Claws of T'(A4).

(id, 213, 3214, 2314, 41232, 324), (234, 1213, 43213, 34213, 4232, 323413), (1234,
213, 431213, 341213, 41232, 3123413), (423, 121, 4121, 3413, 4323413, 234232),
(3, 34123, 43121, 13, 434121, 23123413), (23, 234123, 423121, 213, 4234121
3123413), (312, 343, 123121, 4121, 1234121, 3413), (2, 42312, 24, 12343, 34234121,
123413), (32, 342312, 324, 312343, 4234121, 3123413), (321, 1232, 4324, 23124,
12324, 234121), (4321, 41232, 324, 423124, 412324, 4234121), (124, 4123124,
123121, 234123121, 4121, 1213214321), (23214, 21232, 34232, 123121, 234232,
1213214321), (14, 4123214, 3421232, 2341232, 34123121, 21234232), (413, 3431213
3413, 234232, 321234232, 1213214321), (34, 3213, 34213, 232), (4123, 43121,
43123413, 1234232), (3, 3423, 3121, 34121), (2, 2312, 2343, 23413), (4312, 12343,
4123121, 41234121), (21, 232, 2324, 23124), (3124, 12324, 34123124, 34121),
(123214, 341232, 3421232, 1234232), (423214, 421232, 2341232, 4123121), (4213,
43213, 23431213, 23413), (4, 213, 4213), (23, 121, 323413), (123, 3121, 3123413),
(32, 343, 234121), (432, 2343, 4234121), (L, 324, 3124), (32343, 34121, 234121),
(312343, 434121, 1234121), (2312343, 4234121, 41234121), (24, 42324, 4123121),
(43124, 4123121, 34123121), (124, 412324, 34123121), (24, 423124, 234123121),
(324, 2324, 3423124), (314, 232, 1232), (214, 232, 4232), (2314, 4232, 21232), (3214,
1232, 34232), (12314, 41232, 421232), (43214, 412, 341232), (41213, 1234232,
21234232), (13, 31213, 1234232), (13, 341213, 321234232), (413, 431213, 21234232),
(213, 3213, 2341213), (23121, 23413, 323413), (423121, 123413, 4323413), (3423121,
3123413, 43123413), (23413, 123413, 423123413), (34121, 434121, 341234121),
(43, 23413), (12, 34121), (2343, 4121), (2324, 123121), (3124, 123121), (123124,
4123121), (341232, 1213214321), (421232, 1213214321), (232, 23421232), (4213
234232), (3213, 234232), (343213, 1234232), (3121, 3413), (3413, 43123413), (4121,
41234121).
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