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ARCHIVUM MATHEMATICUM (BRNO)Tomus 31 (1995), 263 { 277CLASSIFICATION OF NONOSCILLATORY SOLUTIONS OFHIGHER ORDER NEUTRAL TYPE DIFFERENCE EQUATIONSE. Thandapani, P. Sundaram, John R.Graef�, A. Miciano, and Paul W. Spikes�Abstract. The authors consider the di�erence equation(�) �m[yn � pnyn�k ] + �qny�(n+m�1) = 0where m � 2, � = �1, k 2 N0 = f0;1; 2; : : : g, �yn = yn+1 � yn, qn > 0, andf�(n)g is a sequence of integers with �(n) � n and limn!1 �(n) = 1. Theyobtain results on the classi�cation of the set of nonoscillatory solutions of (�) anduse a �xed point method to show the existence of solutions having certain types ofasymptotic behavior. Examples illustrating the results are included.1. IntroductionThis paper is concerned with the asymptotic behavior of nonoscillatory solutionsof neutral linear di�erence equations of the type(E) �m[yn � pnyn�k] + �qny�(n+m�1) = 0where m � 2, � = �1, k 2 N0 = f0; 1; 2; : : :g, and � denotes the forward di�erenceoperator de�ned by �yn = yn+1 � yn and �iyn = �(�i�1yn), 1 � i � m. Thefollowing conditions are assumed to hold throughout the remainder of this paper.There is an n0 2 N0 such that:(c1) fpng is a real sequence satisfying jpnj � � < 1 for all n � n0;(c2) f�(n)g is a sequence of integers, �(n) � n for n � n0,and limn!1 �(n) =1;(c3) fqng is a real sequence and qn > 0 for all n � n0.By a solution of equation (E), we mean a sequence fyng of real numbers de�nedfor n � n0 �m + 1�maxfk; mini2N0f�(i +m � 1)gg and which satis�es (E) for1991 Mathematics Subject Classi�cation : 39A10, 39A11.Key words and phrases: di�erence equations, nonlinear, asymptotic behavior, nonoscillatorysolutions.�Research supported by the Mississippi State University Biological and Physical SciencesResearch Institute.Received August 1, 1994.



264 THANDAPANI, SUNDARAM, GRAEF, MICIANO, AND SPIKESall n 2 N0. A solution of (E) is said to be nonoscillatory if it is either eventuallypositive or eventually negative. Otherwise, it is called oscillatory.In recent years there has been an increasing interest in oscillation theory ofdi�erence equations of neutral type; see, for example, [1{17] and the referencescontained therein. Most of the literature, however, is focused on �rst and secondorder equations with relatively few results available for higher order equations.The purpose of this paper is to classify the possible nonoscillatory solutions of (E)according to their asymptotic behavior as n!1 and to give necessary conditionsfor the existence of nonoscillatory solutions fyng having the following types ofasymptotic behavior:(Ij) limn!1 yn � pnyn�kn(j) = constant 6= 0 for some j 2 f0; 1; : : :;m� 1g;or(II`) limn!1 yn � pnyn�kn(`) = 0; limn!1 yn � pnyn�kn(`�1) = �1for some ` 2 f1; 2; : : :;m�1g where n(j) is the usual generalized factorial notation.In addition, using a �xed point technique, we are able to give su�cient conditionsfor the existence of a nonoscillatory solution of the types Ij and II`.2. Classification of Nonoscillatory SolutionsWe begin by classifying the asymptotic behavior of nonoscillatory solutions of(E) on the basis of a discrete analogue of Kiguradze's Lemma [17] (also see [1;Theorem 1.7.11]).Lemma 2.1. Let fxng be a sequence of real numbers and let xn and �mxn beof constant sign with �mxn not eventually identically zero. If(2.1) �xn�mxn < 0;then there exist integers ` 2 f0; 1; 2; : : : ;mg and N > 0 such that (�1)m�`�1� = 1and(2.2) xn�jxn > 0 for j = 0; 1; : : : ; `;(�1)j�`xn�jxn > 0 for j = `+ 1; : : : ;mfor n � N .A sequence fxng satisfying (2.2) is called a sequence of (Kiguradze) degree `.The possible asymptotic behaviors of a sequence of degree ` are as follows.(i) If ` = 0 (which is possible only when � = 1 and m is odd or � = �1 and mis even), then either limn!1xn = constant 6= 0 or limn!1xn = 0:



CLASSIFICATION OF NONOSCILLATORY SOLUTIONS 265(ii) If 1 � ` � m � 1, then one of the following three cases holds:limn!1 xnn(`) = constant 6= 0limn!1 xnn(`�1) = constant 6= 0limn!1 xnn(`) = 0 and limn!1 xnn(`�1) = �1:(iii) If ` = m (which is possible only when � = �1), thenlimn!1 xnn(m�1) = �1:Let fyng be a nonoscillatory solution of equation (E). Clearly, yn � pnyn�k iseventually of one sign, so either(2.3) yn(yn � pnyn�k) > 0or(2.4) yn(yn � pnyn�k) < 0for all su�ciently large n. If (2.3) holds, then the sequence xn = yn � pnyn�ksatis�es (2.1) for all large n, so by Lemma 2.1, fxng is a sequence of Kiguradzedegree ` for some ` 2 f0; 1; : : :;mg and (�1)m�`�1� = 1. Let N +̀ denote the setof solutions fyng of (E) satisfying (2.3) and for which yn � pnyn�k is of degree`. On the other hand, if (2.4) holds, then xn = pnyn�k � yn satis�es (2.1) (with� repalced by ��) for all large n. However, the degree of fxng must be zero. Infact, from (2.4) we have jynj � jpnyn�kj � �jyn�kj, and hence jyn+jkj � �j jynj,j = 1; 2; : : : , which in turn implies limn!1 yn = 0. The set of all solutions fyngof (E) satisfying (2.4) will be denoted by N�0 . It is clear that the class N�0 isempty if (�1)m�1� = 1, that is, if � = 1 and m is odd or � = �1 and m is even.From the above observations, we have the following classi�cation of the set N ofall nonoscillatory solutions of (E):(2.5) N = N+1 [N+3 [ � � � [ N+m�1 [N�0 for � = 1 and m even;N = N+0 [N+2 [ � � � [ N+m�1 for � = 1 and m odd;N = N+0 [N+2 [ � � � [ N+m for � = �1 and m even;N = N+1 [N+3 [ � � � [ N+m [N�0 for � = �1 and m odd:We note that if fpng is either oscillatory or eventually negative, then (E) cannotpossess a nonoscillatory solution fyng satisfying (2.4), so in this case the class N�0should be removed from (2.5).



266 THANDAPANI, SUNDARAM, GRAEF, MICIANO, AND SPIKESFrom the above discussion, it follows that a nonoscillatory solution fyng of (E)falls into one of the following four cases:(I) limn!1 yn � pnyn�kn(j) = constant 6= 0 for some j 2 f0; 1; 2; : : :;m� 1g;(II) limn!1 yn � pnyn�kn(l) = 0, limn!1 yn � pnyn�kn(l�1) = �1 for some l 2f1; 2; : : : ;m� 1g with (�1)m�l�1� = 1;(III) limn!1 yn � pnyn�kn(m�1) = �1;(IV) limn!1[yn � pnyn�k] = 0.Next, we will see how the asymptotic behavior of yn�pnyn�k a�ects the behav-ior of the solution fyng itself. It is enough to consider only the solutions fyng of (E)satisfying (2.3). Let fyng be such a solution for n � n1. Then xn = yn � pnyn�ksatis�es (2.2) for some ` 2 f0; 1; : : : ;mg with (�1)m�`�1 � = 1. Let n2 > n1 besuch that n� k � n1 for n � n2. Using the relation(2.6) yn = xn + pnyn�krepeatedly, we have(2.7) yn = j�1Xi=0Hi(n)xn�ik +Hj(n)yn�jk; n � n2where j denotes the least positive integer such that n1 < n� jk � n2 and Hj(n),j = 0; 1; 2; : : : , are de�ned by(2.8) H0(n) = 1; Hj(n) = j�1Yi=0 pn�ik; j = 1; 2; : : :From (2.7) and the fact that jHj(n)j � �j , it follows that(2.9) jynj � jxnj1� � + �; n � n2if ` � 1, and(2.10) jynj � jxn1j1� � + �; n � n2if ` = 0, where � > 0 is a constant.If fpng is eventually positive, then we have(2.11) jynj � jxnj for all large n:On the other hand, using (2.6) we obtainyn = xn + pnxn�k + pnpn�kyn�2k;



CLASSIFICATION OF NONOSCILLATORY SOLUTIONS 267which shows that if(2.12) pnpn�k � 0 for all large nand if the Kiguradze degree ` of fxng is positive, then(2.13) jynj � (1� �)jxnj for all large n:In view of (2.9), (2.10), (2.11) and (2.13), we conclude that under the hypothesis(2.12), the following four types of asymptotic behavior are possible for nonoscilla-tory solutions fyng of equation (E):(A) 0 < lim infn!1 jynjn(j) � lim supn!1 jynjn(j) <1 for some j 2 f0; 1; : : : ;m�1g;(B) limn!1 ynn(l) = 0 and limn!1 jynjn(l�1) = 1 for some l 2 f1; 2; : : : ;m � 1gwith (�1)m�l�1� = 1;(C) limn!1 jynjn(m�1) =1;(D) limn!1 yn = 0.3. Existence of Nonoscillatory SolutionsThe purpose of this section is to obtain criteria for equation (E) to have certainkinds of nonoscillatory solutions. In addition to the fact that our results apply toequations of order m greater than just 1 and 2, the results here di�er from previ-ously known work in that we give some necessary and some su�cient conditionsfor equation (E) to have nonoscillatory solutions with a prescribed asymptotic be-havior. By contrast, most other known results are either criteria for all solutionsto oscillate or for nonoscillatory solutions fyng to satisfy broad asymptotic prop-erties such as yn ! 0 or jynj ! 1 as n ! 1 (see, for example, Erbe and Zhang[2], Georgiou et al. [3, 4], Lalli et al. [5 { 9], Thandapani et al. [12 { 16], andZafer and Dahiya [17]). We begin with a necessary condition for the existence ofType I solutions.Theorem 3.1. Suppose that (2.12) holds. If equation (E) has a nonoscillatorysolution fyng satisfying (2.3) and(3.1) limn!1 yn � pnyn�kn(j) = constant 6= 0for some j 2 f0; 1; : : :;m� 1g, i.e., fyng is a Type I solution, then(3.2) 1Xn=n0 n(m�j�1)(�(n +m � 1))(j)qn <1:Proof. Let fyng be a solution of (E) satisfying (2.3) and (3.1). Observe thatlimn!1�i[yn � pnyn�k] = 0; j + 1 � i � m � 1:



268 THANDAPANI, SUNDARAM, GRAEF, MICIANO, AND SPIKESIf j < m � 1, a repeated summation of (E) shows that(3.3) 1Xn=N n(m�j�1)qnjy�(n+m�1)j <1provided N > n0 is large enough. If j = m � 1, a summation of (E) implies that(3.3) holds. On the other hand, from (2.12) and (3.1), we have(3.4) lim infn!1 jy�(n+m�1)j(�(n +m � 1))(j) > 0:Inequality (3.2) then follows from (3.3) and (3.4).The method of proof to be used for the next theorem involves an applicationof the Knaster-Tarski �xed point theorem (see, for example, Moore [11]) and thecontraction mapping principle. This technique requires that an appropriate oper-ator be de�ned on the proper function space. We give su�cient conditions for theexistence of Type I solutions in case either(3.5) (�1)m�j�1� = 1 and condition (2:12) holds;or(3.6) (�1)m�j�1� = �1 and pn � 0 for all n � n0:Theorem 3.2. Suppose that (3.5) or (3.6) holds. Equation (E) has a nonoscilla-tory solution fyng satisfying (2.3) and (3.1) for some j 2 f0; 1; : : : ;m� 1g if(3.7) 1Xn=n0 n(m�j�1)(�(n +m � 1))(j)qn <1:Proof. Suppose that (3.5) holds. Choose N > n0 so large that(3.8) N0 = minfN � k; infi�N �(i +m � 1)g � n0and(3.9) 1Xn=N n(m�j�1)(�(n+m � 1))(j)qn � (1� �)2:Consider the Banach space `N01 of all bounded real sequences Y = fyngn�N0with norm jjY jj = supn�N0(jyn=�nj) where �n = (n�N)(j)j! , n � N0. We de�ne aclosed bounded subset Sj of `N01 by(3.10)Sj = fY 2 `N01 : c � yn=�n � c� for n � N + 1 and yn = yN for N0 � n � Ng



CLASSIFICATION OF NONOSCILLATORY SOLUTIONS 269where c > 0 is an arbitrary but �xed constant. We de�ne a partial order on `N01in the usual way. Thus, if for any X = fxng, Y = fyng 2 `N01 , xn = yn for allsu�ciently large n, we will consider such sequences to be the same. Then, forevery subset A of Sj both infA and supA exist and belong to Sj. With eachfyng 2 Sj , we associate a real sequence f�yng de�ned by(3.11) �yn = 8>><>>: i�1Xs=0Hs(n)yn�sk + yN1� pN Hi(n); n � N + 1yN1� pN ; N0 � n � Nwhere i is the least positive integer such that N0 < n � ik � N and Hs(n); s =0; 1; 2; : : : are given by (2.8). It is easy to verify that f�yng is positive and satis�esthe equation(3.12) �yn � pn�yn�k = yn; n � N:Now de�ne the mapping T : Sj ! `N01 as follows: if j � 1, then(3.13)(Ty)n = 8>>><>>>: c�n + n�jXr=N (n� r � 1)(j�1)(j � 1)! 1Xi=r (i� r +m � j � 1)(m�j�1)(m � j � 1)! qi�y�(i+m�1);n � N0; N0 � n � N ;if j = 0, then(3.14) (Ty)n = 8>>>><>>>>: c+ 1Xi=n (i +m � 1� n)(m�1)(m � 1)! qi�y�(i+m�1); n � Nc+ 1Xi=N (i +m � 1� N )(m�1)(m � 1)! qi�y�(i+m�1); N0 � n � N:Letting yn 2 Sj and using (3.11), we have0 � �y�(n+m�1) � i�1Xs=0 �sc (�(s +m� 1))(j)�j! + �iyN1� �;which implies that for all n � N0 � �y�(n+m�1) � c�(1� �) (�(n +m � 1))(j)if j � 1, and 0 � �y�(n+m�1) � c�(1� �)



270 THANDAPANI, SUNDARAM, GRAEF, MICIANO, AND SPIKESif j = 0. From the above inequalities and (3.9), we see that for n � N , if j � 1,then 0 � n�jXr=N (n� r � 1)(j�1)(j � 1)! 1Xi=r (i � r +m� j � 1)(m�j�1)(m � j � 1)! qi�y�(i+m�1)� n�jXr=N (n� r � 1)(j�1)(j � 1)! 1Xi=N i(m�j�1)qi c�(1� �) (�(i +m � 1))(j)� (1� �)c� �n;and if j = 0, then0 � 1Xi=n (i +m � 1� n)(m�1)(m � 1)! qi�y�(i+m�1) � 1Xi=N i(m�1) c�(1� �)qi � c(1� �)� :Using these inequalities in (3.13) and (3.14), we conclude that T (Sj) � Sj andthat T is an increasing mapping. By the Knaster-Tarski �xed point theorem [11],there exists fy�ng 2 Sj such that (Ty�)n = y�n. That is,y�n = 8>>>>>>>>><>>>>>>>>>: c�n + n�jXr=N (n� r � 1)(j�1)(j � 1)! 1Xi=r (i � r +m � j � 1)(m�j�1)(m � j � 1)! qi�y�(i+m�1);j � 1c+ 1Xi=n (i � n+m� 1)(m�1)(m � 1)! qi�y��(i+m�1);j = 0for n � N . From (3.12){(3.14) we obtain�y�n � pn�y�n�k= c�n + n�jXr=N (n � r � 1)(j�1)(j � 1)! 1Xi=r (i � r +m � j � 1)(m�j�1)(m � j � 1)! qi�y�(i+m�1)if j � 1, and �y�n � pn�y�n�k = c+ 1Xi=n (i � n+m � 1)(m�1)(m � 1)! qi�y��(i+m�1)if j = 0, and we see that f�y�ng is a positive solution of (E) satisfying (2.3) and(3.1).



CLASSIFICATION OF NONOSCILLATORY SOLUTIONS 271Now suppose (3.6) holds. In the above proof, instead of (3.13) and (3.14), forj � 1 we de�ne(Ty)n = 8>>><>>>: c��n � n�jXr=N (n� r � 1)(j�1)(j � 1)! 1Xi=r (i � r +m� j � 1)(m�j�1)(m� j � 1)! qi�y�(i+m�1);n � N0; N0 � n � N;and for j = 0(Ty)n = 8>>>><>>>>: c� � 1Xi=n (i +m� 1� n)(m�1)(m � 1)! qi�y�(i+m�1); n � Nc� � 1Xi=N (i +m � 1� N )(m�1)(m � 1)! qi�y�(i+m�1); N0 � n � N:Then, as above, T (Sj) � Sj . Next, we show that the operator T is a contractionon Sj . First note that from (3.12) we have �yn � yn. Now, for Y = fyng, X =fxng 2 Sj , we have1�n j(Ty)n � (Tx)nj � 1�n n�jXr=N (n� r � 1)(j�1)(j � 1)! 1Xi=r (i� r +m� j � 1)(m�j�1)(m� j � 1)!� qijy�(i+m�1) � x�(i+m�1)j� 1�n n�jXr=N (n� r � 1)(j�1)(j � 1)! 1Xi=r (i� r +m � j � 1)(m�j�1)(m � j � 1)!� qi(�(i +m� 1))(j) ����y�(i+m�1)��(i+m�1) � x�(i+m�1)��(i+m�1) ����� (1� �)2jjY �Xjj;so jjTY � TXjj � (1� �)2jjY �Xjj:That is, T is a contraction on Sj for j � 1. Similarly, we can prove that T is acontraction on S0. Thus, for j � 0, T has a unique �xed point in Sj . That is,there exists fy�ng 2 Sj such that (Ty�)n = y�n. Hence, for n � N ,y�n = 8>>>>>>>>><>>>>>>>>>: c��n � n�jXr=N (n � r � 1)(j�1)(j � 1)! 1Xi=r (i � r +m � j � 1)(m�j�1)(m � j � 1)! qi�y��(i+m�1);j � 1c� � 1Xi=n (i � n+m � 1)(m�1)(m� 1)! qi�y��(i+m�1);j = 0:



272 THANDAPANI, SUNDARAM, GRAEF, MICIANO, AND SPIKESFrom (3.12) with y = y�, we obtain�y�n � pn�y�n�k= c��n � n�jXr=N (n � r � 1)(j�1)(j � 1)! 1Xi=r (i � r +m � j � 1)(m�j�1)(m � j � 1)! qi�y��(i+m�1)for j � 1, and�y�n � pn�y�n�k = c� � 1Xi=n (i � n+m � 1)(m�1)(m � 1)! qi�y��(i+m�1)for j = 0. Once again, f�y�ng is a positive solution of (E) satisfying (2.3) and (3.1).This completes the proof of the theorem.Remark. To this point in time, we have been unable to obtain su�cient condi-tions for the existence of Type I solutions when (�1)m�j�1� = �1 and fpng iseventually negative. Such a result would be of interest.We now consider nonoscillatory solutions of Type II, that is, those solutionsfyng which satisfy (2.3) and(3.15) limn!1 yn � pnyn�kn(`) = 0; limn!1 yn � pnyn�kn(`�1) = �1for some ` 2 f1; 2; : : :;m�1g such that (�1)m�`�1� = 1: If fyng is a positive suchsolution of (E), then a summation of (E) yields1Xn=N n(m�`�1)qny�(n+m�1) <1and 1Xn=N n(m�`)qny�(n+m�1) =1for some su�ciently large N > n0. Suppose that (2.12) holds. Now (2.9), (2.12)and (3.15) imply that there exist positive constants � and � such thatjynj � �n(`�1) and jynj � �n(`)for n � N . It then follows that(3.16) 1Xn=N n(m�`�1)(�(n+m � 1))(`�1)qn <1and(3.17) 1Xn=N n(m�`)(�(n +m � 1))(`)qn =1:Thus, under condition (2.12), (3.16) and (3.17) are necessary for the existence ofa solution fyng satisfying (2.3) and (3.15). The following result summarizes theseobservations.



CLASSIFICATION OF NONOSCILLATORY SOLUTIONS 273Theorem 3.3. Suppose condition (2.12) holds. Then in order for equation (E)to have a nonoscillatory solution fyng satisfying (2.3) and (3.15), i.e., a Type IIsolution, it is necessary that (3.16) and (3.17) hold.Our �nal theorem provides su�cient conditions for the existence of a Type IIsolution of (E) in the case where fpng is eventually nonnegative. Such a result inthe case where fpng is eventually nonpositive would, of course, also be of interest.Theorem 3.4. Let pn � 0 and �(n) < n for n � n0, and let ` 2 f1; 2; : : :;m� 1gsatisfy (�1)m�`�1� = 1. Equation (E) has a nonoscillatory solution fyng satisfying(2.3) and (3.15) if(3.18) 1Xn=N n(m�`�1)(�(n +m � 1))(`)qn <1and(3.19) 1Xn=N n(m�`)(�(n+m � 1))(`�1)qn =1:Proof. Choose N > n0 so large that (3.8) holds and1Xs=N s(m�`�1)(�(s +m� 1))(`)qs � (1� �)2 :Let c > 0 be �xed and consider the subset S` of `N01 given byS` = fY 2 `N01 : c(n�N )(`�1)(` � 1)! � yn � c(n �N )(`�1)(` � 1)! + c(n� N )(`)`! for n � Nand yn = yN for N0 � n � Ng:We de�ne a partial order on `N01 in the usual way, and we will avoid introducingequivalence classes in `N01 . Thus, if for any X = fxng, Y = fyng 2 `N01 , xn = ynfor all n >> 1, we will consider such sequences to be the same. Then, for everysubset A of S` both infA and supA exist and belong to S`. If fyng 2 S`, thensince yn � 2cn(`)=(`� 1)! for n � N , the sequence f�yng de�ned by (3.11) satis�es�y�(n+m�1) � 2c1� � (�(n +m� 1))(`)for n � N , and so the mapping T de�ned by(Ty)n = 8>>>>>>><>>>>>>>: c(n�N )(`�1)(`� 1)! + n�X̀r=N (n� r � 1)(`�1)(` � 1)!�P1s=r (s�r+m�`�1)(m�`�1)(m�`�1)! qs�y�(s+m�1); n � N0; N0 � n � N for ` � 2c; N0 � n � N for ` = 1



274 THANDAPANI, SUNDARAM, GRAEF, MICIANO, AND SPIKESmaps S` onto itself and is increasing. By the Knaster-Tarski �xed point theorem[11], there exists an element fy�ng 2 S` such that y�n = (Ty�)n. As in the proof ofTheorem 3.2, the f�y�ng associated with fy�ng via (3.11) satis�es the equation(3.20) �yn� � pn�y�n�k = c(n �N )(`�1)(` � 1)!+ n�X̀r=N (n� r � 1)(`�1)(`� 1)! 1Xs=r (s� r +m� `� 1)(m�`�1)(m � `� 1)! qsy��(s+m�1); n � N:Clearly, f�y�ng is also a solution of equation (E). To show that f�y�ng has the desiredasymptotic behavior, we note that(3.21) �`�1[�y�n � pn�y�n�k] = c+ n�1Xr=N 1Xs=r (s� r +m� `� 1)(m�`�1)(m � ` � 1)! qs�y��(s+m�1)and(3.22) �`[�y�n � pn�y�n�k] = 1Xs=n (s � n+m � ` � 1)(m�`�1)(m � `� 1)! qs�y��(s+m�1)for n � N . In view of (3.12) with y = y� and (2.13), we have(3.23) �y�n = y�n + pn�y�n�k � (1� �)�y�n � (1� �)c(n �N )(`�1)(` � 1)!for all large n. Combining (3.23) with the inequality�`�1[�y�n � pn�y�n�k] � c+ n�1Xs=N (s �N +m � `)(m� `)! (m�`)qs�y��(s+m�1);which is a consequence of (3.21), condition (3.19) then implieslimn!1�`�1[�y�n � pn�y�n�k] =1:On the other hand, from (3.22) we havelimn!1�`[�y�n � pn�y�n�k] = 0:Thus, f�y�ng satis�es (2.3) and (3.15). This completes the proof of the theorem.



CLASSIFICATION OF NONOSCILLATORY SOLUTIONS 2754. ExamplesWe present some examples to illustrate the results obtained in the previoussection.Example 4.1. Consider the equation(4.1) �2[yn � �yn�k] + (�ek � 1)�e � 1e �2 yn = 0; n � 1where 0 < � < 1 and k � 1.(i) Suppose that �ek > 1. From (2.5) we have N = N+1 [ N�0 for (4.1). Notethat N�0 6= � since (4.1) has a solution fyng = fe�ng belonging to this class. Thepossible asymptotic behaviors of the solutions fyng in N+1 are(4.2) limn!1 yn � �yn�kn = constant 6= 0;(4.3) limn!1[yn � �yn�k] = constant 6= 0;or(4.4) limn!1 yn � �yn�kn = 0; limn!1[yn � �yn�k] = �1:Since condition (3.7) does not hold (m = 2), equation (4.1) has neither a solutionsatisfying (4.2) nor a solution satisfying (4.3) (see Theorem 3.1).(ii) Suppose that �ek < 1. The classi�cation (2.5) then reduces to N = N+0 [N+2 and the possible types of asymptotic behavior of the nonoscillatory solutionsfyng of (4.1) are (4.2), (4.3),(4.5) limn!1[yn � �yn�k] = 0;or(4.6) limn!1 yn � �yn�kn = �1:Exactly the same statements as in (i) hold for solutions which satisfy (4.2) and(4.3). Equation (4.1) has a solution fyng = fe�ng satisfying (4.5). No informationcan be drawn about the solutions of (4.1) satisfying (4.6).Example 4.2. Consider the di�erence equation(4.7) �2[yn � �yn�k]� (1� �e�k)(e � 1)2yn = 0; n � 1where 0 < � < 1 and k � 2. The classi�cation and the asymptotic behaviorof nonoscillatory solutions of (4.7) are the same as in (ii) of Example 4.1. Thisequation has a solution fyng = feng satisfying (4.6). It is not known if there is asolution of (4.7) satisfying (4.5).



276 THANDAPANI, SUNDARAM, GRAEF, MICIANO, AND SPIKESExample 4.3. The equation(4.8) �m[yn � pnyn�k] + �n�y�(n+m�1) = 0; n � 2;where pn � 0 and �(n) is the greatest integer function of n 12 , satis�es the hypothe-ses of Theorem 3.4 provided ` and � satisfy(�1)m�`�1� = 1 and `=2�m� 1=2 � � < `=2�m:Thus, equation (4.8) will have a nonoscillatory solution fyng withlimn!1 yn � pnyn�kn(`) = 0 and limn!1 yn � pnyn�kn(`�1) = �1:In conclusion, note that the results of this paper can be easily extended toequations of the form�m[yn � pnyn�k] + � MXi=1 qiny�i(n+m�1) = 0;where m � 2, � = �1, fpng and k are the same as before, fqing are non-negativesequences of real numbers, and f�i(n)g are sequences of integers such that �i(n) �n and limn!1 �i(n) =1, 1 � i � M .Acknowledgement. The authors would like to thank Professor O. Do�sl�y ofMasaryk University in Brno, Czech Republic for making several valuable sug-gestions concerning the results in this paper.References1. Agarwal, R.P., Di�erence Equations and Inequalities, Marcel Dekker, New York, 1992.2. Erbe, L. H. and Zhang, B.G., Oscillation of discrete analogues of delay equation, Di�. Inte-gral Equations 2 (1989), 300-309.3. Georgiou, D.A., Grove, E.A. and Ladas, G., Oscillation of neutral di�erence equations,Appl. Anal. 33 (1989), 243{253.4. Georgiou, D.A., Grove, E.A. and Ladas, G., Oscillation of neutral di�erence equations withvariable coe�cients, in: \Di�erential Equations, Stability and Control" (S. Elaydi, ed.),Lecture Notes Pure Appl. Math. Vol. 127, Dekker, New York, 1991, pp. 165{173.5. Lalli, B. S., Grace, S.R., Oscillation theorems for second order neutral di�erence equations,J. Math. Anal. Appl. (to appear).6. Lalli, B.S., Zhang, B.G., On existence of positive solutions and bounded oscillations fornetural di�erence equations, J. Math. Anal. Appl. 166 (1992), 272{278.7. Lalli, B.S., Zhang, B.G., Oscillation and comparison theorems for certain di�erence equa-tions, J. Aust. Math. Soc. Ser B. 34 (1992), 245{256.8. Lalli, B. S., Zhang, B.G., Oscillation and comparison theorems for certain neutral di�erenceequations, J. Aust. Math. Soc. Ser B. (to appear).9. Lalli, B. S., Zhang, B.G. and Li, J. Z.,On the oscillation of solutions and existence of positivesolutions of neutral di�erence equations, J. Math. Anal. Appl. 158 (1991), 213{233.
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