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ON CONNECTEDNESS OF GRAPHS ON DIRECT PRODUCT
OF WEYL GROUPS

SAMY A. YOUSSEF AND S. G. HULSURKAR

ABSTRACT. In this paper, we have studied the connectedness of the graphs
on the direct product of the Weyl groups. We have shown that the number
of the connected components of the graph on the direct product of the Weyl
groups is equal to the product of the numbers of the connected components
of the graphs on the factors of the direct product. In particular, we show
that the graph on the direct product of the Weyl groups is connected iff the
graph on each factor of the direct product is connected.

1. INTRODUCTION.

In this paper, the connectedness of the graphs on the direct product of the Weyl
groups is investigated. It is shown that the number of the connected components
of the graph on the direct product of the Weyl groups is equal to the product
of the numbers of the connected components of the graphs on the factors of the
direct product. From this we deduce that the graph on the direct product of the
Weyl groups is connected iff the graph on each factor of the direct product is
connected. The graph on Weyl groups has been defined and studied in [1]. The
relevant definitions and the results on the Weyl groups can be found in [2]. We
have used the notations given in [3]. We briefly summarize below the required
results and the notations.

Let E be a fixed euclidean space i.e., F is a finite dimensional vector space over
real numbers and has a positive definite symmetric bilinear form (, ). Let dimension
of £ be n. Given any vector o« € F we can define a reflection R, in FE given by
tRy = v — (z,0¥)a where a¥ = 2a/(r, ) for & € E. The reflection R, is an
invertible linear transformation which leaves the plane P, = {y € E|(a,y) = 0}
invariant and any nonzero vector parallel to « is sent to its negative. Also R,
preserves the inner product (,) on F i.e., it is an orthogonal linear transformation.
A finite subset A of nonzero vectors of F is called a root system in E if the
following holds : (1) A spans F and « € A implies ko € A only if k = £1. (2) If
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a € A then the reflection R, leaves A invariant i.e., vectors of A are transformed
by R, into vectors of A . (3) If «, 3 € A then (8,a") is an integer.

If a, 3 € A then the condition (3) restricts the values of («, 8Y)(3, ") to 0, 1,
2, and 3 only. The hyperplane P,, o« € A partitions ¥ into finitely many regions.
The connected components of £ — |J P, are called the Weyl chambers of E.

aEA

Let A be a root system in #. The group generated by the reflections R, for
a € Ais called the Weyl group W(A) of A. Since W(A) permutes the vectors
in A, by the condition (3) on A, we can identify the Weyl group as the subgroup
of the permutation group on A. In particular, the Weyl group W(A) is a finite
group.

It may be recalled that if A is a root system in E of dimension n then it
is possible to choose the set of simple roots aq, as, ..., a, i.e., these roots form
a basis of £ and any root § in A can be written as a linear combination of
a1, Qs ..., a with integral coefficients all nonnegative or all nonpositive. Then
the Weyl group W(A) is generated by the reflections R,,,i = 1,2,..n. We write
Ry, = Riyi=1,2, .. n.

A root system A is called irreducible if it cannot be written as a union of
two proper subsets A; and As such that each root in Aj is orthogonal to each
root in Ay. Otherwise A is called reducible. Therefore , if A is reducible then
A = A; UA, such that each root in A is orthogonal to each root in A,. Further,
if A is reducible then the simple roots of A can also be partitioned into the two
sets 57 and S5 such that a simple root in 57 is orthogonal to every simple root in
Sa. Also the Weyl group W(A) = W(A1) x W(A,) and each W(A;) is generated
by the simple roots in A; 1.e., S;.

We know that if A is a root system then for a, 3 € A | (o, 8¥)(5, ") takes the
values 0, 1, 2, or 3. We define a Coxeter graph of A to be a graph which has n
vertices and for i # j , ith vertex is joined to the jth vertex by (ay, a}/)(aj,a;/)
number of edges. It is obvious that the Coxeter graph is connected iff A is an
irreducible root system. The order of the element R;R; of W(A) is 2, 3, 4, or
6 according as (ai,a}/)(aj,a;/) takes the values 0 , 1, 2 or 3 respectively. Now
the lengths of the simple roots may not be equal. Therefore, in Coxeter graph we
add an arrow to an edge which points to the shorter root. This resulting graph is
called the Dynkin diagram of A . The Dynkin diagram of A also determines the
Weyl group W(A) completely.

The classification theorem of irreducible root systems shows that if A is irre-
ducible then its Dynkin diagram is one of the following types :

Apforn>1, B, forn>2,C, forn>3, D, forn>4 6 Fgs E; Es, Faand
G .

The type of the irreducible root system A is defined to be same as the type
of its Dynkin diagram. If aq,as, ..., a, are the simple roots of A we define the
fundamental weights A1, Az, ..., Ay of A by (A, oz}/) = §; ; (Kronecker delta). We
have \;R; = Ay — 6; 5o for 4,5 = 1,2,...,n. Let 0 € W. Then ¢ can be written as
a product of the generators Ri, R, ..., R,. There is more than one way of writing
o as a product of the generators. Suppose ¢ = R;, %;,...R;,. The minimum value
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of k is called the length ¢(o) of o. There is a unique element oy € W which has

maximum length. For ¢ € W we define I, = {i|l < i < n,l(cR;) < £(c)}. Let

§s = >_ A;. Define ¢, = 8,07 1. Finally, let D(X), A € E be the Weyl’s dimension
i€l

polynomial. Then it 1s known that

[I (AaY)

aEAT

[T (6,a¥)

aEAT

D)) =

n
where AT is the set of positive roots of A and § = > A; .

i=1

We define the graph T(W(A)) on the Weyl group W(A) whose vertices are
elements of the Weyl group. We define the edges of this graph, with the help of
the underlying root system A | as described below. For convenience we write W
for W(A). A point A € F is called W-regular iff D(A) # 0 which is equivalent to
saying that A lies in the interior of a Weyl chamber of A. Recall that og 1s the
unique element of W with maximal length. First we define a relation — on W.
For o7 € W define ¢ — 7 iff —€,4, + €; 1s W-regular. It easily follows that
o — o forall o €W, since —¢,5, = (6 —6,)0~ " [4]. We construct the graph
T(W(A)) by using the relation — on W. For o,7 € W with ¢ # 7 an edge
(o, 7) is an unordered pair where either ¢ — 7 or 7 — . It is proved in [ 4
] that at most one of & — 7 or 7 — & holds for ¢ # 7. Thus we get at most
one edge joining distinct ¢ and 7 in T(W(A)). We write T'(W(A)) as T(W) or
T'(A) depending on the context. It should be noted that this graph depends on
the A. If the root system A is of type X , we write W(A) as W(X) and the graph
T'(A) as T'(X). For example I'(G'2) means the graph on the Weyl group W (G2)
whose underlying root system is of type (5. It is interesting to note that for n > 3
the graphs T'(B,,) and T(C),) are distinct although the Weyl groups W(B,) and
W(C,,) are isomorphic.

2. THE CONNECTEDNESs ofF I'(WW).

Let A be a union of two root systems A; and A,;. We write this as A =
A7 X Ay, In this case the Dynkin diagrams of A; and A, are disjoint. Also
W(A) = W(A1) x W(A2), the direct product. Let W = W(A), Wy, = W(A,)
and Wa = W(Aq). If p € W then p = o7 with unique o, 7 and ¢ € Wy, 7 € Wa.
From the definition of I, it easily follows that I, = I, U I (disjoint union) and
8, = b5 & 6; (direct sum), which gives €, = ¢, @ ¢;. Therefore €,, = ¢, €, for
o €Wy and 7 € Wy, If 6,6, and 6, are the sums of the fundamental weights of
A, Ay and As respectively then § = 61 B 6. If 06 and Ug are the unique elements
of maximal length in W7 and W5 respectively, then oy = 0'60';;. These results can
be generalized to the case when A is union of more than two root systems. With
above notations we have the following result.

Lemma 1. Letoy, 00 € Wy and 1,79 € Ws. Then o1 — o9 in Wy and 71 — 1
m Ws if foymy — o910 in W.
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Proof. We have the following equalities.
— €o17100 + €oa7a = (6_60171)(01T1)_1+€U2T2 = (61—1—62_6(71_67'1)0-1_17-1_1—1—(602G9
€7’2) = ((61 _601)0-1_1 @(62 _671)T1_1)+(€U2 @672) = (_6 ! +€02)@(_€naff +€7’2)

o100,
since \;R; = X; for j # 4, and €50, = —(6 — 65)0~ ", [ 4 ]. This shows that
—€017100 T €0y, 18 I the interior of a Weyl chamber of A iff —e, / + €, and
0
—€, . + €, are In the interior of some Weyl chamber of A; and A, respectively.
0

In other words 6y — o5 in W7 and 71 — m in Wh iff o4y — oo in W. [

Remark. We can easily generalize the above result when W = Wy x Wy x - - - x W

Let C' be a subset of the Weyl group W. We write T(C) for the induced
subgraph on C' . Tt easily follows that if T'; is a connected component of T'(W)
then T'y = T'1(C) for a unique subset Cy of W.

Theorem 1. Let T'y and T2 be connected components of T'(W1) and T(Wa) re-
spectively. Suppose T'y = T'1(Cy) and Ty = T'y(C2) for (unique) subsets Cy of W
and Cy of Wa. Suppose Cy x Cy = {or|lc € Cy,7 € Cao}. Then T(Cy x Cy) is a
connected component of T(Wy x Wa).

Proof. Suppose p1,p: € C7 x Cs. We show that p; is connected to p». Now
p1 = 011 and ps = 037 where 01,02 € (7 and 7, € C5. Since 01,09 € (]
they are connected in I'1(Cy). Similarly, 71, 7 are connected in I's(C2). Therefore,

(1) oy — 0h — - — 0l — 03

and

(2) T —— Th—— e —— TN —— Ty

for some ¢4, ... 0/, € Cy and 7}, ..., 7. € C3. By the repeated application of the

lemma, Eqn.(1) gives

o177 — 0'/27'1 —_— s — 0';717'1 — 0271
and Eqn.(2) gives

0971 — 0'27'5 —_— s — 0'27'7/. — 0972

which implies that p; = 017 is connected to ps = o27s.

Suppose p € 1 x Cy is connected to p/ € W1 x Ws. We show that p € C x Cs.
Suppose p = o171 and p’ = 0’7’ where o1 € C1, 71 € Cs,0' € Wi and 7 € W,
Since p is connected to p’, we have

(3) p—ph == py == pp, —

where p),p4, ..., pL, € Wi x Wy. Suppose, for i = 1,... ,m, p} = o}/ where

ol € Wi, 7/ € W,. Now Eqn.(3) implies that

f ! f ! / / /!
(4) OT — O1T] — 09Ty — <+ —> 0L T, — 0'T
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By the repeated application of the lemma, Eqn.(4) gives
co—ol— . —o —0¢ and T—7 — — 71 — 7

This proves that o is connected to ¢’ in I'(W7) and 7 is connected to 7/ in T'(Ws).
But ¢ € ¢y and 7 € (5 implies that ¢/ € C; and 7 € (5 since T';1(C1) and
I'5(Cy) are connected components of T'(1W;) and T'(WW2) respectively. Therefore,
p =o't € €y x Cy. This completes the proof. O

Corollary 1. If T'(W1) has p components and T'(Ws) has ¢ components then
T(Wy x Wa) has pq components. d

Theorem 2. Let I be a connected component of T(W) where W = Wy x Wh,
the direct product of Weyl groups W1 and Wa. Let C be the (unique) subset of
W for which T = T(C). Suppose Cy = {oc € Wlor, € C for some 11 € Wa} and
Cy = {r € Walo1m € C for some o1 € Wi}, Then T'(C) and T(Cy) are connected
components of T(W1) and T'(Wa) respectively. Further = T'(Cy x Cs).

Proof. First we show that C; is a connected component of T'(W7). Let 01,03 €
C4. Then o117 € C and o979 € C for some 11,7 € W5. Since C' is a connected
component of T'(W), o171 is connected to ga72 in T(C). Therefore,

1! / /
O1T] —> 09Ty — -+ —— 0, T, —— 0273
for some oi7} € Cie., o) € C; and 7/ € Cy for ¢ = 2,...,m. By the lemma,
01 — 0h —s -+ — 0l — 0y i.e., 01 is connected to o5 in Cy.

Let ¢ € C; and ¢ be connected to ¢’ € W;. We show that ¢/ € Ci. Now
ceCy 1mphes that ot € C for some T e Ws. Also a connected to ¢’ in Wy gives
0'—>0'1—>0'2—>~~~—>0' —>0Where0 e Wy fore=1,...,m. By
the lemma, o7 — 01117' — e — 0';;17' — o'7. Therefore, o7 is connected to
o't in F(W) Since o7 € C' and C' is a connected component of T'(W),¢'r € C
and therefore, ¢’ € C;. This shows that Cy is a connected component of T'(W7).
Similarly we can show that C5 is a connected component of T'(WWs). Tt trivially

follows that I = I(C} x Cs).

., From theorem 1 and theorem 2 we can easily prove the following.

Theorem 3. Let Wy and W2 be the Weyl groups. Then T'(W1) and T'(Ws) are
connected if f T (W1 x Wa) is connected. O

We have the following information about T'(A) when A is an irreducible root
system of low rank. The graphs T'(4;) and T'(A42) are totally disconnected with
2 and 6 vertices respectively. T'(Bz) has 4 disjoint edges and T'(A3) has 8 dis-
connected vertices and 8 disjoint edges. T'(G3) is a connected graph. The graphs
I'(Bs),T(B4),T(C3),T'(Cy) and T'(D4) are connected. Note that the groups W(Bj),
W(C4) and W(D,) are of order 384, 384 and 192 respectively. In all these graphs
we have used the “ Fusion Method ” to determine the connectivity [5]. We have
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also shown [6] that T'(A,),n > 4 is a connected graph. This strongly suggests the
following

Conjecture. If A is an irreducible root system which is not of type A;, As, A3 or
By then T'(A) is a connected graph.
Assuming the truth of the conjecture; from the theorem 3 we have

Theorem 4. If A = Ay X Ag x --- X Ap where A; are irreducible root systems
which are not of the type A1, Az, Az or By then T'(A) is a connected graph. a

Remark. If A has components of type Ay, A3, A3 or By then one can easily write
the number of components of T(A) by using the corollary of theorem 1.
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