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ARCHIVUM MATHEMATICUM (BRNO)Tomus 32 (1996), 29 { 56POISSON COHOMOLOGY AND CANONICAL HOMOLOGYOF POISSON MANIFOLDSMARISA FERN�ANDEZ, RA�UL IB�A~NEZ, MANUEL DE LE�ONAbstract. In this paperwe present recent results concerningthe Lichnerowicz-Poisson cohomology and the canonical homology of Poisson manifolds.1. IntroductionPoisson manifolds are a subject of active research in Mathematics and Physics[3, 18, 27]. The notion of Poisson manifold was introduced by Lichnerowicz [22]as a manifold endowed with a Poisson bracket. We remit the reader to a paper byWeinstein [28] for some interesting historical remarks.Lichnerowiz proved that a Poisson bracket on M is equivalent to give a skew-symmetric contravariant tensor �eld of second order G on M satisfying that theSchouten-Nijenhuis bracket of G with itself identically vanishes, that is, [G;G] = 0.G is called the Poisson tensor. A di�erential operator � on the contravariant Grass-mann algebra ofM may be de�ned by �(P ) = �[P;G]. The integrability conditionfor G (i.e., [G;G] = 0) implies that �2 = 0 and the corresponding cohomology isthe so-called Lichnerowicz-Poisson cohomology of the Poisson manifoldM .On the other hand, Koszul [19] has introduced an operator � on the Grassmanalgebra of di�erential forms de�ned by � = [i(G); d], where i(G) is the contraction1991 Mathematics Subject Classi�cation. 53C15, 58A14, 58F05.Key words and phrases. Poisson manifolds, symplectic manifolds, Lichnerowicz-Poisson co-homology, coe�ective cohomology, canonical homology, canonical double complex.This research was supported in part by DGICYT (Spain), Project PB94-0106; and UPV,Project 127.310-EA 191/94.Lecture presented by M. de Le�on on the 6th International Conference Di�erential Geometryand Applications, Brno, August 28 { September 1, 1995.



30 M. FERN�ANDEZ, R. IB�A~NEZ, M. DE LE�ONby the Poisson tensor G and d is the exterior derivative. Since �2 = 0, it de�nes ahomology on M which is called the canonical homology of the Poisson manifold.Taking into account that d� + �d = 0, Brylinski [7] has introduced a canonicaldouble complex and studied the degeneracy of the �rst spectral sequence associatedwith it.The aim of this paper is to present an account of recent results on the Poisson-Lichnerowicz cohomology and the canonical homology of any Poisson manifold.The �rst part of the paper is devoted to study the Lichnerowicz-Poisson coho-mology of a Poisson manifold. It is very hard to compute it although there exists aMayer-Vietoris sequence. Nevertheless Poisson cohomology is not directly relatedwith the topology of the manifold as in the case of the de Rham cohomology.For symplectic manifolds, the Lichnerowicz-Poisson cohomology is isomorphic tothe de Rham cohomology, but it is not the case for non-symplectic Poisson ma-nifolds. An example is presented in Section 6. In this paper we also introduce theso-called coe�ective Lichnerowicz-Poisson cohomology. Since �(G) = 0, we have�(P ^G) = �(P )^G and we obtain a subcomplex of the complex of contravarianttensor �elds. Its cohomology is called coe�ective. Again, for symplectic manifoldsit is isomorphic to the coe�ective cohomology introduced by Bouch�e [6]. Moreover,the cohomology class of G induces a truncated Lichnerowicz-Poisson cohomology.Both cohomologies are not isomorphic. In fact, the authors in [1, 9, 12, 13] haveshown examples of compact symplectic manifolds and compact almost cosym-plectic manifolds for which the coe�ective cohomology is not isomorphic to thetruncated Lichnerowicz-Poisson cohomology. In these cases we also have proved aNomizu's theorem for the coe�ective cohomology; an open question is the possi-bility to extend it to arbitrary Poisson manifolds of constant rank.The second part of this paper concerns with the canonical homology of a Poissonmanifold. We establish its relationship with the Lichnerowicz-Poisson cohomolo-gy. In [2] Bhaskara and Viswanath have de�ned a natural pairing between theLichnerowicz-Poisson cohomology and the canonical homology of a Poisson mani-fold M . We prove in Section 10 that for symplectic manifolds this pairing isnothing but the Poincar�e duality.In [7] Brylinski introduced the notion of harmonic forms on a Poisson mani-fold as follows: � is harmonic if d� = 0 and �� = 0. He proposed the followingProblem A: to give conditions to ensure that any de Rham cohomology class has arepresentative which is harmonic. He proved that, for some symplectic manifolds,any de Rham cohomology class has a representative which is symplectically har-monic and conjectured that this is true for any symplectic manifold. In [11] wehave constructed a counterexample. Independently, Mathieu [23] has proved thata symplectic manifold satis�es the Brylinski conjecture if and only if it veri�es theLefschetz theorem. As a corollary, if a symplectic manifold satis�es the Brylinskiconjecture then its odd Betti numbers are even. So, many counterexamples cannow be given.Brylinski also studied in [7] the �rst spectral sequence associated with the cano-nical double complex and proved that, if the manifold is symplectic, it degeneratesat the �rst term. He proposed the following Problem B: to �nd conditions on a



POISSON COHOMOLOGY AND CANONICAL HOMOLOGY 31Poisson manifold to ensure that the �rst spectral sequence degenerates at the �rstterm. We have studied the second spectral sequence and proved that it degenera-tes for arbitrary Poisson manifolds [14]. As a consequence, we �nd the Brylinski'sresult. However, the �rst spectral sequence does not degenerate for non-symplecticPoisson manifolds. To prove this fact, we study the canonical homology of analmost cosymplectic manifold and prove the �niteness of their homology groups.We also prove a Nomizu's theorem for the case of almost cosymplectic nilmanifolds,that is, the canonical homologymay be computed at the Lie algebra level. By usingthese results we �nd a compact almost cosymplectic 5-dimensional nilmanifold forwhich the �rst spectral sequence does not degenerate at the �rst term.Finally, in Section 17, we show that the previous Problems A and B haveindependent answers.PART I: LICHNEROWICZ-POISSON COHOMOLOGY OF POISSONMANIFOLDS2. Schouten-Nijenhuis bracketLet M be C1 manifold of dimension m and denote by X(M ) the Lie algebraof C1 vector �elds and by F(M ) the algebra of C1 functions on M .There are two Grassmann algebras on M :8><>: Covariant Grassmann algebra (�(M ) =Lmp=0 �p(M );^)Contravariant Grassmann algebra (V(M ) =Lmp=0 Vp(M );^)�(M ) is endowed with the exterior derivative d and V(M ) with the Schouten-Nijenhuis bracket [ ; ]. We recall that the Schouten-Nijenhuis bracket is de�ned asthe unique R-bilinear operator of local type[ ; ] : Vp(M ) � Vq(M ) �! Vp+q�1(M )such that[X1 ^ � � � ^Xp; Q] = qXi=1(�1)i+1X1 ^ � � � ^ X̂i ^ � � � ^Xp ^ [Xi; Q] ;for all X1; : : : ; Xp 2 X(M ) and for all Q 2 Vq (M ), where the hat denotes missingarguments. Here [X;Q] = LXQ is the usual Lie derivative of a tensor �eld withrespect to a vector �eld X.The Schouten-Nijenhuis bracket satis�es the following properties:[P;Q] = (�1)pq[Q;P ] ;[P;Q^R] = [P;Q]^R+ (�1)pq+qQ ^ [P;R] ;(�1)p(r�1)[P; [Q;R]]+ (�1)q(p�1)[Q; [R;P ]]+ (�1)r(q�1)[R; [P;Q]] = 0 :



32 M. FERN�ANDEZ, R. IB�A~NEZ, M. DE LE�ON3. Poisson manifoldsDe�nition 3.1. A Poisson bracket f ; g on a manifoldM is a bilinear mappingf ; g : F(M )� F(M ) �! F(M )satisfying the following properties:(1) (skew-symmetry) ff; gg = �fg; fg,(2) (Leibniz rule) ff; ghg = ff; ggh+ gff; hg,(3) (Jacobi's identity) fff; gg; hg+ ffh; fg; gg+ ffg; hg; fg = 0,for f; g; h 2 F(M ).The pair (M; f ; g) will be called a Poisson manifold. Next, if there is no dangerof confusion, we shall write M instead of (M; f ; g).Notice that (1) is equivalent to that the Poisson bracket ff; fg vanishes, for anyf 2 F(M ); it expresses a conservation law of energy. Also, the Leibniz rule impliesthat the mapping f  Xf (g) = ff; gg de�nes a vector �eld Xf on M which willbe called a Hamiltonian vector �eld with energy f . Finally, the Jacobi's identitycan be equivalently written as Xffg; hg = fXf (g); hg + fg;Xf (h)g, which saysthat Xf is a derivation law of F(M ).In [22], A. Lichnerowicz gave a more compact de�nition of a Poisson manifold.De�ne a skewsymmetric (2,0) type tensor �eld G by G(df; dg) = ff; gg. Then[G;G] = 0. Conversely, let G be an skewsymmetric (2,0) type tensor �eld on Mand de�ne a bracket of functions ff; gg = G(df; dg). Then f ; g satis�es Jacobi'sidentity i� [G;G] = 0. G will be called the Poisson tensor. The rank of G will becalled the rank of the Poisson manifold.The local structure of a Poisson manifold was elucidated by A. Weinstein (see[28]). We haveTheorem 3.1. LetM be a Poisson manifold of dimension m, with Poisson bracketf ; g. Let x be a point of M where the rank of the Poisson structure is 2r. Then,there exist local coordinates fq1; � � � ; qr; p1; � � � ; pr; z1; � � � ; zm�2rg around x suchthat fqi; qjg = 0; fqi; pjg = �ji ; fqi; zag = 0;fpi; pjg = 0; fpi; zag = 0;for all 1 � i; j � r; 1 � a � m � 2r. Furthermore, the Poisson bracket fza; zbgis a function only of the local coordinates z1; � � � ; zm�2r and vanishes at x. If therank of the Poisson structure is constant and equal to 2r, the z-coordinates satisfyfza; zbg = 0;for all 1 � a; b � m � 2r. (Coordinates fq1; � � � ; qr; p1; � � � ; pr; z1; � � � ; zm�2rg arecalled Darboux coordinates.)



POISSON COHOMOLOGY AND CANONICAL HOMOLOGY 33Suppose that G has constant rank 2r. Then8>>>>>>>>><>>>>>>>>>: G = rXi=1 @@qi ^ @@pi ;Xf = rXi=1� @f@qi @@pi � @f@pi @@qi�;ff; gg = rXi=1� @f@qi @g@pi � @f@pi @g@qi�:4. Calculus on Poisson manifoldsLet (M; f ; g) be a Poisson manifold with Poisson tensor G.There exists a Poisson bracket of 1-formsf ; g : �1(M ) � �1(M ) �! �1(M )such that fdf; dgg = dff; gg (see K. H. Bhaskara, K. Viswanath [3]).De�ne a mapping I : �1(M ) �! V1(M ) as follows:I(�)(�) = G(�; �); 8�; � 2 �1(M ) :Hence we can extend I to a mappingI : �p(M ) �! Vp(M )by putting:- I(f) = f , for any f 2 F(M );- I(�)(�1; : : : ; �p) = (�1)p�(I(�1); : : : ; I(�p)), for � 2 �p(M ) and �1; : : : ; �p2 �1(M ).Proposition 4.1. We have:- I(� ^ �) = I(�) ^ I(�)- I(df) = Xf- I : �1(M ) �! V1(M ) is a Lie algebra homomorphism, i.e.,I(f�; �g) = [I(�); I(�)]; 8�; � 2 �1(M ) :5. The Lichnerowicz-Poisson cohomologyWe de�ne the contravariant exterior derivative � : Vp(M ) �! Vp+1(M ) by�(P ) = �[G;P ] :



34 M. FERN�ANDEZ, R. IB�A~NEZ, M. DE LE�ONAlternatively, we can express � in a more explicit way:(�P )(�0; �1; : : : ; �p) = pXi=0 (�1)i(I�i)(P (�0; : : : ; �̂i; : : : ; �p))+ pXi<j=0 (�1)i+jP (f�i; �jg; �0; : : : ; �̂i; : : : ; �̂j; : : : ; �p) ;where �i 2 �1(M ), and the hat denotes missing arguments.Proposition 5.1. We have8>><>>: �(P ^Q) = �(P ) ^Q+ (�1)pP ^ �(Q) (P 2 Vp(M )) ;�2 = 0 ;�(G) = 0 ;� I = �I d :Thus, � de�nes a cohomology on M which is called the Lichnerowicz-Poisson(LP for simplicity) cohomology of the Poisson manifoldM . The p-th LP -cohomo-logy group is then de�ned byHpLP (M ) = kerf� : Vp(M ) �! Vp+1(M )gIm f� : Vp�1(M ) �! Vp(M )g :Notice that G de�nes a cohomology class [G] 2 H2LP (M ).Since � I = �I d, we have induced homomorphisms in cohomologyI : HpDR(M ) �! HpLP (M )6. Symplectic manifoldsSuppose that (M; f ; g) has maximal rank, say m = 2n. In this case, I :�2(M ) �! V2(M ) is an isomorphism. If we put! = �I�1(G) ;then we deduce 8>><>>: d! = 0 ;rank ! = 2n ;�!(Xf ; Xg) = ff; gg ;iXf ! = df :Thus, (M;!) is a symplectic manifold.Conversely, if (M;!) is a symplectic manifold, we de�ne a Poisson bracket byff; gg = �!(Xf ; Xg), where iXf ! = df and iXg ! = dg.Theorem 6.1. For a symplectic manifold (M;!) we haveHpDR(M ) �= HpLP (M )



POISSON COHOMOLOGY AND CANONICAL HOMOLOGY 35Proof. In fact, I induces isomorphisms in cohomology. �However, the result does not hold for non symplectic Poisson manifolds as thenext example shows.Example 6.1. (The manifold M (k; n)) Let M (k; n) be the completely solvablefour-dimensional manifold de�ned by the 1-forms f�1; �2; �3; �4g such that8>><>>: d�1 = �k�1 ^ �3d�2 = k�2 ^ �3d�3 = 0d�4 = n�1 ^ �2where k is a real number such that ek+ e�k is an integer di�erent from 2, and n anon-zero integer number. M (k; n) is a compact quotient of a completely solvableLie group G(k; n) with Lie algebra g(k; n).Let fX1; X2; X3; X4g be the dual basis of vector �elds. We have8<: [X1; X2] = �nX4[X1; X3] = kX1[X2; X3] = �kX2all the other brackets being zero.Consider the Poisson tensor G given byG = X3 ^X4 :G is obtained from a left invariant Poisson structure on G(k; n). (We are usingthe same notation for the basis of left invariant 1-forms on G(k; n) and for thebasis of 1-forms induced on M (k; n); as well for the basis of left invariant vector�elds on G(k; n) and the basis of vector �elds induced on M (k; n)). We computethe Lichnerowicz-Poisson cohomology groups at the Lie algebra level. They areH0LP (g(k; n)) = 0 ;H1LP (g(k; n)) = f[X3]; [X4]g ;H2LP (g(k; n)) = f[X1 ^X2]; [X3 ^X4]g ;H3LP (g(k; n)) = f[X1 ^X2 ^X3]; [X1 ^X2 ^X4]g ;H4LP (g(k; n)) = f[X1 ^X2 ^X3 ^X4]g :A direct computation shows that [X1 ^ X2] and [X3 ^ X4] are not zero inH2LP (M (k; n)). Since H2DR(M (k; n)) = 0 (see [10]) we conclude thatH2LP (M (k; n)) � H2DR(M (k; n)) :



36 M. FERN�ANDEZ, R. IB�A~NEZ, M. DE LE�ON7. The coeffective Lichnerowicz-Poisson cohomologySince �(G) = 0, H2LP (M ) has a distinguished element [G]. Hence we can de�nethe truncated LP-cohomology groups as follows:eHpLP (M ) = f[P ] 2 HpLP (M )j[P ]^ [G] = 0g :Moreover, since �(P ^ G) = �(P ) ^ G we obtain a di�erential subcomplex ofthe complex (V(M ); �):ApLP (M ) = fP 2 Vp(M )jP ^G = 0gIts cohomology will be called the coe�ective cohomology of M , and its p-th groupis de�ned to be Hp(ALP (M )) = kerf� : Ap(M ) �! Ap+1(M )gIm f� : Ap�1(M ) �! Ap(M )g :In a natural way, it arises the following question: AreHp(ALP (M )) and eHpLP (M )the same groups, unless isomorphism?Next, we shall establish some partial results.If G has constant rank 2r, thenApLP (M ) = 0 ; p � r � 1Therefore we get Hp(ALP (M )) = 0 ; p � r � 1 :Now, let (M;!) be a symplectic manifold. We de�ne a coe�ective cohomologywith respect to the symplectic form ! by declaring that a p-form � is coe�ectiveif � ^ ! = 0. Since ! is closed we obtain a di�erential subcomplex (A(M ); d) ofthe de Rham complex, whereAp(M ) = f� 2 �p(M )j� ^ ! = 0g :The corresponding coe�ective cohomology groups are denoted by Hp(A(M )), forevery integer p and were introduced by T. Bouch�e [6].On the other hand, we have the truncated de Rham cohomology eH�DR(M ) bythe cohomology class [!] of !. Using the isomorphism I we deduce thateHpDR(M ) �= eHpLP (M ) ; Hp(A(M )) �= Hp(ALP (M )) :The next theorem follows from Bouch�e [6]:Theorem 7.1. If M is a compact K�ahler manifold of dimension 2n, we haveHp(ALP (M )) �= eHpLP (M ) ;for p 6= n.In fact, if M is a compact K�ohler manifold we haveHp(A(M )) �= eHp(M ) ;



POISSON COHOMOLOGY AND CANONICAL HOMOLOGY 37Bouch�e conjectured that his result holds for arbitrary symplectic manifolds.However, a counterexample was constructed in [1]. Actually, a method to computethe coe�ective cohomology was presented in [12, 13].First of all, we recall the Nomizu's theorem which permits us to compute thede Rham cohomology of compact nilmanifolds.Theorem 7.2. (Nomizu's theorem [24]) Let G be a connected nilpotent Lie groupwith discrete subgroup � such that the space of right cosets M = �nG is compact.Then there is an isomorphism of cohomology groupsH�(g�) �= H�DR(M ) ;where H�(g�) denotes the Chevalley-Eilenberg cohomology of the Lie algebra g ofG and H�DR(M ) denotes the de Rham cohomology of M .Hattori [17] has extended this result for completely solvable manifolds.In [13], we have proved a Nomizu's theorem for the coe�ective cohomology ofsymplectic manifolds.Theorem 7.3. Let G be a connected nilpotent Lie group endowed with an inva-riant symplectic form !� and with a discrete subgroup � such that the space ofright cosets M = �nG is compact. Then there is an isomorphism of cohomologygroups Hp(A(g�)) �= Hp(A(M )) ;for all p � n+1, dimG = 2n, where Hp(A(g�)) is the coe�ective cohomology withrespect to !� and Hp(A(M )) is the coe�ective cohomology de�ned by the projectedsymplectic form ! on M .The result still holds for completely solvable manifolds.Example 7.1. (The manifoldR6) Let R6 be a 6-dimensional compact nilmanifoldde�ned by the 1-forms f�1; �2; �3; �4; �5; �6g such that8>><>>: d�i = 0 ; 1 � i � 3 ;d�4 = ��1 ^ �2 ;d�5 = ��1 ^ �3 ;d�6 = ��1 ^ �4 :We write �ij = �i ^ �j, �ijk = �i ^ �j ^ �k, and so forth.



38 M. FERN�ANDEZ, R. IB�A~NEZ, M. DE LE�ONUsing Nomizu's theorem we obtain:H0DR(R6) = f1g;H1DR(R6) = f[�1]; [�2]; [�3]g;H2DR(R6) = f[�15]; [�16]; [�23]; [�24]; [�35]; [�25+ �34]g;H3DR(R6) = f[�135]; [�145]; [�146]; [�156]; [�234]; [�235]; [�246];[�236+ �245]g;H4DR(R6) = f[�1246]; [�1256]; [�1356]; [�1456]; [�2345]; [�2346]g;H5DR(R6) = f[�12456]; [�13456]; [�23456]g;H6DR(R6) = f[�123456]g:Since b1(R6) = 3, we deduce thatR6 does not admit K�ahler structures. HoweverR6 admits symplectic structures, for instance,! = �15 + �16 + �25 + �34 + �13 :By a direct computation, we obtaineH4DR(R6) = f[�1246]; [�1356]; [�1456]; [�1256+ �2346]; [�2345+ �2346]g ;and, from Nomizu's theorem for the coe�ective cohomology (see [13]) we haveH4(A(R6)) = ff�1245g; f�1246g; f�1356g; f�1456g; f�1256��2345g; f�1256+�2346gg :Thus, eH4(R6) � H4(A(R6))Remark 7.1. The coe�ective cohomology for almost cosymplectic manifolds wasintroduced in [9]. Moreover, in [13], a Nomizu's type theorem for this cohomologywas proved.To end this section we propose the following open problems:1.- To obtain a Nomizu's theorem for the Lichnerowicz-Poisson cohomology.This would mean the following:Let G be a connected nilpotent Lie group endowed with an invariant Poissonstructure G� (of course, of constant rank 2r) and with a discrete subgroup � suchthat the space of right cosets M = �nG is compact. Then there is an isomorphismof cohomology groups H�LP (g) �= H�LP (M ) ;where H�LP (g) denotes the LP-cohomology of the Lie algebra g of G and H�LP (M )denotes the de LP-cohomology of M .2.- The same problem for the coe�ective LP-cohomology.



POISSON COHOMOLOGY AND CANONICAL HOMOLOGY 39PART II: CANONICAL HOMOLOGY OF POISSON MANIFOLDS8. Canonical homologyLet M be a Poisson manifold with Poisson tensor G and Poisson bracket f ; g.J.L. Koszul [19] introduced the di�erential operator� : �k(M ) �! �k�1(M ) ;de�ned by � = [i(G); d] = i(G) � d� d � i(G) ;where i(G) denotes the contraction by G, and d is the exterior derivative.Alternatively, J.L. Brylinski [7] gave the following explicit expression for �:�(f0 df1 ^ � � � ^ dfk) = X1�i�k (�1)i+1 ff0; fig df1 ^ � � � ^cdfi ^ � � � ^ dfk+ X1�i<j�k (�1)i+j f0 dffi; fjg ^ df1 ^ � � � ^ cdfi ^ � � � ^ cdfj ^ � � � ^ dfk :(1)The operator � satis�es (see [19, 7])�2 = 0and so, we obtain the canonical complex� � � �! �k+1(M ) ��! �k(M ) ��! �k�1(M ) �! � � �whose homology groups Hcan� (M ) are given byHcank (M ) = kerf� : �k(M ) �! �k�1(M )gIm f� : �k+1(M ) �! �k(M )g :Hcan� (M ) is called the canonical homology of M .9. Brylinski conjectureBrylinski, in [7], stated the following problem.Problem A: Give conditions on a compact Poisson manifold M which ensurethat any cohomology class in HkDR(M ) has a representative � such that d� = 0and �� = 0, (i.e., � is harmonic for the Poisson structure of M).Suppose that M is symplectic. Then there is a natural pairing�k(G) : �k(T �M )� �k(T �M ) �! F(M )induced by the Poisson tensor G. In fact, �k(G) is de�ned as follows:�k(G)(�1 ^ � � � ^ �k; �1 ^ � � � ^ �k) = det (G(�i; �j)) :



40 M. FERN�ANDEZ, R. IB�A~NEZ, M. DE LE�ONDenote by vM = !nn! the symplectic volume form on M . The symplectic staroperator is de�ned in [7] as follows:? : �k(M ) �! �2n�k(M )� ^ (?�) = �kG(�; �) � vM ;for �; � 2 �k(M ).Proposition 9.1. [7] We have?(?�) = ��� = (�1)k+1 ? d ? (�) ;for � 2 �k(M ).Now, we can relate the canonical homology with the de Rham cohomology ofthe symplectic manifoldM .Theorem 9.1. [7] Let M be a compact symplectic manifold of dimension 2n.Then, the operator ? establishes an isomorphism of the canonical homology groupHcank (M ) with the de Rham cohomology group H2n�kDR (M ):Hcank (M ) �= H2n�kDR (M ) :Let M = �nG be a compact symplectic nilmanifold, whose symplectic formcomes from the projection of a left invariant symplectic form on G. Then, Theorem9.1 and Nomizu's theorem imply that there is a natural isomorphismHcani (g�) �= Hcani (M ) ;where g is the Lie algebra of G.Because d� + �d = 0, the symplectic Laplacian operator � = d� + �d vanishes.However, we still give the following de�nition.De�nition 9.1. A k-form � such that d� = 0 and �� = 0 will be called symplec-tically harmonic.Brylinski made the following conjecture:If M is a compact symplectic manifold, any de Rham cohomology class inH�DR(M ) has a symplectically harmonic representative.He obtained the following evidences for the conjecture:(1) The conjecture is true if M = R2n=�, where � is a discrete subgroup andR2n is endowed with the standard symplectic structure.(2) Every cotangent bundle T �N satis�es the conjecture.(3) Every compact K�ahler manifold satis�es the conjecture.However, the assertion fails for arbitrary compact symplectic manifolds.



POISSON COHOMOLOGY AND CANONICAL HOMOLOGY 41Example 9.1. (The Kodaira-Thurston manifold) The Heisenberg group H is theconnected, simply connected and nilpotent Lie group of dimension 3 of the formH = 8<:0@1 x1 x30 1 x20 0 1 1A = x1; x2; x3 2R9=; :A standard computation shows that a basis for the left invariant 1-forms on His given by fdx1; dx2; dx3 � x1dx2g. Now, we take the compact quotient �nH,where � is the uniform subgroup of H consisting of those matrices whose entriesare integers. Thus, �nH is a 3-dimensional compact nilmanifold; and the 1-formsdx1, dx2, dx3 � x1dx2 all descend to 1-forms �1, �2, �3 on �nH.The Kodaira-Thurston manifold KT isKT = (�nH)� S1Denote by �4 the canonical 1-form on S1. Then, f�1; �2; �3; �4g is a basis forthe 1-forms on KT such thatd�1 = d�2 = d�4 = 0; d�3 = ��1 ^ �2 :(2)Nomizu's theorem permits us to compute the de Rham cohomology groups ofKT . They are:8>>>>>>><>>>>>>>: H0DR(KT ) = f1g ;H1DR(KT ) = f[�1]; [�2]; [�4]g ;H2DR(KT ) = f[�1 ^ �3]; [�1 ^ �4]; [�2 ^ �3]; [�2 ^ �4]g ;H3DR(KT ) = f[�1 ^ �2 ^ �3]; [�1 ^ �3 ^�4]; [�2 ^�3 ^ �4]g ;H4DR(KT ) = f[�1 ^ �2 ^ �3 ^�4]g :De�ne a symplectic form ! = �1 ^ �3 + �2 ^ �4with Poisson tensor G = X3 ^X1 +X4 ^X2 ;where fX1; X2; X3; X4g is the dual basis of vector �elds.Therefore, we have�(�3 ^ �4) = �1 ; �(�2 ^ �3 ^ �4) = �1 ^ �2 ;and �(�) = 0 for the another left invariant forms �.Theorem 9.2. [11] The cohomology class [�2 ^ �3 ^ �4] in H3DR(KT ) does notadmit a representative � such that d� = �� = 0.



42 M. FERN�ANDEZ, R. IB�A~NEZ, M. DE LE�ONProof. For a symplectic manifold (M;!) we de�ne L : �k(M ) �! �k+2(M ) byL(�) = � ^ !. By using the identitiesL � d = d � Li(G) = � ? L? ;[L; �] = �d ;?(�) = �(n � 1)! Ln�1(�) ; � 2 �1(M ) ;the theorem is proved by a long by straightforward computation. �Remark 9.1. O. Mathieu [23] have obtained a characterization of the space ofthe cohomology classes which contain a harmonic representative. To do this, heused a classi�cation result for representations of the Lie superalgebra sl(2) � C 2.As a consequence he obtain the following characterization:Theorem 9.3. (Mathieu) A compact symplectic manifold (M2n; !) satis�es theBrylinski conjecture if and only if for any k � n the cup product[!]k : Hn�kDR (M ) �! Hn+kDR (M )is an isomorphism, or, in other words, if and only if M satis�es the strong Lef-schetz theorem.Thus, any compact symplectic manifold which does not verify the strong Lef-schetz theorem gives a counterexample of Brylinski conjecture.Corollary 9.1. (Mathieu) The odd Betti numbers of a manifold satisfying theconjecture are even.Since b1(KT ) = 3, Theorem 9.2 follows from Mathieu's corollary.10.Duality between canonical homology and Lichnerowicz-PoissoncohomologyIn [2], Bhaskara and Viswanath have de�ned a duality between the canonicalhomology and the Lichnerowicz-Poisson cohomology of any Poisson manifold M .First of all, they de�ned a natural pairing�p(M )� Vp(M ) �! F (M )by putting h�1 ^ � � � ^ �p; X1 ^ � � � ^Xpi = det(�i(Xj)) :Moreover, they de�ned the following operation. If P 2 Vp�1(M ) and 
 2 �p(M ),then i(P )
 2 �1(M ) is given by(i(P )
)(X) = h
; P ^Xi ; 8X 2 X(M ) :So, they obtained the following formulah
; �(P )i � h�
; P i = (�1)p�(i(P )
) :



POISSON COHOMOLOGY AND CANONICAL HOMOLOGY 43from which it follows that h ; i induces a natural pairingHcanp (M )�HpLP (M ) �! Hcan0 (M )by putting h
; [P ]i = h
; P i :Now, suppose thatM is a compact symplectic manifold of dimension 2n. Takinginto account that Hcanp (M ) �= H2n�pDR (M ) ; [
] [?
] ;HpLP (M ) �= HpDR(M ) ; [P ] [I�1(P )] ;Hcan0 (M ) �= H2nDR(M ) ; [h
; P i] [?h
; P i] ;we deduce that the pairing is non-singular. In fact, by integrating over M weobtain the well-known duality of Poincar�e, which can be now stated as follows:Hcanp (M ) �= HpLP (M ) :11. The double periodic complexSince d� + �d = 0 ;Brylinski [7] introduced the canonical double complexC�;�(M ) ;Cp;q(M ) = �q�p(M ) ; 8p; q � 0 ;together with di�erentials- d : Cp;q(M ) �! Cp�1;q(M ) (the horizontal di�erential of degree �1),- � : Cp;q(M ) �! Cp;q�1(M ) (the vertical di�erential of degree �1).The periodic double complex is de�ned by(Cper�;� (M ); d; �) ;Cperp;q (M ) = �q�p(M ) ; (p; q 2Z) :Thus, (see [5, 16]) there are two spectral sequences associated with this periodicdouble complex which will be studied in the forthcoming sections.12. The second spectral sequenceLet 0�r be the di�erential of bidegree (r� 1;�r), so that the groups 0Er+1p;q (M )are isomorphic to the homology groups of the sequence� � � �! 0Erp�r+1;q+r(M ) 0�r�! 0Erp;q(M ) 0�r�! 0Erp+r�1;q�r(M ) �! � � �



44 M. FERN�ANDEZ, R. IB�A~NEZ, M. DE LE�ONObserve that a di�erential form � 2 Cperp;q (M ) lives to 0Erp;q(M ) if it satis�es8>>>>>>><>>>>>>>: d� = 0;�� = d�1;��1 = d�2;...��r�3 = d�r�2;��r�2 = d�r�1;for some di�erential forms �1; � � � ; �r�1. In such a case, denote by 0[�]r the ho-mology class de�ned by � in 0Erp;q(M ). The di�erential 0�r on 0Erp;q(M ) is givenby 0�r 0[�]r = 0[��r�1]r :Now, for r = 1 the groups 0E1p;q(M ) of the second spectral sequence are isomor-phic to the homology groups of the sequence� � � �! Cperp+1;q(M ) d�! Cperp;q (M ) d�! Cperp�1;q(M ) �! � � �Thus we obtain 0E1p;q(M ) �= Hq�pDR (M ) :For r = 2 the groups 0E2p;q(M ) of the second spectral sequence are isomorphicto the homology groups of the sequence� � � �! Hq�p+1DR (M ) ��! Hq�pDR (M ) ��! Hq�p�1DR (M ) �! � � �Next, we shall study the degeneracy of the second spectral sequence. First ofall, we need the following lemma.Lemma 12.1. [14] Let (M; f ; g) be a Poisson manifold with Poisson tensor G.We have ki(G)di(G)k�1 = i(G)kd+ (k � 1)di(G)k ; 8k 2 NAs a direct consequence, we getTheorem 12.1. [14] The second spectral sequence of the double complex Cperp;q (M )degenerates at 0E1(M ), that is, 0E1(M ) �= 0E1(M ).Proof. In fact, after some manipulations by using the above Lemma 12.1, wededuce that �r�1 = d(
), for some (p+ q�1)-form 
. So 0�r 0[�]r = 0[��r�1]r = 0.13. The first spectral sequenceDenote by �r the di�erential of bidegree (�r; r�1), so that the groups Er+1p;q (M )



POISSON COHOMOLOGY AND CANONICAL HOMOLOGY 45are isomorphic to the homology groups of the following sequence� � � �! Erp+r;q�r+1(M ) �r�! Erp;q(M ) �r�! Erp�r;q+r�1(M ) �! � � �Note that a di�erential form � 2 Cperp;q (M ) lives to Erp;q(M ) if it satis�es8>>>>>>><>>>>>>>: �� = 0;d� = ��1;d�1 = ��2;...d�r�3 = ��r�2;d�r�2 = ��r�1;for some di�erential forms�1; � � � ; �r�1. Denote by [�]r the homology class de�nedby � in Erp;q(M ). The di�erential operator �r is given by�r [�]r = [d�r�1]r :In particular, for r = 1 the groups E1p;q(M ) of the �rst spectral sequence areisomorphic to the homology groups of the sequence� � � �! Cperp;q+1(M ) ��! Cperp;q (M ) ��! Cperp;q�1(M ) �! � � �Thus, we have E1p;q(M ) �= Hcanq�p(M ) :For r = 2, the groups E2p;q(M ) are isomorphic to the homology groups of thesequence � � � �! Hcanq�p�1(M ) d�! Hcanq�p(M ) d�! Hcanq�p+1(M ) �! � � �In [7], Brylinski has proposed the following problem:Problem B: Give conditions on a compact Poisson manifold M which ensurethe degeneracy at E1 of the �rst spectral sequence of M .In fact, he proved the following result.Theorem 13.1. ( [7]) For any compact symplectic manifold M , the �rst spectralsequence of the double complex Cperp;q (M ) degenerates at E1(M ).By using the symplectic star operator, we haveTheorem 13.2. [14] For all r � 0, the homomorphismfr : Erp;q(M ) �! 0Erq;2n+p(M )given by fr [�]r = 0[?�]ris an isomorphism of homology groups. Moreover, fr commutes with the di�eren-tial, that is, (fr � �r)[�]r = (�1)q�p+1( 0�r � fr)[�]r;



46 M. FERN�ANDEZ, R. IB�A~NEZ, M. DE LE�ONfor all [�]r 2 Erp;q(M ).Proof. The theorem follows by using the symplectic star operator and Theorem12.1. �Now, as a consequence of Theorem 12.1 and Theorem 13.2, we obtain Theorem13.1. 14.Almost cosymplectic manifoldsAn important class of odd dimensional Poisson manifolds are almost cosym-plectic manifolds.De�nition 14.1. An almost contact metric structure (�;R; �; g) on a (2n + 1)-dimensional manifoldM consists of:- a tensor �eld � of type (1; 1):- a vector �eld R;- a 1-form �;- a Riemannian metric g on M ;such that �2 = �I + � 
R;�(R) = 1;g(�(X); �(Y )) = g(X;Y ) � �(X)�(Y ) ; 8X;Y 2 X(M ) :M is then called an almost contact metric manifold.De�ne the fundamental 2-form � by�(X;Y ) = g(�(X); Y ) ; 8X;Y 2 X(M ) :Hence, we have �n ^ � 6= 0 ;which de�nes a volume form vM = 1n!(�n ^ �) :De�nition 14.2. M is called almost cosymplectic if � and � are closed.Next, we shall introduce a Poisson structure on an almost cosymplectic mani-fold.De�nition 14.3. LetM be an almost cosymplectic manifold. For each f 2 F(M )the Hamiltonian vector �eld Xf of f is the vector �eld on M de�ned by( iXf � = df �R(f)�;iXf � = 0



POISSON COHOMOLOGY AND CANONICAL HOMOLOGY 47Moreover, there are local coordinates fq1; � � � ; qn; p1; � � � ; pn; zg in a neighbor-hood of every point, such that8>>>>>>><>>>>>>>: � = nXi=1 dpi ^ dqi ;� = dz ; R = @@z ;Xf = nXi=1 � @f@qi @@pi � @f@pi @@qi� :(see [4, 8, 20]).Let M be an almost cosymplectic manifold, with fundamental 2-form �. De�nethe mapping f ; g : F(M )� F(M ) �! F(M ) byff; gg = ��(Xf ; Xg) ;for f; g 2 F(M ), where Xf and Xg are the Hamiltonian vector �elds of f and g,respectively. Then, f ; g is a Poisson bracket on M . So, M is a Poisson manifoldwith Poisson tensor G given byG = nXi=1 @@qi ^ @@pi ;and the Poisson bracket satis�esff; gg = nXi=1� @f@qi @g@pi � @f@pi @g@qi� :Remark 14.1. Let M be a (2n+1)-dimensional manifold endowed with a closed2-form � and a closed 1-form � such that �n^� 6= 0. Then there exists an almostcontact metric structure (�;R; �; g) on M such that � is the fundamental form(see [4] for the details).15. The canonical homology of almost cosymplectic manifoldsLet (M;�;R; �; g) be an almost cosymplectic manifold, with fundamental 2-form � and Poisson tensor G. Denote by � the Koszul di�erential of M .De�ne the subspaces8<: �kR(M ) = f� 2 �k(M ) j i(R)� = 0g;�k�(M ) = f� 2 �k(M ) j � ^ � = 0g:We obtain the following decomposition�k(M ) = �kR(M )� �k�(M ) :(3)In fact, if � 2 �k(M ) then� = (�� � ^ i(R)�) + � ^ i(R)� ;



48 M. FERN�ANDEZ, R. IB�A~NEZ, M. DE LE�ONwhere �� � ^ i(R)� 2 �kR(M ) ; � ^ i(R)� 2 �k�(M ) :Proposition 15.1. � preserves the above decomposition, i.e, we havei) �(�kR(M )) � �k�1R (M );ii) �(�k�(M )) � �k�1� (M ).So, we introduce the di�erential complexes� � � �! �k+1R (M ) ��! �kR(M ) ��! �k�1R (M ) �! � � �and � � � �! �k+1� (M ) ��! �k�(M ) ��! �k�1� (M ) �! � � �and their corresponding homology groupsĤcank (M ) = Kerf� : �kR(M ) �! �k�1R (M )g�(�k+1R (M )) ;_Hcank (M ) = Kerf� : �k�(M ) �! �k�1� (M )g�(�k+1� (M )) :In order to prove that the canonical homology groups Hcank (M ) have �nitedimension, we show in [14] that the groups �Hcank (M ) and Ĥcank�1(M ) are isomorphic.Then, from (3) and Proposition 15.1, we deduceHcank (M ) �= Ĥcank (M )� _Hcank (M )�= Ĥcank (M )� Ĥcank�1(M );for any k � 1.Moreover, in [14] we have proved the followingProposition 15.2. [14] For any compact almost cosymplectic manifold M of di-mension (2n+1), the homology group Ĥcan2n�k(M ) has �nite dimension. Therefore,the canonical homology group Hcank (M ) has also �nite dimension.16. The canonical homology of compact almost cosymplecticnilmanifoldsIn this section, we shall prove an approximation to Nomizu's theorem for thecanonical homology of compact almost cosymplectic nilmanifolds.Let M = �nG be a compact almost contact metric nilmanifold of dimension(2n+ 1). This means that:- G is a connected, simply-connected and nilpotent Lie group of dimension(2n+ 1);- � is a discrete subgroup of G such that the quotient space �nG is compact;- There is a left invariant almost contact metric structure (�;R; �; g) on G.



POISSON COHOMOLOGY AND CANONICAL HOMOLOGY 49We also denote by (�;R; �; g) the induced almost contact metric structure onM ; and by � the fundamental 2-form on G and M . Then, G and M are Poissonmanifolds. Denote by � the Koszul di�erential of G and M .Let h be the Lie subalgebra of g de�ned byh = fX 2 gj�(X) = 0g :So, h is a nilpotent Lie algebra of dimension 2n. Integrate h to obtain a Liesubgroup H of G, i.e., H is a connected, simply-connected, nilpotent Lie groupwhose Lie algebra is h. Moreover, ~� = � \ H is a discrete subgroup of H suchthat the quotient space N = ~�nH is a compact nilmanifold. Notice that N isin fact a submanifold of M , for which the canonical inclusion will be denoted byj : N �! M . Moreover, h is endowed with a symplectic form obtained by therestriction of �. Thus, N inherits a symplectic form also denoted by � which isthe projection onto N of the left invariant symplectic form on H. In fact, N is asymplectic leaf of the symplectic foliation on M .But we know that there are canonical isomorphismsĤcanq (g�) �= Hcanq (h�) �= Hcanq (N ) :Now, denote by � : Ĥcanq (g�) �! Ĥcanq (M ) the homomorphism which mapsthe homology class of a left invariant form � on G into the homology class ofthe projected form on M , namely �[�] = [�]. Suppose that �[�] = 0. Since� 2 �qR(g) we have that � 2 �q(h). Because �[�] = 0, we deduce that there exists� 2 �q+1R (M ) such that � = ��. From (1), we deduce that � = �0 + �1, where�0 2 �q+1(N ) and the components of �1 in Darboux coordinates are linear on thez's. Thus, � = �� = ��0, and, therefore, [�] is the zero class in Ĥcanq (g�).This provesTheorem 16.1. Let G be a connected nilpotent Lie group endowed with an in-variant almost cosymplectic structure (�;R; �; g) and with a discrete subgroup �such that the space of right cosets M = �nG is compact. Then there is an injectivehomomorphism of homology groups from Hcanq (g�) into Hcanq (M ), for all q � 0,where we consider on M the projected almost cosymplectic structure.Example 16.1. (The manifoldM5) We exhibit an example of a compact almostcosymplectic nilmanifold M5 for which the �rst spectral sequence fEr(M5)g issuch that E1(M5) � E2(M5).Let G be the 5-dimensional connected, simply-connected and nilpotent Liegroup, de�ned by the left invariant 1-forms f�1; � � � ; �5g such that8><>: d�1 = d�2 = d�5 = 0 ;d�3 = �2 ^ �5 ;d�4 = �1 ^ �2:



50 M. FERN�ANDEZ, R. IB�A~NEZ, M. DE LE�ONThese structure equations can be integrated explicitly; in fact, G can be realizedas the nilpotent Lie groupG =8>>>>>><>>>>>>:0BBBBBB@ 1 x1 x2 x5 x3 x40 1 0 0 0 �x20 0 1 0 �x5 00 0 0 1 0 00 0 0 0 1 00 0 0 0 0 1 1CCCCCCA ������������ xi 2R 9>>>>>>=>>>>>>; :We take � to be the subgroup of G consisting of those matrices whose entriesare integers. De�ne M5 = �nG.Let fX1; � � � ; X5g be the basis dual to f�1; �2; �3; �4; �5g. Consider the metricg on M5 de�ned by g = �21 + �22 + �23 + �24 + �25:Then fX1; � � � ; X5g is an orthonormal frame with respect to g on M5.De�ne a tensor �eld � of type (1; 1) over M5 by�(X1) = X4; �(X2) = X3; �(X5) = 0;�(X4) = �X1; �(X3) = �X2;and consider R = X5, � = �5. Then (�;R; �; g) is an almost contact metricstructure on M5 whose fundamental 2-form � is� = �1 ^ �4 + �2 ^ �3:The compact nilmanifold M5 = �nG with the almost contact metric structure(�;R; �; g) is an almost cosymplectic nilmanifold whose structure arises from a leftinvariant almost contact metric structure on G.The Poisson tensor G is given byG = �X1 ^X4 �X2 ^X3 ;and we have �(�3 ^ �4) = �1; �(�2 ^�3 ^ �4) = ��1 ^ �2 ;�(�3 ^ �4 ^ �) = �1 ^ �; �(�2 ^�3 ^ �4 ^ �) = ��1 ^ �2 ^ � ;and �(�) = 0 for the another left invariant forms �.Denote by g the Lie algebra of G. Then, we haveHcan0 (g�) = f1g;Hcan1 (g�) = ff�2g; f�3g; f�4g; f�gg;Hcan2 (g�) = ff�1 ^ �3g; f�1 ^ �4g; f�2 ^ �g; f�2 ^ �3g;f�2 ^ �4g; f�3 ^ �g; f�4 ^ �gg;



POISSON COHOMOLOGY AND CANONICAL HOMOLOGY 51Hcan3 (g�) = ff�1 ^ �2 ^ �3g; f�1 ^ �2 ^ �4g; f�1 ^�3 ^ �g;f�1 ^ �3 ^�4g; f�1 ^ �4 ^ �g; f�2 ^ �3 ^ �g; f�2 ^ �4 ^ �gg;Hcan4 (g�) = ff�1 ^ �2 ^ �3 ^ �4g; f�1 ^ �2 ^ �3 ^ �g; f�1 ^ �2 ^ �4 ^ �g;f�1 ^ �3 ^�4 ^ �gg;Hcan5 (g�) = ff�1 ^ �2 ^ �3 ^ �4 ^ �gg:Theorem 16.2. For the �rst spectral sequence fE1(M5)g we haveE10;1(M5) 6�= E20;1(M5)Proof. In fact, �3 de�nes a nontrivial homology class f�3g in Hcan1 (g�). Then,�3 de�nes a nontrivial homology class in Hcan1 (M5). Moreover, E10;1(M5) �=Hcan1 (M5), so that �3 represents a nontrivial class in E10;1(M5).However, d�3 = �2 ^ �; and we know that �2 ^ � de�nes a nontrivial class inHcan2 (g�). Therefore, �2 ^ � represents a nontrivial homology class in Hcan2 (M5).This implies that �2 ^ � 62 �(�3(M5)):Thus, �3 does not live in E20;1(M5). �17.About the Problems A and BIn this section, we shall show that Problems A and B of Brylinski have inde-pendent answers. Firstly, we prove that Problem A does not imply Problem B.For this, we consider the Kodaira-Thurston manifoldKT de�ned by the equations(2).De�ne a Poisson structure G on KT byG = X3 ^X4 :(4)Let � be the di�erential operator determined by G. From a straightforwardcomputation we obtain that �(�) = 0 for any left invariant form �. Using againNomizu's theorem we see that any de Rham cohomology class has a left invariantrepresentative which is �-coclosed. This proves the following.Theorem 17.1. Let KT be the Kodaira-Thurston manifold with the Poisson ten-sor G given by ( 4). Then, any de Rham cohomology class of KT has a represen-tative which is harmonic for the Poisson structure.In order to show that the �rst spectral sequence fEr(KT )g does not degene-rate at the term E1(KT ), we need to prove that the canonical homology groupsHcan� (KT ) have �nite dimension.Consider the subspaces �q34(KT ), �q1(KT ), �q2(KT ) and �q12(KT ) of �q(KT ),(1 � q � 4), de�ned by�q34(KT ) = f� 2 �q(KT ) j iX1� = iX2� = 0g = �q(�3; �4) ;�q1(KT ) = f� 2 �q(KT ) j�1 ^ � = 0; iX2� = 0g = �1 ^ �q�1(�3; �4) ;



52 M. FERN�ANDEZ, R. IB�A~NEZ, M. DE LE�ON�q2(KT ) = f� 2 �q(KT ) j iX1� = 0; �2 ^ � = 0g = �2 ^ �q�1(�3; �4) ;�q12(KT ) = f� 2 �q(KT ) j�1 ^ � = �2 ^ � = 0g = �1 ^ �2 ^ �q�2(�3; �4) ;where ��(�3; �4) denotes the exterior algebra generated by �3 and �4.Now, for � 2 �q(KT ) it is easy to see that� = (� � �1 ^ iX1�� �2 ^ iX2�+ �1 ^ �2 ^ iX2 iX1�) + (�1 ^ iX1� � �1 ^ �2^iX2iX1�) + (�2 ^ iX2� � �1 ^ �2 ^ iX2 iX1�) + �1 ^ �2 ^ iX2 iX1� ;with (� � �1 ^ iX1� � �2 ^ iX2� + �1 ^ �2 ^ iX2 iX1�) 2 �q34(KT ), (�1 ^ iX1� ��1 ^ �2 ^ iX2iX1�) 2 �q1(KT ), (�2 ^ iX2� � �1 ^ �2 ^ iX2 iX1�) 2 �q2(KT ) and�1 ^ �2 ^ iX2 iX1� 2 �q12(KT ).Therefore, the space �q(KT ) becomes:�q(KT ) = �q34(KT ) � �q1(KT ) � �q2(KT ) � �q12(KT ) :(5)It follows that 8>>><>>>: �(�1 ^ �) = �1 ^ �(�) ;�(�2 ^ �) = �2 ^ �(�) ;�(�1 ^ �2 ^ �) = �1 ^ �2 ^ �(�) :(6)Now, from (6) we obtain that � preserves the decomposition (5), that is,�(�q34(KT )) � �q�134 (KT ), �(�qs(KT )) � �q�1s (KT ), (s = 1; 2) and �(�q12(KT )) ��q�112 (KT ).Therefore, we have the di�erential complexes (��34(KT ); �), (��s(KT ); �) (s =1; 2) and (��12(KT ); �), each one of which is a subcomplex of the canonical complexof KT . Denote by Hcan34;�(KT ), Hcans;� (KT ) (s = 1; 2) and Hcan12;�(KT ) the homologyof the complexes (��34(KT ); �), (��s(KT ); �) (s = 1; 2) and (��12(KT ); �), respec-tively.Let us now consider the homomorphisms ciXs : �qs(KT ) �! �q�134 (KT ), (s =1; 2), and ciX2 ciX1 : �q12(KT ) �! �q�234 (KT ) given byciXs(�) = iXs� ;ciX2 ciX1 (�) = iX2 iX1� ;for � 2 �qs(KT ), (s = 1; 2), and � 2 �q12(KT ).Using (6) one can check that each one of the homomorphisms ciXs , (s = 1; 2),and ciX2 ciX1 commutes with the di�erential �, and moreover the homomorphismsinduced in homologyare isomorphisms. Now, from (5), we obtain the isomorphism:Hcanq (KT ) �= Hcan34;q(KT ) �Hcan34;q�1(KT )(7) �Hcan34;q�1(KT ) �Hcan34;q�2(KT ) :



POISSON COHOMOLOGY AND CANONICAL HOMOLOGY 53Next, we study the homology Hcan34;�(KT ). First, we need to introduce the mapd̂ : �q34(KT ) �! �q+134 (KT ), (q � 0), de�ned byd̂(�) = d�� �1 ^ iX1d�� �2 ^ iX2d�+ �1 ^ �2 ^ iX2 iX1d� ;(8)for � 2 �q34(KT ).A direct computation, by using (8), shows that8<: d̂2 = 0 ;d̂(� ^ �) = d̂(�) ^ �+ (�1)q� ^ d̂� ;for � 2 �q34(KT ).Thus, we have the di�erential complex (��34(KT ); d̂). Denote by Ĥ�(KT ) thecohomology of this complex.Proposition 17.1. The di�erential complex (��34(KT ); d̂) is elliptic. Therefore,the cohomology groups Ĥq(KT ) have �nite dimension.Proof. The complex is elliptic in degree q if for all points x in KT and for all1-form non-zero � 2 �134(KT ) at x the complex� � �0 �^�! (�034)x(KT ) �^�! (�134)x(KT ) �^�! (�234)x(KT ) �^�! 0 � � �is exact, where (�q34)x(KT ) is the space of the q-forms � at x such that iX1(x)� =iX2(x)� = 0.If we consider Darboux coordinates (q1; q2; p1; p2) de�ned on some contractibleneighborhood of x and such that G = @@q2 ^ @@p2 , then (�k34)x(KT ) is spanned byfdq2; dp2g. This implies the exactness of the above complex. �Now, imitating the de�nition of the symplectic star operator given in [7], wede�ne the operator ?34 : �q34(KT ) �! �2�q34 (KT ), (0 � q � 2), by the condition� ^ (?34�) = �q(G)(�; �)�, for �; � 2 �q34(KT ), and where � is the 2-form � =�3 ^ �4.Moreover, we consider the operator �̂ : �q34(KT ) �! �q�134 (KT ) given by�̂ = [i(G); d̂] = i(G) � d̂� d̂ � i(G) :Then, the same proofs given by Brylinski for the symplectic star operator (see[7], Lemma 2.1.2, Theorem 2.2.1, pp. 100-101) show that for � 2 �q34(KT ) hold:8<: ?34(�34�) = � ;�̂(�) = (�1)q+1 ?34 d̂(?34�) :(9)Moreover, from (6) and (9), we have



54 M. FERN�ANDEZ, R. IB�A~NEZ, M. DE LE�ONProposition 17.2. The di�erential � of KT satis�es�� = [i(G); d̂](�) ;for � 2 �q34(KT ) and q � 0.From (9) and Proposition 17.2, it follows that ?34 de�nes an isomorphism ofgroups Ĥq(KT ) �= Hcan34;2�q(KT ) (0 � q � 2). This proves, by using (8), thefollowingProposition 17.3. For the Kodaira-Thurston manifold KT , the canonical homo-logy groups Hcanq (KT ) have �nite dimension. Therefore, the term E1(KT ) of the�rst spectral sequence has also �nite dimension.Theorem 17.2. Let KT be the Kodaira-Thurston manifold with Poisson tensorgiven by ( 4). Then, for the �rst spectral sequence we have E1(KT ) 6�= E2(KT ).Proof. Consider the di�erential 2-form ! de�ned by! = �3 ^ �4 :Then �! = 0 so ! represents a class in E10;2(KT ) �= Hcan2 (KT ). Moreover ! =2�(�3(KT )). In fact, suppose that ! = �� ;for some di�erential 3-form � 2 �3(KT ). It follows that! = �� = i(G)d� � d(i(G)�) = f�1 ^ �2 � d(i(G)�) ;(10)for some function f 2 F (M ). Taking in (10) the wedge product by �1^�2, we get�1 ^ �2 ^ �3 ^ �4 = ! ^ �1 ^�2 = �d(i(G)�) ^ �1 ^�2 = d(�i(G)� ^ �1 ^ �2) ;which is a contradiction with (3). Therefore, ! represents a non-trivial class inE10;2(KT ).Next, we shall prove that ! does not de�ne a class in E20;2(KT ) which is equi-valent to show that d! = ��1 ^ �2 ^ �4 =2 �(�4(KT )). Suppose thatd! = ��1 ^ �2 ^ �4 = �(�) ;for some di�erential 4-form � 2 �4(KT ). We haved! = ��1 ^ �2 ^ �4 = �i(G)d� + d(i(G)�) = d(i(G)�) :(11)Let us now consider the di�erential 2-form 
 2 �2(KT ) de�ned by
 = ! � i(G)� :From (11) it follows that 
 is closed, so it represents a de Rham cohomology class[
] 2 H2DR(KT ). Now, there are two possibilities:- CASE I. 
 de�nes the zero class in H2DR(KT ). In this case we have 
 = d
1for some 
1 2 �1(KT ), and hence! = i(G)� + d
1 :



POISSON COHOMOLOGY AND CANONICAL HOMOLOGY 55In this equality taking the wedge product by �1 ^ �2 we conclude that�1 ^ �2 ^ �3 ^ �4 = ! ^ �1 ^�2 = d(
1 ^ �1 ^ �2) ;which is a contradiction with (3).- CASE II. 
 de�nes a non-trivial class in H2DR(KT ). In this case must be:
 = ! � i(G)� = �1�1 ^ �3 + �2�1 ^ �4 + �3�2 ^ �3 + �4�2 ^ �4 + d
2 ;(12)for some �i 2 R, (1 � 1 � 4), and some 1-form 
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