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PRE-SOLID VARIETIES OF SEMIGROUPS

K. DENECKE AND J. KOPPITZ

ABSTRACT. Pre-hyperidentities generalize the concept of a hyperidentity. A
variety V is said to be pre-solid if every identity in V' is a pre-hyperidentity.
Every solid variety is pre-solid. We consider pre-solid varieties of semigroups
which are not solid, determine the smallest and the largest of them, and some
elements in this interval.

1. INTRODUCTION

An identity ¢ a2 t' is called a hyperidentity in a variety V if whenever the
operation symbols occuring in ¢ and ¢’ are replaced by any terms of the appropriate
arity, the identity which results holds in V' ([14]). Hyperidentities can be defined
more precisely using the concept of a hypersubstitution ([2]).

We fix a type 7 = (n;)ser, i > 0 for all ¢ € I, and operation symbols (fi)ier,
where f; is ng-ary. Let W, (X)) be the set of all terms of type 7 over some fixed
alphabet X and let Alg(7) be the class of all algebras of type 7. Then a mapping

o {fili eI} - W, (X)
which assigns to every n;-ary operation symbol f; an n;-ary term will be called a
hypersubstitution of type r (for short, a hypersubstitution). For a term t € W, (X)

by &[t] we define the application of the hypersubstitution & to the term ¢. The term
o[t] can be defined inductively by:

(i) &[x] := x for any variable # in the alphabet X, and

(i) olfilte, - )] == o (£)V- X (@l -, oltn])-
It is clear that o(f;)"Y~X) on the right hand side of (ii) is the operation induced
by o(f;) on the term algebra W, (X).
An identity t & ¢/ where ¢,¢' are terms of type 7 is a hyperidentity of type 7 (for
short a hyperidentity) in an algebra A € Alg(r) if 6[t] ~ &[t'] is an identity in A
for every hypersubstitution o.
An important example of a hyperidentity is the type 7 = (2) medial hyperidentity

F(F(2.9), F(z.0)) % F(F(2.2), F(y.1))
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which is a hyperidentity in the variety of all medial semigroups (defined by the
identity zyzt ~ xzyt ([15])).

On the basis of a hypersubstitution in [2] a closure operator = defined on classes of
algebras of type 7 and of sets of equations was introduced. If ¢ &~ ¢’ is an equation
then by Z[t a2 t'] we denote the set {c[t] &~ o[t']|o is a hypersubstitution of type
7} and by Z[X] for a set ¥ of equations the union of the sets Z[t a2 ¢'] for ¢ & ¢’ in
Y. Let A = (A4; (f#)ier) be an algebra in Alg(7) and let ¢ be a hypersubstitution.
Then we make the following definitions:

olA] = (4 (o(fi)M)ier),
E[A] := {o[A] | o is a hypersubstitution of type 7},
EIK] = =E[A].

AeK

A variety V of type 7 is solid if E[V] = V. In [2] it was shown that a vari-

ety V 1s solid if and only if every identity in V' is a hyperidentity. Equivalently,
solid varieties can be characterized as classes of algebras satisfying a given set of
equations as hyperidentities (hyperequational classes). Although the concept of a
solid variety is very strong there are infinitely many solid varieties of semigroups
([3]). All solid varieties of a given type 7 form a lattice which is a sublattice of the
lattice of all varieties of type 7.
Note that the clone of a solid variety V (denoted by clone V see [14]) is a free
heterogeneous algebra with respect to the variety of heterogeneous algebras gener-
ated by clone V ([6]). There is a lot of equations which cannot be hyperidentities
in a nontrivial algebra (or variety). For instance, substituting one of the binary
projections for F' in the commutative law F(z,y) ~ F(y,z) we get  ~ y which
is satisfied only in a trivial algebra. This observation motivates to weaken the
concept of a hyperidentity. The simplest way for weakeness could be to substitute
only terms different from variables. The set of all term functions of an algebra
which are different from projections forms a so-called pre-iterative algebra ([11]).
Therefore these weaker hyperidentities are called pre-hyperidentities in [7]. At first
we will set up the preliminary results and notation we will need and then we will
consider the set of all pre-solid varieties of semigroups.

2. Basic CONCEPTS

According to the ideas explained in the introduction we define a pre-hypersub-
stitution of type T as a mapping
op {filie It > WA(X)\ X
which assigns to every operation symbol f; an n;-ary term which is different from
a variable. (Note that we consider the first n; variables g, -+, 2,,_1 of the stan-
dard alphabet X = {aq, -+ ,¢n,—1, -} as n;-ary terms. A composed term is

called ng-ary if it 1s built up from operation symbols of the correponding arities
and variables from this alphabet X.)
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The extension &,[t] of a pre-hypersubstitution to a term ¢ is defined inductively

by

(1) 6p[x] := x for any variable 2 in the alphabet X, and

(11) &P[fi(tla T at”z)] = Up(fi)WT(X)(&P[tl]a T ’&P[tnz])'
The expression Up(fi)WT(X) on the right hand side of (ii) is the operation induced
by o(f;) on the term algebra W, (X).
If t &t is an equation, then we denote by Z,[t & ¢'] the set

{6,[t] = 6,[t'] | 0p is a pre-hypersubstitution }

If ¥ is a set of equations, we use =,[X] for the union of the sets =,[t ~ ¢], for
tat in X,

Let A= (A; (f#)ies) be an algebra in Alg(r), and let K be a class of algebras

K3

of type 7. Then we define:

oplA]l = (A (op(fi)*)ier),
Ep[A] = {op[A] | op is a pre-hypersubstitution of type 7},
S = U SAL

AeK
In [7] we proved the following proposition:

Result 2.1. £, is a closure operator on sets of equations ¥ and on classes of
algebras K of type 1, i.e.
) Y C Y= 5] CEE]
(iii) Zp [Ep [X]] = Ep [X],
) K C =K,

) K' C K = E,[K'] C E,[K],

(i) E,[E,[K]] = E,[K]. d
Since every pre-hypersubstitution is a hypersubstitution we have

Result 2.2. Let K be a class of algebras of type T and let ¥ be a set of equations
of type 7. Then

(i) 2,05 C Z[S] and

(i) =,[K] C E[K]. O
Using the concept of a pre-hypersubstitution we define pre-hyperidentities in the
following way:

Definition 2.3. Let A € Alg(r) be an algebra of type 7. Then the identity
t ~ t', where t,#' are terms of type 7 is a pre-hyperidentity of type 7 in A
(A pre-hypersatisfies t & t) if 6,[t] & 6,[t'] is an identity of A for every pre-
hypersubstitution op,.

Clearly, every hyperidentity of type 7 is a pre-hyperidentity of this type. In
general, the converse is false.
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For a class K of algebras of type 7 and for a set X of equations of this type we
fix the following notations:
IdK - the class of all identities of K,
HIdK- the class of all hyperidentities of K,
HpIdK- the class of all pre-hyperidentities of K,
Mod% = {A € Alyg(7)|A satisfies £} - the variety defined by X
HMod% = {A € Alg(r)|A hypersatisfies X} - the hyperequational class
defined by X,
H,ModZ = {A € Alg(7)|A pre-hypersatisfies X} - the pre-hyperequational class
defined by X,
VarK = ModldK - the variety generated by K,
HVarK = HModHIdK = {A € Alg(r)|A hypersatisfies HIdK} - the hyperva-
riety of type 7 generated by K.
For these sets we get the following inclusions:

HIdK C H,IdK, HMod%: C H,ModX.

By definition every hyperidentity or every pre-hyperidentity is an identity. Very
natural there arises the problem to find algebras or varieties for which every iden-
tity is a hyperidentity or such that every identity is a pre-hyperidentity.

Definition 2.4. Let V be a variety of type 7. Then V is called pre-solid if Z,[V] =
V.

In [7] pre-solid varieties were characterized in the following manner:

Result 2.5. ([7]) Let K C Alg(r) be a variety. Then the following conditions are
equivalent:

(i) K is a pre-hyperequational class,
(i1) K is pre-solid,

(ii) IdK C H,IdK, i.e. every identity of K is a pre-hyperidentity,

(iv) E,[IdK] = IdK, i.e. IdK is closed under pre-hypersubstitutions. d

For a given type 7 by £(7) we denote the lattice of all varieties of this type and
by S(7) the set of all solid varieties of this type. S,(7) is the set of all pre-solid
varieties of type 7. Then we have the following results:

Result 2.6. ([10], [13])

(i) The set S(r) forms a sublattice of L(7),
(ii] The set S,(7) forms a sublattice of £(7) containing S(7) as a sublattice.
(iii) If 7 is a finite type then the lattice S(r) is atomic. The unique atom is
the variety RA; of all rectangular algebras of type 7. (RA; is the variety
generated by all algebras of type ™ whose fundamental operations are
projections). d
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3. SOLID AND PRE-SOLID VARIETIES OF SEMIGROUPS

By £(S) we denote the lattice of all semigroup varieties. To describe a bit more
of the structure of all pre-solid varieties of semigroups we note that a variety
of semigroups to be solid it must satisfy the associative law as a hyperidentity.
That means, the greatest solid variety of semigroups is the hypermodel class of
the associative law: HMod{F(F(x,y),z) ~ F(z, F(y,z))}. In [1] we obtained an
equational basis for this variety:

HMod{F(F(x,y),z) ~ F(x, F(y,2))} = Vgs with Vgs = Mod{l; UI; U {z? ~
x%}} where I; and I are the following sets of identities:

I o= {(aFryhe - aFnmrgkn ki ke o (gRagka gkt ke

2R (g R et Ry ha e (R gRa ke Rk € (2,4, 6)
for 1 <ky, -k <3}

kn

[2 — {(lzkl(ykl Zk2yk3 .. ,an—l ykn)k2 . (ykl Zk2yk3 .. ,an—l ykn)kn—l xkn
~ (l,klyl@xka . ,ykn—lxkn)klzk2 . ( klykzxka .. .ykn—lxk")k"|n € {3, 5}
for 1 <ky, -k <3}

Note that L. Poldk recently proved that Vs = Mod{xz(yz) ~ (zy)z, zyxzeye ~
ryzyr, vl n 2t wy?? ~oryty2? 2?y?s & oxlyrlyz).

By S(Vis) we denote the lattice of all solid semigroup varieties (indeed, the
set of all solid semigroup varieties forms a sublattice of £(S5) since S(Vps) is the
intersection of the subvariety lattice of the variety Vs and the lattice of all solid
varieties of type 7 = (2).)

According to Result 2.6 every non trivial solid semigroup variety contains the
variety RB of all rectangular bands which is defined by the identities z(yz)
(zy)z, 2? ~ x, vyz & zz. Then we have:

Result 3.1. ([5]) The variety RB is the least nontrivial element of S(Vgs). O

We call an equation ¢ & ' to be left-most (right-most) if the left-most (right-
most) variables in ¢ and ¢/ are the same. An equation ¢ & ¢/ will be called outer-
most 1f it is left-most and right-most. These notions were used by E. Graczynska
in [9]. Let Out(2) be the set of all outer-most equations of type 7 = (2). Clearly,
IdRB = Out(2). As a consequence, a hyperidentity must be an outer-most equa-
tion. The following useful fact is obvious:

Proposition 3.2. Let V be a nontrivial variety of semigroups and let t ~ ¢ be
an outer-most equation of type 7 = (2). Then t /s t' is a hyperidentity in V if and
only if t ~ t' is a pre-hyperidentity in V.

Proof. Clearly, if t & t is a hyperidentity satisfied in V' then it is a pre-hyperidentity
in V. Let t &t/ be a pre-hyperidentity satisfied in V. Then for every pre-hypersub-
stitution ¢, we have o,[t] & o,[t'] € IdV. A hypersubstitution which is no pre-
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hypersubstitution assigns to the binary fundamental operation symbol a binary
projection. Since ¢ & t' is outer-most the equation o[t] & o[t'] is equal to = & z or
to y & y which is an identity in V. Altogether, for every hypersubstitution o we
have o[t] & o[t'] € IdV and ¢ &t is a hyperidentity in V. O

Clearly, the associative law is an outermost equation and applying Proposition
3.2 we have:

Corollary 3.3. The variety Vgg is pre-solid and for any pre-solid variety V of
semigroups, V C Vygs.

Proof. As a solid variety Vg is pre-solid. Since Vg is the hyperequational class
generated by the associative law it is also the pre-hyperequational class generated
by the associative law and thus the greatest pre-solid variety of semigroups. [

Let S, (Vas) be the set of all pre-solid semigroup varieties. We want to discuss
the following question:
Are there pre-solid semigroup varieties in the interval between RB and Vg which
are not solid?
The answer is given in [7], namely

Lemma 3.4. ([7]) Let V be a variety of type 7 = (2) such that RB C V. Then V
is solid iff V' is pre-solid.

Proof. If V is solid then V is also pre-solid. Let V be pre-solid. The inclusion
RB C V means that every identity in V is outer-most. Therefore, by Proposition
3.2 every pre-hyperidentity is a hyperidentity and since every identity is a pre-
hyperidentity V' must be solid. O

Lemma 3.4 shows that a pre-solid variety of semigroups which is not solid must
be outside of the interval between RB and Vgs. Now we ask for the greatest
pre-solid semigroup variety which is not solid.

Proposition 3.5. The variety Vps = Mod{(zy)z ~ x(yz), zyrzayr ~ zyzyz,

2 v y?, 22 n Y3} is pre-solid, but not solid.

Proof. Since the identity z? ~ y? is no outer-most equation and since Vps is
nontrivial the variety Vps is not solid. We are going to show that Vpg 1s the
pre-hyperequational class defined by the associative law, by F(x,z) ~ F(y,y),
and by F(z, F(z,z)) ~ F(y, F(y,y)). Now, Vps C Mod{l; U Iy U{2z? ~ z*}}
since 1 U T, U{z? m~ 2%} C {(zy)z ~ z(y2),zyrzeyr ~ zyzyr} U {w’w ~
u'v" 2w |u, v, w, u' v w' are binary terms } C IdMod{(ry)z ~ z(yz), zyrzayr ~
ryzyr,v? ~ y?, 23 ~ y2} because of uwviw ~ wdw & wt & uBw' ~ u'v'?w’. Since
Mod{l U, U{z? m z*}} = H,Mod{F(x, F(y,2)) ~ F(F(z,y),z)} the associa-
tive law is a pre-hyperidentity in Vpg. We have to check that F(z,z) ~ F(y,y)
and F(F(x,z),2)~ F(F(y,y),y) are pre-hyperidentities in Vpg. For every binary
term different from a variable there are natural numbers r, s > 1 with ¢(z, ) = ",
t(y,y) = y", respectively with t(t(x, ), z) = «® and ¢(t(y,y),y) = y°. Because of
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v? oyt x® Y € [dVps we get t(z,x) ~ t(y,y), t{t(z,2),2) ~ t(t(y,y),y) €
IdVpg. (Note that ¢(x,y) means, the term is constructed only from the variables
x and y.) Altogether, Vps C H,Mod{F(F(x,y),z2) ~ F(x,F(y,z2)), F(z,z) ~
Fly,y), F(F(x,z),2)~ F(F(y,y),y)}. On the other hand we see that the identi-
ties z(yz) ~ (zy)z,zyrzeyr ~ zyzyr, 2’ ~ y? 23 ~ y® are satisfied in
H,Mod{F(F(x,y),z2) ~ F(z,F(y,2)), F(e,2) ~ F(y,y), F(F(z,z),2) ~
F(F(y,y),y)}. This shows the equality Vps = Hy Mod{F (F(z,y),z) ~ F(x, F(y, z)),
Fle,z) ~ F(y,y), F(F(z,z),2) ~ F(F(y,y),y)} and by Result 2.5 the variety
Vpg is pre-solid. |

Theorem 3.6. For every nontrivial pre-solid variety V of semigroups the following
propositions are equivalent:

(i) V C Vps,

(i1) V is not solid.

Proof. (i) = (ii): Since the equation F(z,z) ~ F(y,y) is no hyperidentity in V
the variety V' is not solid.

(i1) = (i): Since V is pre-solid and not solid by Lemma 3.4 the variety of rect-
angular bands is not included in V. Then there is an identity in IdV which
is not outer-most. We conclude that there are natural numbers m,n and vari-
ables wug, ..., Um, Vo, ... v, € X such that ug # vy or um # v, and ug...um &
Vg ...y € IdV. Without restriction of the generality assume that ug # vg. Sub-
stituting ¢(z,y) = #? and ¢(z,y) = x> we obtain u2 &~ vZ € IdV, respectively
ud ~ v3 € IdV and thus V C Mod{z? ~ y*, 23 ~ y>}. Since V is pre-solid by
Corollary 3.3, V C Vi g. Altogether we have V C Vpg. O

Theorem 3.6 shows that Vpg is the greatest pre-solid variety of semigroups
which is not solid. It is very natural to ask for the least pre-solid variety of semi-
groups which is not solid. Let 7 = Mod{z(yz) ~ (zy)z, xy ~ zt} be the variety
of all zero-semigroups. It is easy to see that Z is pre-solid but not solid.

Theorem 3.7. Let V' be a pre-solid variety of semigroups. If V is not solid then
ZCV.

Proof. Since V is not solid V' cannot be trivial. Any nontrivial variety V of
semigroups must include at least one of the atoms of the lattice of all semigroup
varieties (listed for example in [8]). Since V is pre-solid by Corollary 3.3 we have
V C Vgs and every atom included in V must be hyperassociative. In [1] we
determined all hyperassociative atoms in the lattice of all semigroup varieties:
zero-semigroups (zy & zt), right semigroups (zy &~ x), left semigroups (zy ~ y),
semilattices (zy ~ yr, 2? ~ z), and 2-groups (xy ~ yz,z?y & y). Since by
Theorem 3.6 V C Vpg the identities 22 &~ y* and 23 ~ y> must be satisfied in
an atom included in V. These identities are satisfied only in the variety Z of all
zero-semigroups, thus 2 C V. O

Considering the set S,(Vis) we get:

Proposition 3.8. The set S,(Vus) \ S(Vas) forms a sublattice of S, (Vus).
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Proof. Consider two varieties V1, V5 € S, (Vas)\S(Vas). Then V1 Vs and V1 AV,
are pre-solid by Result 2.6. Because of V1 V V5, V1 AVa C Vpg the equation %~ P
is satisfied in V1 V V5 and inV; AVs. The equation z? & y” cannot be a hyperidentity
in these varieties. This shows that both varieties are not solid. O

A solid variety V must contain the variety RB. Therefore the join of a solid
variety V' and the pre-solid variety Z can be written as V.V Z =V VvV (RBV 7).
It is well-known that RB V 7 = Mod{xyz ~ xz} is solid ([9], [15], [3]) and that
the join of two solid varieties is solid (Result 2.6). This example motivates the
following question: Is the join of a solid and an arbitrary pre-solid variety solid 7
To attack this question we use Theorem 2.7 and obtain:

Proposition 3.9. Let Vi be a nontrivial solid and let V5 be a a pre-solid variety
of semigroups. Then the variety V1 V Vs is solid.

Proof. By Result 2.6 the variety V4 V V4 is pre-solid and because of RB C V; C
V1V V5 and Lemma 3.4 solid. O

Remark that the varieties RB and Vpg have certain “splitting ” properties for
the lattice S,(Virs). Indeed, if the variety V' is nontrivial, pre-solid and contains
RB then V is solid. If the variety BB is not contained in V then V belongs to
Sp(Vas)\S(Vas). If V is nontrivial, pre-solid and contained in Vpg then V belongs
to Sp(Vers) \ S(Vas). If V is not contained in Vpgs then V is solid.

4. APPLICATIONS

Proposition 3.8 is useful to derive new solid varieties from given ones. We will
consider a special case of this theorem.
An identity ¢ & ¢’ is called normal (see e.g.[9]) if ¢ and ¢’ are the same variable or
neither ¢ nor ¢’ are variables. By N(7) we denote the set of all normal identities
of type 7. For a variety V of type 7 we set N(V) := N(7) N IdV. The variety
Vi = ModN (V) is called the normalization of V. It is easy to see that IdZ is the
set of all normal identities of type 7 = (2). Therefore, for a variety V' of semigroups
V'V Z is the normalization of V' and we have:

Corollary 4.1. The normalization of a pre-solid variety of semigroups is pre-solid.

Proof. Let V be a pre-solid but not solid variety of semigroups, then by Theorem
3.7, Vw =V = VvV Z. If V is solid then by Theorem 3.8 Vi 1s solid and thus
pre-solid. O

(For solid varieties Corollary 4.1 was shown in [4]).

One could ask whether the solidity of V'V Z implies the solidity of V.

To formulate the following Theorem we need all solid varieties of bands. There
are exactly the following solid varieties of bands ([15]):

1. RB = Mod{z(yz) ~ (zy)z ~ xz, 2> ~ x} — rectangular bands,
2. RegB = Mod{z(yz) ~ (zy)z, 2? &~ x, ryrza ~ zyza} — regular bands,
3. NB = Mod{z(yz) ~ (zy)z, 2? ~ z, zyzt ~ zzyt} — normal bands.



PRE-SOLID VARIETIES OF SEMIGROUPS 179

Theorem 4.2. Let V be a nontrivial variety of semigroups. Then the following is
equivalent:

(i) V is solid,

(i1) V'V Z is solid and for V there holds V O Z or V. € {RB, NB, RegB}

Proof. Let V be solid, then V'V 7 is solid by Corollary 4.1. Assume that 22 ~ = ¢
IdV. We will show that IdV consists only of normal identities. At first we check
identities of the form ™ & @ with m > 2. Let k& > 2 be the least natural number
with ¥ ~ z € IdV. From F(z*~! z) ~ = we obtain by the hypersubstitution
o : F — x the identity z¥~! &~ & € IdV in contradiction of the minimality of k.
Assume there 1s an identity v & v € IdV which is not normal and so that the
sets of variables in v and in v are different. Each of the terms u and v contains at
most two variables since otherwise 2™ &~ « € IdV with m > 3. Therefore v ~ v
is one of the following identities: yz & ¢, or 2z & z, or zz & x. These identities
cannot be hyperidentities in V' in contradiction to the solidity of V. This shows
Z C V. Assume now that 2% & » € IdV, that is, V is a variety of bands. Then
V € {RB,RegB, NB}.

If Z C V then from the solidity of V'V Z follows the solidity of V=V V Z. The
solidity of RB, RegB, and N B is clear. O

5. EXAMPLES FOR PRE-SOLID VARIETIES OF SEMIGROUPS

In the introduction we remarked that there is no nontrivial solid variety of
commutative semigroups. In [5] we determined all pre-solid varieties of commuta-
tive semigroups. Clearly, the pre-hyperequational class defined by the associative
and the commutative law must be the greatest pre-solid variety of commutative
semigroups (Result 2.5). In [5] we determined an equational basis for this variety.
There holds:

H,Mod{F(F(z,y), =)~ F(a, F(y, 2)), F(,9) ~ F(y,2)} = Mod{(ay)= ~ a(y2),
vy~ yx, vyt Aty i ryt = Vpe.

We fix the following denotations:

Pn X021 ... Tn R YY1 - -Yn,

I = {(zy)z m~ 2(y2), vy~ yz, 2y* ~ 2y, 22 & y?, pn}

P, = Modl, for every natural number n.

Then we have:

Result 5.1. ([5]) The varieties P,,n € N and Vpc are all pre-solid varieties of
commutative semigroups. They form a lattice, namely the subvariety lattice of

Vpe (which is a chain). O

It is a well-known fact ([15]) that in every variety of medial semigroups the me-
dial law 1s a hyperidentity. The greatest solid variety of medial semigroups is the
hyperequational class defined by the medial and the associative law,
HMod{P(F(z,y), F(z, ) ~ F(F(z, ), F(3, ), F(F(x,9),2) ~ F(s, F(3,2))) =
Mod{z(yz) = (zy)z, zyst ~zzyt, 22 ~ 2t 23y’ 22 ~ xy?z2} = HM. This vari-
ety is pre-solid. We ask for pre-solid varieties of medial semigroups which are not
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solid.

Lemma 5.2. The variety Vyps := Mod{(xy)z ~ z(yz), zyst ~ zzyt, 22 ~

y?, x3 ~ y3} is pre-solid.

Proof. We show that Vispg is a pre-hyperequational class. The inclusion Virps C
H M implies that Vs pg satisfies the associative and the medial law as hyperiden-
tities. These equations are outer-most and therefore pre-hyperidentities in Vypg.
Further, Viyps C Vps since Vpg is the greatest pre-solid variety of semigroups
which is not solid. Since the equations F(z,2) ~ F(y,y) and F(F(z,z),z) ~
F(F(y,y),y) are pre-hyperidentities in Vpg they are pre-hyperidentities in Varps C
Vps. This shows: Varps C HyMod{F(F(z,y),z)~ F(x, F(y, z)),

F(F(x,y),F(z,t) ~ F(F(z,z2),F(y,t), Fle,2) ~ Fly,y), F(F(x,2),z) ~
F(F(y,v),y)}. On the other hand, it is easy to show that this pre-hyperequational
class is included in Vysps. O

Theorem 5.3. For every pre-solid variety V of semigroups the following is equiv-
alent:

(1) V is medial but not solid,

Proof. (i) = (ii): Since V is pre-solid the associative law is a pre-hyperidentity in
V' and hence it is a hyperidentity in V. The variety V is medial and therefore, V' C
HM = Mod{xz(yz) ~ (zy)z, zyst ~ zzyt, 2% & 2, 23y?22 ~ zy?z2}. Further,
we have V' C Vpg since V is pre-solid but not solid (Theorem 3.6). Consequently,
V CHMNVps C Mod{z(yz) ~ (zy)z, zyzt = xzyt, 2? my?, 23~ y3}.

(ii) = (i): Obviously V is medial and V C Varps C Vps. Then by Theorem 3.6 V
1s not solid. O

Theorem 5.3 means that Vaspg is the greatest pre-solid variety of medial semi-
groups which is not solid.
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