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ARCHIVUM MATHEMATICUM (BRNO)Tomus 31 (1995), 171 { 181PRE-SOLID VARIETIES OF SEMIGROUPSK. DENECKE AND J. KOPPITZAbstract. Pre-hyperidentities generalize the concept of a hyperidentity. Avariety V is said to be pre-solid if every identity in V is a pre-hyperidentity.Every solid variety is pre-solid. We consider pre-solid varieties of semigroupswhich are not solid, determine the smallest and the largest of them, and someelements in this interval. 1. IntroductionAn identity t � t0 is called a hyperidentity in a variety V if whenever theoperation symbols occuring in t and t0 are replaced by any terms of the appropriatearity, the identity which results holds in V ([14]). Hyperidentities can be de�nedmore precisely using the concept of a hypersubstitution ([2]).We �x a type � = (ni)i2I ; ni > 0 for all i 2 I, and operation symbols (fi)i2I ,where fi is ni-ary. Let W� (X) be the set of all terms of type � over some �xedalphabet X, and let Alg(� ) be the class of all algebras of type � . Then a mapping� : ffiji 2 Ig !W� (X)which assigns to every ni-ary operation symbol fi an ni-ary term will be called ahypersubstitution of type � (for short, a hypersubstitution). For a term t 2W� (X)by �̂[t] we de�ne the application of the hypersubstitution � to the term t. The term�̂[t] can be de�ned inductively by:(i) �̂[x] := x for any variable x in the alphabet X, and(ii) �̂[fi(t1; � � � ; tni)] := �(fi)W� (X)(�̂[t1]; � � � ; �̂[tni]).It is clear that �(fi)W� (X) on the right hand side of (ii) is the operation inducedby �(fi) on the term algebra W� (X).An identity t � t0 where t; t0 are terms of type � is a hyperidentity of type � (forshort a hyperidentity) in an algebra A 2 Alg(� ) if �̂[t] � �̂[t0] is an identity in Afor every hypersubstitution �.An important example of a hyperidentity is the type � = (2) medial hyperidentityF (F (x; y); F (z; t)) � F (F (x; z); F (y; t))1991 Mathematics Subject Classi�cation. 20M07, 08B15.Key words and phrases. hyperidentity, pre-hyperidentity, pre-solid variety.Received April 6, 1994



172 K. DENECKE AND J. KOPPITZwhich is a hyperidentity in the variety of all medial semigroups (de�ned by theidentity xyzt � xzyt ([15])).On the basis of a hypersubstitution in [2] a closure operator � de�ned on classes ofalgebras of type � and of sets of equations was introduced. If t � t0 is an equationthen by �[t � t0] we denote the set f�̂[t] � �̂[t0]j� is a hypersubstitution of type�g and by �[�] for a set � of equations the union of the sets �[t � t0] for t � t0 in�. Let A = (A; (fAi )i2I) be an algebra in Alg(� ) and let � be a hypersubstitution.Then we make the following de�nitions:�[A] := (A; (�(fi)A)i2I),�[A] := f�[A] j � is a hypersubstitution of type �g,�[K] := SA2K �[A].A variety V of type � is solid if �[V ] = V . In [2] it was shown that a vari-ety V is solid if and only if every identity in V is a hyperidentity. Equivalently,solid varieties can be characterized as classes of algebras satisfying a given set ofequations as hyperidentities (hyperequational classes). Although the concept of asolid variety is very strong there are in�nitely many solid varieties of semigroups([3]). All solid varieties of a given type � form a lattice which is a sublattice of thelattice of all varieties of type � .Note that the clone of a solid variety V (denoted by clone V see [14]) is a freeheterogeneous algebra with respect to the variety of heterogeneous algebras gener-ated by clone V ([6]). There is a lot of equations which cannot be hyperidentitiesin a nontrivial algebra (or variety). For instance, substituting one of the binaryprojections for F in the commutative law F (x; y) � F (y; x) we get x � y whichis satis�ed only in a trivial algebra. This observation motivates to weaken theconcept of a hyperidentity. The simplest way for weakeness could be to substituteonly terms di�erent from variables. The set of all term functions of an algebrawhich are di�erent from projections forms a so-called pre-iterative algebra ([11]).Therefore these weaker hyperidentities are called pre-hyperidentities in [7]. At �rstwe will set up the preliminary results and notation we will need and then we willconsider the set of all pre-solid varieties of semigroups.2. Basic ConceptsAccording to the ideas explained in the introduction we de�ne a pre-hypersub-stitution of type � as a mapping�p : ffiji 2 Ig ! W� (X) nXwhich assigns to every operation symbol fi an ni-ary term which is di�erent froma variable. (Note that we consider the �rst ni variables x0; � � � ; xni�1 of the stan-dard alphabet X = fx0; � � � ; xni�1; � � �g as ni-ary terms. A composed term iscalled ni-ary if it is built up from operation symbols of the correponding aritiesand variables from this alphabet X.)



PRE-SOLID VARIETIES OF SEMIGROUPS 173The extension �̂p[t] of a pre-hypersubstitution to a term t is de�ned inductivelyby (i) �̂p[x] := x for any variable x in the alphabet X, and(ii) �̂p[fi(t1; � � � ; tni)] := �p(fi)W� (X)(�̂p[t1]; � � � ; �̂p[tni ]).The expression �p(fi)W� (X) on the right hand side of (ii) is the operation inducedby �(fi) on the term algebra W� (X).If t � t0 is an equation, then we denote by �p[t � t0] the setf�̂p[t] � �̂p[t0] j �p is a pre-hypersubstitution gIf � is a set of equations, we use �p[�] for the union of the sets �p[t � t0], fort � t0 in �.Let A = (A; (fAi )i2I) be an algebra in Alg(� ), and let K be a class of algebrasof type � . Then we de�ne:�p[A] := (A; (�p(fi)A)i2I),�p[A] := f�p[A] j �p is a pre-hypersubstitution of type �g ,�p[K] := SA2K �p[A]:In [7] we proved the following proposition:Result 2.1. �p is a closure operator on sets of equations � and on classes ofalgebras K of type � , i.e.(i) � � �p[�],(ii) �0 � �) �p[�0] � �p[�],(iii) �p[�p[�]] = �p[�],(i') K � �p[K],(ii') K0 � K ) �p[K 0] � �p[K],(iii') �p[�p[K]] = �p[K]. �Since every pre-hypersubstitution is a hypersubstitution we haveResult 2.2. Let K be a class of algebras of type � and let � be a set of equationsof type � . Then(i) �p[�] � �[�] and(ii) �p[K] � �[K]. �Using the concept of a pre-hypersubstitution we de�ne pre-hyperidentities in thefollowing way:De�nition 2.3. Let A 2 Alg(� ) be an algebra of type � . Then the identityt � t0, where t; t0 are terms of type � is a pre-hyperidentity of type � in A(A pre-hypersatis�es t � t0) if �̂p[t] � �̂p[t0] is an identity of A for every pre-hypersubstitution �p.Clearly, every hyperidentity of type � is a pre-hyperidentity of this type. Ingeneral, the converse is false.



174 K. DENECKE AND J. KOPPITZFor a class K of algebras of type � and for a set � of equations of this type we�x the following notations:IdK - the class of all identities of K,HIdK- the class of all hyperidentities of K,HpIdK- the class of all pre-hyperidentities of K,Mod� = fA 2 Alg(� )jA satis�es �g - the variety de�ned by �HMod� = fA 2 Alg(� )jA hypersatis�es �g - the hyperequational classde�ned by �,HpMod� = fA 2 Alg(� )jA pre-hypersatis�es �g - the pre-hyperequational classde�ned by �,V arK = ModIdK - the variety generated by K,HV arK = HModHIdK = fA 2 Alg(� )jA hypersatis�es HIdKg - the hyperva-riety of type � generated by K.For these sets we get the following inclusions:HIdK � HpIdK; HMod� � HpMod�.By de�nition every hyperidentity or every pre-hyperidentity is an identity. Verynatural there arises the problem to �nd algebras or varieties for which every iden-tity is a hyperidentity or such that every identity is a pre-hyperidentity.De�nition 2.4. Let V be a variety of type � . Then V is called pre-solid if �p[V ] =V . In [7] pre-solid varieties were characterized in the following manner:Result 2.5. ([7]) Let K � Alg(� ) be a variety. Then the following conditions areequivalent:(i) K is a pre-hyperequational class,(ii) K is pre-solid,(iii) IdK � HpIdK, i.e. every identity of K is a pre-hyperidentity,(iv) �p[IdK] = IdK, i.e. IdK is closed under pre-hypersubstitutions. �For a given type � by L(� ) we denote the lattice of all varieties of this type andby S(� ) the set of all solid varieties of this type. Sp(� ) is the set of all pre-solidvarieties of type � . Then we have the following results:Result 2.6. ([10], [13])(i) The set S(� ) forms a sublattice of L(� ),(ii] The set Sp(� ) forms a sublattice of L(� ) containing S(� ) as a sublattice.(iii) If � is a �nite type then the lattice S(� ) is atomic. The unique atom isthe variety RA� of all rectangular algebras of type � . (RA� is the varietygenerated by all algebras of type � whose fundamental operations areprojections). �



PRE-SOLID VARIETIES OF SEMIGROUPS 1753. Solid and Pre-solid Varieties of SemigroupsBy L(S) we denote the lattice of all semigroup varieties. To describe a bit moreof the structure of all pre-solid varieties of semigroups we note that a varietyof semigroups to be solid it must satisfy the associative law as a hyperidentity.That means, the greatest solid variety of semigroups is the hypermodel class ofthe associative law: HModfF (F (x; y); z) � F (x; F (y; z))g. In [1] we obtained anequational basis for this variety:HModfF (F (x; y); z) � F (x; F (y; z))g = VHS with VHS = ModfI1 [ I2 [ fx2 �x4gg where I1 and I2 are the following sets of identities:I1 := f(xk1yk2 � � �xkn�1ykn )k1zk2 � � � (xk1yk2 � � �xkn�1ykn )kn�1zkn� xk1(yk1zk2 � � �ykn�1 zkn)k2 � � �xkn�1(yk1zk2 � � �ykn�1 zkn)kn jn 2 f2; 4; 6gfor 1 � k1; � � � ; kn � 3g:I2 := f(xk1(yk1zk2yk3 � � �zkn�1ykn )k2 � � � (yk1zk2yk3 � � �zkn�1ykn )kn�1xkn� (xk1yk2xk3 � � �ykn�1xkn)k1zk2 � � � (xk1yk2xk3 � � �ykn�1xkn)kn jn 2 f3; 5gfor 1 � k1; � � � ; kn � 3g:Note that L. Pol�ak recently proved that VHS = Modfx(yz) � (xy)z; xyxzxyx �xyzyx; x2 � x4; xy2z2 � xyz2yz2; x2y2z � x2yx2yzg.By S(VHS ) we denote the lattice of all solid semigroup varieties (indeed, theset of all solid semigroup varieties forms a sublattice of L(S) since S(VHS ) is theintersection of the subvariety lattice of the variety VHS and the lattice of all solidvarieties of type � = (2).)According to Result 2.6 every non trivial solid semigroup variety contains thevariety RB of all rectangular bands which is de�ned by the identities x(yz) �(xy)z; x2 � x; xyz � xz. Then we have:Result 3.1. ([5]) The variety RB is the least nontrivial element of S(VHS ).We call an equation t � t0 to be left-most (right-most) if the left-most (right-most) variables in t and t0 are the same. An equation t � t0 will be called outer-most if it is left-most and right-most. These notions were used by E. Graczy�nskain [9]. Let Out(2) be the set of all outer-most equations of type � = (2). Clearly,IdRB = Out(2). As a consequence, a hyperidentity must be an outer-most equa-tion. The following useful fact is obvious:Proposition 3.2. Let V be a nontrivial variety of semigroups and let t � t0 bean outer-most equation of type � = (2). Then t � t0 is a hyperidentity in V if andonly if t � t0 is a pre-hyperidentity in V .Proof.Clearly, if t � t0 is a hyperidentity satis�ed in V then it is a pre-hyperidentityin V . Let t � t0 be a pre-hyperidentity satis�ed in V . Then for every pre-hypersub-stitution �p we have �p[t] � �p[t0] 2 IdV . A hypersubstitution which is no pre-



176 K. DENECKE AND J. KOPPITZhypersubstitution assigns to the binary fundamental operation symbol a binaryprojection. Since t � t0 is outer-most the equation �[t] � �[t0] is equal to x � x orto y � y which is an identity in V . Altogether, for every hypersubstitution � wehave �[t] � �[t0] 2 IdV and t � t0 is a hyperidentity in V .Clearly, the associative law is an outermost equation and applying Proposition3.2 we have:Corollary 3.3. The variety VHS is pre-solid and for any pre-solid variety V ofsemigroups, V � VHS .Proof. As a solid variety VHS is pre-solid. Since VHS is the hyperequational classgenerated by the associative law it is also the pre-hyperequational class generatedby the associative law and thus the greatest pre-solid variety of semigroups.Let Sp(VHS ) be the set of all pre-solid semigroup varieties. We want to discussthe following question:Are there pre-solid semigroup varieties in the interval between RB and VHS whichare not solid?The answer is given in [7], namelyLemma 3.4. ([7]) Let V be a variety of type � = (2) such that RB � V . Then Vis solid i� V is pre-solid.Proof. If V is solid then V is also pre-solid. Let V be pre-solid. The inclusionRB � V means that every identity in V is outer-most. Therefore, by Proposition3.2 every pre-hyperidentity is a hyperidentity and since every identity is a pre-hyperidentity V must be solid.Lemma 3.4 shows that a pre-solid variety of semigroups which is not solid mustbe outside of the interval between RB and VHS . Now we ask for the greatestpre-solid semigroup variety which is not solid.Proposition 3.5. The variety VPS := Modf(xy)z � x(yz); xyxzxyx � xyzyx;x2 � y2; x3 � y3g is pre-solid, but not solid.Proof. Since the identity x2 � y2 is no outer-most equation and since VPS isnontrivial the variety VPS is not solid. We are going to show that VPS is thepre-hyperequational class de�ned by the associative law, by F (x; x) � F (y; y),and by F (x; F (x; x)) � F (y; F (y; y)). Now, VPS � ModfI1 [ I2 [ fx2 � x4ggsince I1 [ I2 [ fx2 � x4g � f(xy)z � x(yz); xyxzxyx � xyzyxg [ fuv2w �u0v02w0ju; v; w; u0; v0; w0 are binary terms g � IdModf(xy)z � x(yz); xyxzxyx �xyzyx; x2 � y2; x3 � y3g because of uv2w � u3w � w4 � u03w0 � u0v02w0. SinceModfI1 [ I2 [ fx2 � x4gg = HpModfF (x; F (y; z)) � F (F (x; y); z)g the associa-tive law is a pre-hyperidentity in VPS . We have to check that F (x; x) � F (y; y)and F (F (x; x); x)� F (F (y; y); y) are pre-hyperidentities in VPS . For every binaryterm di�erent from a variable there are natural numbers r; s > 1 with t(x; x) = xr,t(y; y) = yr , respectively with t(t(x; x); x) = xs and t(t(y; y); y) = ys. Because of



PRE-SOLID VARIETIES OF SEMIGROUPS 177x2 � y2; x3 � y3 2 IdVPS we get t(x; x) � t(y; y); t(t(x; x); x) � t(t(y; y); y) 2IdVPS . (Note that t(x; y) means, the term is constructed only from the variablesx and y.) Altogether, VPS � HpModfF (F (x; y); z) � F (x; F (y; z)); F (x; x) �F (y; y); F (F (x; x); x)� F (F (y; y); y)g. On the other hand we see that the identi-ties x(yz) � (xy)z; xyxzxyx � xyzyx; x2 � y2; x3 � y3 are satis�ed inHpModfF (F (x; y); z) � F (x; F (y; z)); F (x; x) � F (y; y); F (F (x; x); x) �F (F (y; y); y)g. This shows the equality VPS = HpModfF (F (x; y); z) � F (x; F (y; z));F (x; x) � F (y; y); F (F (x; x); x) � F (F (y; y); y)g and by Result 2.5 the varietyVPS is pre-solid.Theorem 3.6. For every nontrivial pre-solid variety V of semigroups the followingpropositions are equivalent:(i) V � VPS ;(ii) V is not solid.Proof. (i) ) (ii): Since the equation F (x; x) � F (y; y) is no hyperidentity in Vthe variety V is not solid.(ii) ) (i): Since V is pre-solid and not solid by Lemma 3.4 the variety of rect-angular bands is not included in V . Then there is an identity in IdV whichis not outer-most. We conclude that there are natural numbers m;n and vari-ables u0; : : : ; um; v0; : : : vn 2 X such that u0 6= v0 or um 6= vn and u0 : : :um �v0 : : : vn 2 IdV . Without restriction of the generality assume that u0 6= v0. Sub-stituting t(x; y) = x2 and t(x; y) = x3 we obtain u20 � v20 2 IdV , respectivelyu30 � v30 2 IdV and thus V � Modfx2 � y2; x3 � y3g: Since V is pre-solid byCorollary 3.3, V � VHS : Altogether we have V � VPS .Theorem 3.6 shows that VPS is the greatest pre-solid variety of semigroupswhich is not solid. It is very natural to ask for the least pre-solid variety of semi-groups which is not solid. Let Z = Modfx(yz) � (xy)z; xy � ztg be the varietyof all zero-semigroups. It is easy to see that Z is pre-solid but not solid.Theorem 3.7. Let V be a pre-solid variety of semigroups. If V is not solid thenZ � V .Proof. Since V is not solid V cannot be trivial. Any nontrivial variety V ofsemigroups must include at least one of the atoms of the lattice of all semigroupvarieties (listed for example in [8]). Since V is pre-solid by Corollary 3.3 we haveV � VHS and every atom included in V must be hyperassociative. In [1] wedetermined all hyperassociative atoms in the lattice of all semigroup varieties:zero-semigroups (xy � zt), right semigroups (xy � x), left semigroups (xy � y),semilattices (xy � yx; x2 � x), and 2-groups (xy � yx; x2y � y). Since byTheorem 3.6 V � VPS the identities x2 � y2 and x3 � y3 must be satis�ed inan atom included in V . These identities are satis�ed only in the variety Z of allzero-semigroups, thus Z � V .Considering the set Sp(VHS ) we get:Proposition 3.8. The set Sp(VHS ) n S(VHS ) forms a sublattice of Sp(VHS).



178 K. DENECKE AND J. KOPPITZProof. Consider two varieties V1; V2 2 Sp(VHS )nS(VHS ). Then V1_V2 and V1^V2are pre-solid by Result 2.6. Because of V1_V2; V1^V2 � VPS the equation x2 � y2is satis�ed in V1_V2 and inV1^V2. The equation x2 � y2 cannot be a hyperidentityin these varieties. This shows that both varieties are not solid.A solid variety V must contain the variety RB. Therefore the join of a solidvariety V and the pre-solid variety Z can be written as V _ Z = V _ (RB _ Z).It is well-known that RB _ Z = Modfxyz � xzg is solid ([9], [15], [3]) and thatthe join of two solid varieties is solid (Result 2.6). This example motivates thefollowing question: Is the join of a solid and an arbitrary pre-solid variety solid ?To attack this question we use Theorem 2.7 and obtain:Proposition 3.9. Let V1 be a nontrivial solid and let V2 be a a pre-solid varietyof semigroups. Then the variety V1 _ V2 is solid.Proof. By Result 2.6 the variety V1 _ V2 is pre-solid and because of RB � V1 �V1 _ V2 and Lemma 3.4 solid.Remark that the varieties RB and VPS have certain \splitting " properties forthe lattice Sp(VHS ). Indeed, if the variety V is nontrivial, pre-solid and containsRB then V is solid. If the variety RB is not contained in V then V belongs toSp(VHS )nS(VHS ). If V is nontrivial, pre-solid and contained in VPS then V belongsto Sp(VHS ) n S(VHS ). If V is not contained in VPS then V is solid.4. ApplicationsProposition 3.8 is useful to derive new solid varieties from given ones. We willconsider a special case of this theorem.An identity t � t0 is called normal (see e.g.[9]) if t and t0 are the same variable orneither t nor t0 are variables. By N (� ) we denote the set of all normal identitiesof type � . For a variety V of type � we set N (V ) := N (� ) \ IdV . The varietyVN :=ModN (V ) is called the normalization of V . It is easy to see that IdZ is theset of all normal identities of type � = (2). Therefore, for a variety V of semigroupsV _ Z is the normalization of V and we have:Corollary 4.1. The normalization of a pre-solid variety of semigroups is pre-solid.Proof. Let V be a pre-solid but not solid variety of semigroups, then by Theorem3.7, VN = V = V _ Z. If V is solid then by Theorem 3.8 VN is solid and thuspre-solid.(For solid varieties Corollary 4.1 was shown in [4]).One could ask whether the solidity of V _ Z implies the solidity of V .To formulate the following Theorem we need all solid varieties of bands. Thereare exactly the following solid varieties of bands ([15]):1. RB = Modfx(yz) � (xy)z � xz; x2 � xg { rectangular bands,2. RegB = Modfx(yz) � (xy)z; x2 � x; xyxzx � xyzxg { regular bands,3. NB = Modfx(yz) � (xy)z; x2 � x; xyzt � xzytg { normal bands.



PRE-SOLID VARIETIES OF SEMIGROUPS 179Theorem 4.2. Let V be a nontrivial variety of semigroups. Then the following isequivalent:(i) V is solid,(ii) V _ Z is solid and for V there holds V � Z or V 2 fRB;NB;RegBgProof. Let V be solid, then V _Z is solid by Corollary 4.1. Assume that x2 � x 62IdV . We will show that IdV consists only of normal identities. At �rst we checkidentities of the form xm � x with m > 2. Let k > 2 be the least natural numberwith xk � x 2 IdV . From F (xk�1; x) � x we obtain by the hypersubstitution� : F 7! x the identity xk�1 � x 2 IdV in contradiction of the minimality of k.Assume there is an identity u � v 2 IdV which is not normal and so that thesets of variables in u and in v are di�erent. Each of the terms u and v contains atmost two variables since otherwise xm � x 2 IdV with m � 3. Therefore u � vis one of the following identities: yz � x, or xz � x, or zx � x. These identitiescannot be hyperidentities in V in contradiction to the solidity of V . This showsZ � V . Assume now that x2 � x 2 IdV , that is, V is a variety of bands. ThenV 2 fRB;RegB;NBg.If Z � V then from the solidity of V _ Z follows the solidity of V = V _ Z. Thesolidity of RB;RegB, and NB is clear.5. Examples for Pre-solid Varieties of SemigroupsIn the introduction we remarked that there is no nontrivial solid variety ofcommutative semigroups. In [5] we determined all pre-solid varieties of commuta-tive semigroups. Clearly, the pre-hyperequational class de�ned by the associativeand the commutative law must be the greatest pre-solid variety of commutativesemigroups (Result 2.5). In [5] we determined an equational basis for this variety.There holds:HpModfF (F (x; y); z) � F (x; F (y; z)); F (x; y) � F (y; x)g = Modf(xy)z � x(yz);xy � yx; xy2 � x2y; x2 � y2g =: VPC .We �x the following denotations:pn : x0x1 : : : xn � y0y1 : : : yn,In = f(xy)z � x(yz); xy � yx; xy2 � x2y; x2 � y2; pngPn =ModIn for every natural number n.Then we have:Result 5.1. ([5]) The varieties Pn; n 2 N and VPC are all pre-solid varieties ofcommutative semigroups. They form a lattice, namely the subvariety lattice ofVPC (which is a chain).It is a well-known fact ([15]) that in every variety of medial semigroups the me-dial law is a hyperidentity. The greatest solid variety of medial semigroups is thehyperequational class de�ned by the medial and the associative law,HModfF (F (x; y); F (z; t))� F (F (x; z); F (y; t)); F (F (x; y); z) � F (x; F (y; z))g =Modfx(yz) � (xy)z; xyzt � xzyt; x2 � x4; x3y2zx � xy2zxg = HM . This vari-ety is pre-solid. We ask for pre-solid varieties of medial semigroups which are not



180 K. DENECKE AND J. KOPPITZsolid.Lemma 5.2. The variety VMPS := Modf(xy)z � x(yz); xyzt � xzyt; x2 �y2; x3 � y3g is pre-solid.Proof.We show that VMPS is a pre-hyperequational class. The inclusion VMPS �HM implies that VMPS satis�es the associative and the medial law as hyperiden-tities. These equations are outer-most and therefore pre-hyperidentities in VMPS .Further, VMPS � VPS since VPS is the greatest pre-solid variety of semigroupswhich is not solid. Since the equations F (x; x) � F (y; y) and F (F (x; x); x) �F (F (y; y); y) are pre-hyperidentities in VPS they are pre-hyperidentities in VMPS �VPS . This shows: VMPS � HpModfF (F (x; y); z) � F (x; F (y; z));F (F (x; y); F (z; t)) � F (F (x; z); F (y; t)); F (x; x) � F (y; y); F (F (x; x); x) �F (F (y; y); y)g. On the other hand, it is easy to show that this pre-hyperequationalclass is included in VMPS .Theorem 5.3. For every pre-solid variety V of semigroups the following is equiv-alent:(i) V is medial but not solid,(ii) V � VMPS .Proof. (i)) (ii): Since V is pre-solid the associative law is a pre-hyperidentity inV and hence it is a hyperidentity in V . The variety V is medial and therefore, V �HM = Modfx(yz) � (xy)z; xyzt � xzyt; x2 � x4; x3y2zx � xy2zxg. Further,we have V � VPS since V is pre-solid but not solid (Theorem 3.6). Consequently,V � HM \ VPS � Modfx(yz) � (xy)z; xyzt � xzyt; x2 � y2; x3 � y3g:(ii)) (i): Obviously V is medial and V � VMPS � VPS . Then by Theorem 3.6 Vis not solid.Theorem 5.3 means that VMPS is the greatest pre-solid variety of medial semi-groups which is not solid. References1. Denecke, K. and Koppitz, J., Hyperassociative semigroups, Semigroup Forum, Vol. 49,(1994)41-48.2. Denecke, K., Lau, D., P�oschel, R. and Schweigert, D., Hyperidentities, hyperequationalclasses and clone congruences, Contributions to General Algebra 7, Verlag Hölder-Pichler-Tempsky, Wien 1991 - Verlag B.G. Teubner, Stuttgart (1991) 97-118.3. Denecke, K. and Wismath, S. L., Solid varieties of semigroups, Semigroup Forum, Vol. 48,(1994) 219-234.4. Denecke, K. and P lonka, J., On regularizations and normalizations of solid varieties, in:General Algebra and Discrete Mathematics, Berlin 1995, 83-92.5. Denecke, K. and Koppitz, J., Presolid varieties of commutative semigroups, preprint 1993.6. Denecke, K., Lau, D., P�oschel, R. and Schweigert, D., Free Clones and Solid Varieties,preprint 1993.7. Denecke, K., Pre-solid varieties, Demonstratio Mathematica, Vol. 27, 3-4 (1994), 741-750.
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