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POISSON COHOMOLOGY AND CANONICAL HOMOLOGY
OF POISSON MANIFOLDS

MARISA FERNANDEZ, RAUL IBANEZ, MANUEL DE LEON

ABSTRACT. In this paper we present recent results concerningthe Lichnerowicz-
Poisson cohomology and the canonical homology of Poisson manifolds.

1. INTRODUCTION

Poisson manifolds are a subject of active research in Mathematics and Physics
[3, 18, 27]. The notion of Poisson manifold was introduced by Lichnerowicz [22]
as a manifold endowed with a Poisson bracket. We remit the reader to a paper by
Weinstein [28] for some interesting historical remarks.

Lichnerowiz proved that a Poisson bracket on M is equivalent to give a skew-
symmetric contravariant tensor field of second order G on M satisfying that the
Schouten-Nijenhuis bracket of G with itself identically vanishes, that is, [G, G] = 0.
G 1s called the Poisson tensor. A differential operator ¢ on the contravariant Grass-
mann algebra of M may be defined by o(P) = —[P, (]. The integrability condition
for G (i.e., [G,G] = 0) implies that ¢? = 0 and the corresponding cohomology is
the so-called Lichnerowicz-Poisson cohomology of the Poisson manifold M.

On the other hand, Koszul [19] has introduced an operator § on the Grassman
algebra of differential forms defined by § = [i((G), d], where ¢(G) is the contraction
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by the Poisson tensor G and d is the exterior derivative. Since % = 0, it defines a
homology on M which is called the canonical homology of the Poisson manifold.
Taking into account that d§ 4+ §d = 0, Brylinski [7] has introduced a canonical
double complex and studied the degeneracy of the first spectral sequence associated
with it.

The aim of this paper is to present an account of recent results on the Poisson-
Lichnerowicz cohomology and the canonical homology of any Poisson manifold.

The first part of the paper is devoted to study the Lichnerowicz-Poisson coho-
mology of a Poisson manifold. It is very hard to compute it although there exists a
Mayer-Vietoris sequence. Nevertheless Poisson cohomology is not directly related
with the topology of the manifold as in the case of the de Rham cohomology.
For symplectic manifolds, the Lichnerowicz-Poisson cohomology is isomorphic to
the de Rham cohomology, but it is not the case for non-symplectic Poisson ma-
nifolds. An example is presented in Section 6. In this paper we also introduce the
so-called coeffective Lichnerowicz-Poisson cohomology. Since ¢(G) = 0, we have
o(PAG) = o(P)AG and we obtain a subcomplex of the complex of contravariant
tensor fields. Its cohomology is called coeffective. Again, for symplectic manifolds
it is isomorphic to the coeffective cohomology introduced by Bouché [6]. Moreover,
the cohomology class of G induces a truncated Lichnerowicz-Poisson cohomology.
Both cohomologies are not isomorphic. In fact, the authors in [1, 9, 12, 13] have
shown examples of compact symplectic manifolds and compact almost cosym-
plectic manifolds for which the coeffective cohomology is not isomorphic to the
truncated Lichnerowicz-Poisson cohomology. In these cases we also have proved a
Nomizu’s theorem for the coeffective cohomology; an open question is the possi-
bility to extend it to arbitrary Poisson manifolds of constant rank.

The second part of this paper concerns with the canonical homology of a Poisson
manifold. We establish its relationship with the Lichnerowicz-Poisson cohomolo-
gy. In [2] Bhaskara and Viswanath have defined a natural pairing between the
Lichnerowicz-Poisson cohomology and the canonical homology of a Poisson mani-
fold M. We prove in Section 10 that for symplectic manifolds this pairing is
nothing but the Poincaré duality.

In [7] Brylinski introduced the notion of harmonic forms on a Poisson mani-
fold as follows: « is harmonic if da = 0 and da = 0. He proposed the following
Problem A: to give conditions to ensure that any de Rham cohomology class has a
representative which is harmonic. He proved that, for some symplectic manifolds,
any de Rham cohomology class has a representative which is symplectically har-
monic and conjectured that this is true for any symplectic manifold. In [11] we
have constructed a counterexample. Independently, Mathieu [23] has proved that
a symplectic manifold satisfies the Brylinski conjecture if and only if it verifies the
Lefschetz theorem. As a corollary, if a symplectic manifold satisfies the Brylinski
conjecture then its odd Betti numbers are even. So, many counterexamples can
now be given.

Brylinski also studied in [7] the first spectral sequence associated with the cano-
nical double complex and proved that, if the manifold is symplectic, it degenerates
at the first term. He proposed the following Problem B: to find conditions on a
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Poisson manifold to ensure that the first spectral sequence degenerates at the first
term. We have studied the second spectral sequence and proved that it degenera-
tes for arbitrary Poisson manifolds [14]. As a consequence, we find the Brylinski’s
result. However, the first spectral sequence does not degenerate for non-symplectic
Poisson manifolds. To prove this fact, we study the canonical homology of an
almost cosymplectic manifold and prove the finiteness of their homology groups.
We also prove a Nomizu’s theorem for the case of almost cosymplectic nilmanifolds,
that is, the canonical homology may be computed at the Lie algebra level. By using
these results we find a compact almost cosymplectic 5-dimensional nilmanifold for
which the first spectral sequence does not degenerate at the first term.

Finally, in Section 17, we show that the previous Problems A and B have
independent answers.

PART I: LICHNEROWICZ-POISSON COHOMOLOGY OF POISSON
MANIFOLDS

2. SCHOUTEN-NIJENHUIS BRACKET

Let M be C'°° manifold of dimension m and denote by X (M) the Lie algebra
of € vector fields and by §(M) the algebra of C'*° functions on M.
There are two Grassmann algebras on M:

Covariant Grassmann algebra (A(M) = @;n:o AP (M), N)

Contravariant Grassmann algebra (V(M) = @;n:o VP (M), N)

A(M) is endowed with the exterior derivative d and V(M) with the Schouten-
Nijenhuis bracket [, ]. We recall that the Schouten-Nijenhuis bracket is defined as
the unique R-bilinear operator of local type

[,]: VE(M) x VI(M) — VPY 1 (M)

such that
q
[Xi A AXp, Q=D (- X A AXG A A X, A X, Q)

i=1
for all X1,...,X, € X(M) and for all @ € V¥(M), where the hat denotes missing
arguments. Here [X, Q] = Lx @ is the usual Lie derivative of a tensor field with
respect to a vector field X.

The Schouten-Nijenhuis bracket satisfies the following properties:

[Pa Q] = (_l)pq[QaP] )
[P, QA R]=[P,QIA R+ (-=1)'"MQA[P, ],
(—=D)PC D[P [Q, R+ (1) V@, [R, P+ (=)' VIR, [P,Q)) = 0.
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3. POISSON MANIFOLDS

Definition 3.1. A Poisson bracket {, } on a manifold M is a bilinear mapping
{1 8(M) x §(M) — §(M)

satisfying the following properties:
(1) (Skew—symmetry) {fa g} = _{ga f}a

(2) (Leibniz rule) {f,gh} ={f, g}h + g{f, h},

(3) (Jacobi’s identity) {{f, g}, A} + {{h, f}. g} + {{g, h}, f} =0,
for f,g,h € §(M).

The pair (M,{, }) will be called a Poisson manifold. Next, if there is no danger
of confusion, we shall write M instead of (M, {, }).

Notice that (1) is equivalent to that the Poisson bracket {f, f} vanishes, for any
J € §(M); it expresses a conservation law of energy. Also, the Leibniz rule implies
that the mapping f ~» X;(g) = {f, g} defines a vector field X; on M which will
be called a Hamiltonian vector field with energy f. Finally, the Jacobi’s identity
can be equivalently written as X;{g,h} = {X;(g9), h} + {9, X;(h)}, which says
that X; is a derivation law of §(M).

In [22], A. Lichnerowicz gave a more compact definition of a Poisson manifold.
Define a skewsymmetric (2,0) type tensor field G by G(df,dg) = {f,g}. Then
[G,G] = 0. Conversely, let G be an skewsymmetric (2,0) type tensor field on M
and define a bracket of functions {f, g} = G(df,dg). Then {, } satisfies Jacobi’s
identity iff [G, G] = 0. G will be called the Poisson tensor. The rank of G will be

called the rank of the Poisson manifold.

The local structure of a Poisson manifold was elucidated by A. Weinstein (see

[28]). We have

Theorem 3.1. Let M be a Poisson manifold of dimension m, with Poisson bracket
{, }. Let @ be a point of M where the rank of the Poisson structure is 2r. Then,
there exist local coordinates {q*,--- ,q¢",p1, - ,pr, 24, -, 2™ "2} around x such
that

{d ¢y =0, {d'.p}=6, {d,z}=0,
{plap]} = Oa {piaza} = Oa
forall1 < i j<wr 1<a<m~—2r. Furthermore, the Poisson bracket {z%, 2%}

is a function only of the local coordinates 2z, -+, 2™~ %" and vanishes at z. If the

rank of the Poisson structure is constant and equal to 27, the z-coordinates satisfy
{z4, 2"} =0,

Jorall 1 < a,b<m—2r. (Coordinates {q', - q",p1, - ,pr, 2L, -+, 2™72"} are

called Darbouzr coordinates.)
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Suppose that GG has constant rank 2r. Then

.0 d
“ = ;%i/\ﬁpi’

“(of & Of O

X = - — -
d ; { dq* Op;  Op; O¢' }’

ZT: af g Of 9y
dq' dpi  Op; 9¢' )

i=1

{f, 9}

4. CALCULUS ON POISSON MANIFOLDS

Let (M, {, }) be a Poisson manifold with Poisson tensor G.
There exists a Poisson bracket of 1-forms

{, VAN M) x AY (M) — AN (M)
such that {df,dg} = d{f, g} (see K. H. Bhaskara, K. Viswanath [3]).
Define a mapping Z : AY(M) — V(M) as follows:
Z(a)(B) = G(a, B),Yor, f € AN (M) .
Hence we can extend 7 to a mapping
T:AN(M)— VP (M)

by putting:

-I(f) = [, for any f € F(M);
() (a1, .. ap) = (1) a(Z(aq), ..., Z(xp)), for o € AP(M) and a1, ..., qp

e AY(M).
Proposition 4.1. We have:
- Z{a A §) = T(a) AZ(5)

CI(df) = Xy
-7 AY (M) — V(M) is a Lie algebra homomorphism, i.e.,

I({a, }) = [Z(e), Z(B)], Yor, B € AT (M) .

5. THE LICHNEROWICZ-POISSON COHOMOLOGY

We define the contravariant exterior derivative o : V¥ (M) — VP (M) by

s(P) = —[G, P].
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Alternatively, we can express o in a more explicit way:

(oP)(ap, 1,...,0p) = (=1 (Zay)(P(ao, ..., &, ..., ap))
(—1)i+jP({ai,aj},ao, . ..,@Z', .. .,@j, . ..,ap) s

where a; € A1(M), and the hat denotes missing arguments.

Proposition 5.1. We have

(PAQ) = a(P)AQ+(—1)P P As(Q) (P W (M),
c?=0,

U( ): )

cl=-Td

Thus, o defines a cohomology on M which is called the Lichnerowicz-Poisson
(LP for simplicity) cohomology of the Poisson manifold M. The p-th L P-cohomo-
logy group is then defined by
_ ker{c : V(M) — VPTH(M)}

- Im{c:VP-Y(M) — VP(M)}
Notice that ¢ defines a cohomology class [G] € H} p(M).

Since ¢ Z = —7 d, we have induced homomorphisms in cohomology

T: Hpp(M) — Hfp(M)

HY p(M)

6. SYMPLECTIC MANIFOLDS

Suppose that (M,{, }) has maximal rank, say m = 2n. In this case, 7 :
A?(M) — V%(M) is an isomorphism. If we put
w=-1"Ya),
then we deduce
dw =0,
rank w = 2n ,
_W(Xfan) = {f’g} )
in w = df .
Thus, (M,w) is a symplectic manifold.

Conversely, if (M,w) is a symplectic manifold, we define a Poisson bracket by
{f,9} = —w(X;, Xy), where ix, w=df and ix, w = dg.

Theorem 6.1. For a symplectic manifold (M,w) we have
Hpp(M) = Hj p(M)
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Proof. In fact, 7 induces isomorphisms in cohomology. a
However, the result does not hold for non symplectic Poisson manifolds as the
next example shows.

Example 6.1. (The manifold M (k,n)) Let M (k,n) be the completely solvable
four-dimensional manifold defined by the 1-forms {oq, oy, as, @} such that

da1 = —k’Oél A [07%:1
da2 = k’Ozz A [07%:1
dOzg =0

dagy = naq A as

where k is a real number such that e* +e~% is an integer different from 2, and n a
non-zero integer number. M (k,n) is a compact quotient of a completely solvable
Lie group G(k,n) with Lie algebra g(k, n).
Let {X1, X5, X3, X4} be the dual basis of vector fields. We have
[Xl,Xz] = —nX4
[X1, X3] = kX3
[Xo, X3] = —kX»
all the other brackets being zero.
Consider the Poisson tensor G given by

G:Xg/\X4.

(i is obtained from a left invariant Poisson structure on G(k,n). (We are using
the same notation for the basis of left invariant 1-forms on G(k,n) and for the
basis of 1-forms induced on M (k,n); as well for the basis of left invariant vector
fields on G(k,n) and the basis of vector fields induced on M (k, n)). We compute
the Lichnerowicz-Poisson cohomology groups at the Lie algebra level. They are

Hyp(a(k,n)) =0,

Hyp(g(k,n)) = {[X3], [Xa]}

Hip(g(k,n)) = {[X1 A Xo], [Xs A Xa]},
Hyp((k,n)) = {[X1 A X2 A X3],[X1 A Xo A Xa]},
Hip(g(k,n)) = {[X1 A X3 A X5 A X4]}.

A direct computation shows that [X; A Xs] and [X3 A X4] are not zero in
H? (M (k,n)). Since H3 (M (k,n)) = 0 (see [10]) we conclude that

Hip(M(k,n)) 2 Hpp(M(k,n)) .
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7. THE COEFFECTIVE LICHNEROWICZ-POISSON COHOMOLOGY

Since o(G) = 0, H? p(M) has a distinguished element [G]. Hence we can define
the truncated LP-cohomology groups as follows:

Hyp(M) =A{[P] € HLp(M)|[P]A[G] =0} .

Moreover, since o(P A G) = o(P) A G we obtain a differential subcomplex of

the complex (V(M), o):
AL (M) ={P e V'(M)|PAG =0}

Its cohomology will be called the coeffective cohomology of M, and its p-th group
is defined to be
_ ker{c: AP (M) — APTL(M)}
Im{o APY (M) — AP (M)}

HP (ALp(M))

In a natural way, it arises the following question: Are H? (Azp(M)) and ffﬁP(M)
the same groups, unless isomorphism?

Next, we shall establish some partial results.
If G has constant rank 27, then

App(M)=0,p<r—1
Therefore we get
HP(App(M))=0,p<r—1.

Now, let (M,w) be a symplectic manifold. We define a coeffective cohomology
with respect to the symplectic form w by declaring that a p-form « is coeffective
if @ Aw = 0. Since w is closed we obtain a differential subcomplex (A(M),d) of
the de Rham complex, where

AP (M) = {a € AP(M)|a Aw =0} .

The corresponding coeffective cohomology groups are denoted by H? (A(M)), for
every integer p and were introduced by T. Bouché [6].

On the other hand, we have the truncated de Rham cohomology f[}‘)R(M) by
the cohomology class [w] of w. Using the isomorphism Z we deduce that

Hp (M) = Hp(M) , HP(A(M)) = H" (App(M))
The next theorem follows from Bouché [6]:
Theorem 7.1. If M is a compact Kdahler manifold of dimension 2n, we have
H? (Ap(M)) = Hp p(M) |
forp #£n.

In fact, if M is a compact Kohler manifold we have

HP(A(M)) = H (M),
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Bouché conjectured that his result holds for arbitrary symplectic manifolds.
However, a counterexample was constructed in [1]. Actually, a method to compute
the coeffective cohomology was presented in [12, 13].

First of all, we recall the Nomizu’s theorem which permits us to compute the
de Rham cohomology of compact nilmanifolds.

Theorem 7.2. (Nomizu’s theorem [24]) Let G be a connected nilpotent Lie group
with discrete subgroup T such that the space of right cosets M = T\G is compact.
Then there is an isomorphism of cohomology groups

H™(g") = Hpp(M)

where H*(@*) denotes the Chevalley-Eilenberg cohomology of the Lie algebra g of
G and H} r(M) denotes the de Rham cohomology of M.

Hattori [17] has extended this result for completely solvable manifolds.
In [13], we have proved a Nomizu’s theorem for the coeffective cohomology of
symplectic manifolds.

Theorem 7.3. Let G be a connected nilpotent Lie group endowed with an inva-
riant symplectic form w* and with a discrete subgroup I' such that the space of
right cosets M = T\G is compact. Then there is an isomorphism of cohomology
groups

HP(A(g7)) = HF(A(M)) ,

forallp > n+1, dimG = 2n, where H? (A(@*)) is the coeffective cohomology with
respect to w* and HY (A(M)) is the coeffective cohomology defined by the projected
symplectic form w on M.

The result still holds for completely solvable manifolds.

Example 7.1. (The manifold R°) Let R® be a 6-dimensional compact nilmanifold
defined by the 1-forms {a1, as, as, aa, a5, a} such that

doy = 0,1<i<3,
da4 = —Ozl/\Ozz,
da5 = —Ozl/\Ozg,
da6 = —Ozl/\oz4.

We write a;; = a; A aj, a5k = a; A aj A ay, and so forth.



33 M. FERNANDEZ, R. IBANEZ, M. DE LEON

Using Nomizu’s theorem we obtain:

H(I))R(R6) = {1}

Hpp(R%) = {lai], [aa], [asg]},

Hpp(R%) = {laus], [are], [a2s], [a24], [ass], [azs + asa]},

Hpp(R%) = {lauss], [eias], [orae], [ase], [a2sa], [a2ss], [evaag],
[ov236 + r24s]},

Hpp(R%) = {[aizad], [o1se], [a13se], [e1as6], [ozas], [a2sad]},

Hpp(R%) = {[aizasd], [@13456], [a23a56]},

Hpp(R%) = {[aizsase]}-

Since by (R%) = 3, we deduce that R® does not admit Kahler structures. However
R® admits symplectic structures, for instance,

W= a5+ a1 + a5 + asq + a3 .
By a direct computation, we obtain

fff)R(R6) = {[Oé1246], [041356], [041456], [041256 + a2346], [042345 + a2346]} )

and, from Nomizu’s theorem for the coeffective cohomology (see [13]) we have

H4(«4(R6)) = {{041245}, {041246}, {041356}, {Oé1456}, {Oé1256—0é2345}, {a1256+a2346}} .

Thus, B
H*(R") 2 HY(A(R"))
Remark 7.1. The coeffective cohomology for almost cosymplectic manifolds was

introduced in [9]. Moreover, in [13], a Nomizu’s type theorem for this cohomology
was proved.

To end this section we propose the following open problems:

1.- To obtain a Nomizu’s theorem for the Lichnerowicz-Poisson cohomology.
This would mean the following:

Let G be a connected nilpotent Lie group endowed with an invariant Poisson
structure G (of course, of constant rank 2r) and with a discrete subgroup T such
that the space of right cosets M = ['\G is compact. Then there is an isomorphism
of cohomology groups

Hip(9) = Hip(M),
where Hf p(@) denotes the LP-cohomology of the Lie algebra g of G and H} (M)
denotes the de LP-cohomology of M.

2.- The same problem for the coeffective LP-cohomology.
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PART II: CANONICAL HOMOLOGY OF POISSON MANIFOLDS

8. CANONICAL HOMOLOGY

Let M be a Poisson manifold with Poisson tensor G and Poisson bracket {, }.
J.L. Koszul [19] introduced the differential operator

§: AR(M) — AP (M)

defined by
d=[i(G),d] =i(G)od —doi(CG),

where i((G) denotes the contraction by G, and d is the exterior derivative.
Alternatively, J.L. Brylinski [7] gave the following explicit expression for 4:

S(fo dfi A Adfe) = > (=1 {fo, fik dfu A Adfi A A dfi

1<i<k

1)+ > O fod{fi YN A A A Ndf A A df
1<i<j<k

The operator 4§ satisfies (see [19, 7])
§2=0
and so, we obtain the canonical complex
s AR ) 2 AR (M) S AR — -
whose homology groups H* (M) are given by

_ ker{é : AF(M) — AF1 (M)}
CIm{d AR (M) — AR (M)}

Hgon ()
HE*™ (M) is called the canonical homology of M.

9. BRYLINSKI CONJECTURE
Brylinski, in [7], stated the following problem.

Problem A: Give conditions on a compact Poisson manifold M which ensure
that any cohomology class in H% p(M) has a representative a such that da = 0
and doe = 0, (i.e., o is harmonic for the Poisson structure of M ).

Suppose that M is symplectic. Then there is a natural pairing
A(G) - AF(T* M) x AM(T* M) — (M)
induced by the Poisson tensor (. In fact, A*(G) is defined as follows:

A (GYar A Nag, Br A+ A Bg) = det (G(ay, 8j)) -
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Denote by vy = ‘;—T the symplectic volume form on M. The symplectic star
operator is defined in [7] as follows:

*: AF(M) — AR (M)
BA (xa) = A*G(B,a) vy,
for a, 3 € A*(M).
Proposition 9.1. [7] We have
*(ka) =
Sa= (1) wdx(a),
for a € A*(M).

Now, we can relate the canonical homology with the de Rham cohomology of
the symplectic manifold M.

Theorem 9.1. [7] Let M be a compact symplectic manifold of dimension 2n.
Then, the operator x establishes an isomorphism of the canonical homology group
H{* (M) with the de Rham cohomology group Hé’}{k(M):

HE (M) = Hi" (M) .

Let M = T\G be a compact symplectic nilmanifold, whose symplectic form
comes from the projection of a left invariant symplectic form on G. Then, Theorem
9.1 and Nomizu’s theorem 1mply that there is a natural isomorphism

HEn (g) 2= HER (M)

where ¢ is the Lie algebra of G.
Because dd + dd = 0, the symplectic Laplacian operator A = dd + dd vanishes.
However, we still give the following definition.

Definition 9.1. A k-form v such that dv = 0 and dv = 0 will be called symplec-
tically harmonic.

Brylinski made the following conjecture:

If M 1s a compact symplectic manifold, any de Rham cohomology class in
H} (M) has a symplectically harmonic representative.

He obtained the following evidences for the conjecture:

(1) The conjecture is true if M = RZH/F, where T is a discrete subgroup and
R* is endowed with the standard symplectic structure.

(2) Every cotangent bundle TN satisfies the conjecture.

(3) Every compact Kéhler manifold satisfies the conjecture.

However, the assertion fails for arbitrary compact symplectic manifolds.
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Example 9.1. (The Kodaira-Thurston manifold) The Heisenberg group H is the
connected, simply connected and nilpotent Lie group of dimension 3 of the form

1 sl s
H= 0 1 x5 / l‘l,l‘z,l‘:«;ER
0 0 1

A standard computation shows that a basis for the left invariant 1-forms on H
is given by {dxy,dzs,dzs — z1dxs}. Now, we take the compact quotient '\ H,
where I is the uniform subgroup of H consisting of those matrices whose entries
are integers. Thus, T\ H is a 3-dimensional compact nilmanifold; and the 1-forms
day, deo, des — x1day all descend to 1-forms «q, as, az on '\ H.

The Kodaira-Thurston manifold KT is

KT = (T\H) x S*

Denote by a4 the canonical 1-form on S*. Then, {a1, as, a3, a4} is a basis for
the 1-forms on KT such that

(2) da1 = da2 = da4 = 0, dOzg = — A (07,0

Nomizu’s theorem permits us to compute the de Rham cohomology groups of
KT. They are:

Hpp(KT) = {1},

Hpp(KT) = {lea], [ao], [oa]}

HLp(KT) = {[ar Aag),[on Aaal, [as A as], [ae A aa]}

H} n(KT) = {lar Aaz Aas], (a1 Aas Aad, [as Aas A ad},
HLp(KT) = {[or Az AasAad}.

Define a symplectic form
w=aj Nag+az Aoy

with Poisson tensor
G=XsANX1+X4N X,

where { X, X5, X3, X4} is the dual basis of vector fields.

Therefore, we have
6(0[3/\0[4):0[1, 6(0[2/\0[3/\0[4):0[1/\0[2,
and 6(8) = 0 for the another left invariant forms /3.

Theorem 9.2. [11] The cohomology class [az A az A as] in H3 p(KT) does not
admit a representative v such that dv = dv = 0.
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Proof. For a symplectic manifold (M, w) we define L : A*(M) — A**2(M) by
L{«) = @ Aw. By using the identities

Lod=dolL
i(G) = — % L,
[L,6]=—d,
() = —(n =11 L"7N(B), e AN (M),
the theorem is proved by a long by straightforward computation. a

Remark 9.1. O. Mathieu [23] have obtained a characterization of the space of
the cohomology classes which contain a harmonic representative. To do this, he
used a classification result for representations of the Lie superalgebra s{(2) x C”.
As a consequence he obtain the following characterization:

Theorem 9.3. (Mathieu) A compact symplectic manifold (M?" w) satisfies the
Brylinski conjecture if and only if for any k < n the cup product

(W]« Hpg" (M) — HpE (M)

1s an isomorphism, or, in other words, if and only if M satisfies the strong Lef-
schetz theorem.

Thus, any compact symplectic manifold which does not verify the strong Lef-
schetz theorem gives a counterexample of Brylinski conjecture.

Corollary 9.1. (Mathieu) The odd Betti numbers of a manifold satisfying the
conjecture are even.

Since b1 (KT) = 3, Theorem 9.2 follows from Mathieu’s corollary.

10. DUALITY BETWEEN CANONICAL HOMOLOGY AND LICHNEROWICZ-POISSON
COHOMOLOGY

In [2], Bhaskara and Viswanath have defined a duality between the canonical
homology and the Lichnerowicz-Poisson cohomology of any Poisson manifold M.
First of all, they defined a natural pairing

AP (M) x VP (M) — F(M)

by putting
<a1 FANERRIAN Oép,Xl AR /\Xp> = det(ai(Xj)) .

Moreover, they defined the following operation. If P € V?P=1(M) and v € AP(M),
then i(P)y € AY(M) is given by

({(P)7)(X) = (v, PAX), VX € X(M) .
So, they obtained the following formula

(v,0(P)) = (87, P) = (=1)76(i(P)7) .
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from which it follows that {, ) induces a natural pairing
Hp“ (M) x Hy p(M) — H§*" (M)
by putting
([P =1, P).

Now, suppose that M is a compact symplectic manifold of dimension 2n. Taking
into account that

H™ (M) = Hpp "(M) , [y] ~ [#]
Hy p(M) = Hpp(M) , [P]~[Z71(P)]
H§*™™ (M) = HEp(M) , [{y, P)] ~ [x(y, P)] ,

we deduce that the pairing is non-singular. In fact, by integrating over M we
obtain the well-known duality of Poincaré, which can be now stated as follows:

HE™ (M) = HE (M) .

11. THE DOUBLE PERIODIC COMPLEX

Since

d6 +6d =0,

Brylinski [7] introduced the canonical double complex
Co (M)

prq(M) = Aq_p(M) ’ Vpaq Z 0 )

together with differentials
-d:Cpq(M) — Cpo1,4(M) (the horizontal differential of degree —1),
-6 :Cpq(M) — Cp q—1(M) (the vertical differential of degree —1).

The periodic double complex is defined by
(CE (M), d,d)

Chq (M) = AT (M), (p.a € Z) .

Thus, (see [5, 16]) there are two spectral sequences associated with this periodic
double complex which will be studied in the forthcoming sections.

12. THE SECOND SPECTRAL SEQUENCE
Let ’d, be the differential of bidegree (r — 1, —r), so that the groups ’E;;Zl(M)

are isomorphic to the homology groups of the sequence

r '3y r ‘o r
o /Ep—r+1,q+r (M) — /Ep,q(M) — /Ep+r—1,q—r(M) —
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Observe that a differential form g € C5 (M) lives to 'E} (M) if it satisfies

P,q
A = 0,
66 = dﬁla

0 = dps,

667‘—3 = dﬁr—Za

667‘—2 = dﬁr—la

for some differential forms By, ,f.—1. In such a case, denote by '[3], the ho-
mology class defined by #in 'E} (M). The differential ‘6, on 'E} (M) is given
by

/67' /[ﬁ]r == /[667'—1]7' .
Now, for » = 1 the groups ’E;yq(M) of the second spectral sequence are isomor-
phic to the homology groups of the sequence

er d er d er
T sz:+1,q(M) — Gy (M) — sz:—l,q(M) o

Thus we obtain
'E) (M) = HEP (M) .
For » = 2 the groups ’Equ(M) of the second spectral sequence are 1somorphic
to the homology groups of the sequence

—p+1 4 - 4 —p—1
e HEEY ) s B (M) s TN —

Next, we shall study the degeneracy of the second spectral sequence. First of
all, we need the following lemma.

Lemma 12.1. [14] Let (M,{, }) be a Poisson manifold with Poisson tensor G.
We have
ki(G)di(GY ! = i(G)Fd + (k — 1)di(G)* , Yk € N

As a direct consequence, we get

Theorem 12.1. [14] The second spectral sequence of the double complex CH (M)
degenerates at 'EY(M), that s, 'E*(M) = 'E*(M).

Proof. In fact, after some manipulations by using the above Lemma 12.1, we

deduce that 8._; = d(v), for some (p+ ¢ —1)-form y. So '6, '[5], = '[68r-1]r = 0.

13. THE FIRST SPECTRAL SEQUENCE

Denote by d, the differential of bidegree (—r, r—1), so that the groups E;;'él (M)
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are isomorphic to the homology groups of the following sequence

r Oy r 3y r
T Ep+r,q—r+1 (M) — Ep,q(M) — Ep—r,q+r—1(M) —

Note that a differential form o & Cgqu(M) lives to E;yq(M) if it satisfies

da = 0,
da = day,
da1 = 60[2,
dor_3 = 6ar—2a
dop_o = 6ar—1a
for some differential forms oy, - - - | «v,_1. Denote by [«], the homology class defined

by a in B} (M). The differential operator d, is given by
67‘ [a]r = [dar—l]r .

In particular, for » = 1 the groups E;yq(M) of the first spectral sequence are
isomorphic to the homology groups of the sequence

er 6 er 6 er
= G (M) — CY (M) — (M) — -

Thus, we have
Ep (M) = H* (M) .
For r = 2, the groups E;q(M) are isomorphic to the homology groups of the
sequence

can d can d can
s HY% (M) — HZY (M) — Hy% (M) — -

In [7], Brylinski has proposed the following problem:

Problem B: Give conditions on a compact Poisson manifold M which ensure
the degeneracy at Bt of the first spectral sequence of M.

In fact, he proved the following result.

Theorem 13.1. ([7]) For any compact symplectic manifold M, the first spectral
sequence of the double complex C5 (M) degenerates at EL(M).

By using the symplectic star operator, we have
Theorem 13.2. [14] For all r > 0, the homomorphism

fri By (M) — 'E2,2n+p(M)

given by
frlalr = "[xal,
1s an isomorphism of homology groups. Moreover, f, commutes with the differen-
tial, that 1s,
(- 0 6,)lal, = (=11 ('8, o f,)fal.,
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for all [a], € B} (M).

Proof. The theorem follows by using the symplectic star operator and Theorem
12.1. O
Now, as a consequence of Theorem 12.1 and Theorem 13.2, we obtain Theorem

13.1.

14. ALMOST COSYMPLECTIC MANIFOLDS

An important class of odd dimensional Poisson manifolds are almost cosym-
plectic manifolds.

Definition 14.1. An almost contact metric structure (¢, R,7,¢) on a (2n + 1)-
dimensional manifold M consists of:

- a tensor field ¢ of type (1,1):

- a vector field R;

- a 1-form ;

- a Riemannian metric g on M;
such that

¢?=—-T+n0R,
n(R) =1,
9(¢(X),0(Y)) = g(X,Y) =n(X)n(Y) , VX, Y € X(M) .

M 1s then called an almost contact metric manifold.

Define the fundamental 2-form & by
DX, V) = g(6(X),Y) , VXY € X(M) .

Hence, we have
" An#0,

which defines a volume form

1(<I>"/\77).

UM:—'
n.

Definition 14.2. M is called almost cosymplectic if ® and 7 are closed.

Next, we shall introduce a Poisson structure on an almost cosymplectic mani-

fold.

Definition 14.3. Let M be an almost cosymplectic manifold. For each f € §(M)
the Hamiltonian vector field X; of f is the vector field on M defined by

{iqu) = df =R(f)n,
inﬁ = 0
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Moreover, there are local coordinates {¢',---, ¢, p1,---,pn, 2} in a neighbor-
hood of every point, such that

® = Zn:dpmdqi,
i=1

0
n = dz, R—a—z,

- of 0 of 0
X = - — = 5.
d Z{ng dp;  Op; 3ql}

i=1

(see [4, 8, 20]).
Let M be an almost cosymplectic manifold, with fundamental 2-form ®. Define
the mapping {, } : §(M) x §(M) — §(M) by
{f’g} = _q)(Xfan) ’

for f,g € §(M), where X; and X, are the Hamiltonian vector fields of f and g,
respectively. Then, {, } is a Poisson bracket on M. So, M is a Poisson manifold
with Poisson tensor GG given by

"9
G = A
; 6q2
and the Poisson bracket satisfies

=y {2 2

po dq' dpi  Opi g

bl

Remark 14.1. Let M be a (2n + 1)-dimensional manifold endowed with a closed
2-form @ and a closed 1-form 7 such that ®” An # 0. Then there exists an almost
contact metric structure (¢, R,n,¢) on M such that & is the fundamental form
(see [4] for the details).

15. THE CANONICAL HOMOLOGY OF ALMOST COSYMPLECTIC MANIFOLDS

Let (M,¢,R,n,g) be an almost cosymplectic manifold, with fundamental 2-
form ® and Poisson tensor G. Denote by § the Koszul differential of M.
Define the subspaces

AR(M) = {a €A (M)]i(R)a =0},
AY(M) = {a€ A (M)|nAa=0}.
We obtain the following decomposition
(3) A (M) = A (M) @ AF (M) .
In fact, if o € A¥(M) then
a=(a—nAi(R)a)+nAi(R)o,
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where
a—nAi(R)a € AR(M) , nAi(R)a € AE(M) .

Proposition 15.1. & preserves the above decomposition, i.e, we have

i) §(AR(M)) C AR (M);

- k E—1

ii) 6(Ay(M)) C A;—HM).

So, we introduce the differential complexes
J J —_
c— ARPY M) S A (M) S AR (M) — -

and

k41 4 k 4 k-1
= AT (M) — AG(M) — AyTH(M) — -

and their corresponding homology groups

A an _ Ker{d : Ay (M) — AN}
Ay = VAT E—
v o Ker{é:Aﬁ(M) HAﬁ_l(M)}

2y () = S(AEFT(AD)

In order to prove that the canonical homology groups H;*?(M) have finite
dimension, we show in [14] that the groups H{** (M) and Hgﬁ”l(M) are isomorphic.
Then, from (3) and Proposition 15.1, we deduce

A \%

HE (M) = I (M) @ (M)
A A

= g (M) @ B (M),

for any k> 1.
Moreover, in [14] we have proved the following

Proposition 15.2. [14] For any compact almost cosymplectic manifold M of di-

can

A
mension (2n+1), the homology group H" (M) has finite dimension. Therefore,
the canonical homology group H*" (M) has also finite dimension.

16. THE CANONICAL HOMOLOGY OF COMPACT ALMOST COSYMPLECTIC
NILMANIFOLDS

In this section, we shall prove an approximation to Nomizu’s theorem for the
canonical homology of compact almost cosymplectic nilmanifolds.

Let M = T\G be a compact almost contact metric nilmanifold of dimension
(2n 4+ 1). This means that:

- G 1s a connected, simply-connected and nilpotent Lie group of dimension
(2n +1);

- T is a discrete subgroup of G such that the quotient space T\G is compact;

- There is a left invariant almost contact metric structure (¢, R,7,¢) on G.



POISSON COHOMOLOGY AND CANONICAL HOMOLOGY 49

We also denote by (¢, R,n,g) the induced almost contact metric structure on
M; and by ® the fundamental 2-form on G and M. Then, G and M are Poisson
manifolds. Denote by § the Koszul differential of G and M.

Let fj be the Lie subalgebra of g defined by

h={Xegnx)=0}.

So, B is a nilpotent Lie algebra of dimension 2n. Integrate f) to obtain a Lie
subgroup H of G, i.e., H is a connected, simply-connected, nilpotent Lie group
whose Lie algebra is [). Moreover, I = T N#H is a discrete subgroup of #H such
that the quotient space N = f\?—l is a compact nilmanifold. Notice that N is
in fact a submanifold of M, for which the canonical inclusion will be denoted by
j : N — M. Moreover, h) is endowed with a symplectic form obtained by the
restriction of ®. Thus, N inherits a symplectic form also denoted by ® which is
the projection onto N of the left invariant symplectic form on H. In fact, NV is a
symplectic leaf of the symplectic foliation on M.
But we know that there are canonical isomorphisms

5 (g7) 2= 15 (") 2= 1 (V)

Now, denote by A : H;a”(g*) — H;a”(M) the homomorphism which maps
the homology class of a left invariant form « on G into the homology class of
the projected form on M, namely Ala] = [a]. Suppose that Ala] = 0. Since
o € AL (g) we have that o € AY(f)). Because A[a] = 0, we deduce that there exists
g e A%"’l(M) such that a = §3. From (1), we deduce that § = 8y + 81, where
Bo € AYTH(N) and the components of 31 in Darboux coordinates are linear on the
z’s. Thus, « = §8 = 65y, and, therefore, [a] is the zero class in H;a”(g*).

This proves

Theorem 16.1. Let G be a connected nilpotent Lie group endowed with an in-
variant almost cosymplectic structure (¢, R,n,g) and with a discrete subgroup T
such that the space of right cosets M = T\G is compact. Then there is an injective
homomorphism of homology groups from HZ*"(g*) into H*" (M), for all ¢ > 0,
where we consider on M the projected almost cosymplectic structure.

Example 16.1. (The manifold M®) We exhibit an example of a compact almost
cosymplectic nilmanifold M® for which the first spectral sequence {E"(M?®)} is
such that E*(M?®) 2 E2(M?®).

Let G be the b-dimensional connected, simply-connected and nilpotent Lie
group, defined by the left invariant 1-forms {ey,- -+, a5} such that

dalzdazzdag,zo,
dOé3:Oz2/\Oz5,

da4 = A Q9.
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These structure equations can be integrated explicitly; in fact, G can be realized
as the nilpotent Lie group

1 r1 T ITs xs3 L4
001 0 0 0 —u
B 00 1 0 -5 0 '
G = 00 0 1 0 0 z € R
00 0 0 1 0
00 0 0 o0 1

We take T' to be the subgroup of G consisting of those matrices whose entries
are integers. Define M® = T'\G.

Let {Xy, -+, X5} be the basis dual to {a1, as, as, a4, a5}. Consider the metric
g on M?® defined by

2 2 2 2 2
g=ait+a;+ a3+ ay+ as.

Then {X1,---, X5} is an orthonormal frame with respect to g on M?®.
Define a tensor field ¢ of type (1,1) over M5 by
p(X1) = Xa o(Xo) =Xz, ¢(X5) =0,
o(X4) = —Xi, o(X3)=—-Xs,

and consider R = X3, n = as. Then (¢,R,n,¢) is an almost contact metric
structure on M° whose fundamental 2-form @ is

D =a; ANag+az Aas.

The compact nilmanifold M°® = I'\G with the almost contact metric structure
(¢, R,n,g)is an almost cosymplectic nilmanifold whose structure arises from a left
mmvariant almost contact metric structure on G.

The Poisson tensor G is given by

G: —X1 /\X4—X2/\X3 s
and we have

(5(0[3/\0[4):0[1, 6(0[2/\0[3/\0[4):—0[1/\0[2,

dagAagAn)=aiAn, SlaehasAhagAn) =—arAaa Ay,

and 6(8) = 0 for the another left invariant forms /3.
Denote by g the Lie algebra of G. Then, we have

He(gr) = {1}
Hi(gr) = {{az}, {as}, {ea}, {n}},

Hs™(g™) = {{a1 Aas}t {ar Aagt, {az An} {az Aas},
{as Aagt, {az Ant {as Antl,
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Hgan(g*) = {{a1/\az/\ag},{al/\Ozz/\a4},{a1/\0z3/\7]},
{og ANas Aagt, {ar Aaa An} {as Aas Ant, {as Aas Ant},
Hi(m(g*) = {{a1/\ozz/\ozgAa4},{a1/\a2/\oz3/\77},{oz1/\oz2/\Oz4/\77},

{on Aas Aas At}
e (g*) = {{arAazAasgAag At}
Theorem 16.2. For the first spectral sequence {E1(M5)} we have
B, (00%) 2 B2, (M)

Proof. In fact, ag defines a nontrivial homology class {as} in H{**(g*). Then,
a3 defines a nontrivial homology class in H{**(M?®). Moreover, Ej (M%) =
H{*"(M?), so that g represents a nontrivial class in Ef , (M°).

However, dag = a2 A ; and we know that as A defines a nontrivial class in
HS (g*). Therefore, as A7 represents a nontrivial homology class in HS*" (M?).
This implies that

03 Ay & S(AP(M))

Thus, a3 does not live in EF ; (M?). O

17. ABoUuT THE PROBLEMS A AND B

In this section, we shall show that Problems A and B of Brylinski have inde-
pendent answers. Firstly, we prove that Problem A does not imply Problem B.
For this, we consider the Kodaira-Thurston manifold KT defined by the equations
(2).

Define a Poisson structure G on KT by
(4) G=XsNXs.

Let § be the differential operator determined by G. From a straightforward
computation we obtain that d(p) = 0 for any left invariant form p. Using again
Nomizu’s theorem we see that any de Rham cohomology class has a left invariant
representative which is d-coclosed. This proves the following.

Theorem 17.1. Let KT be the Kodaira- Thurston manifold with the Poisson ten-
sor G given by (4). Then, any de Rham cohomology class of KT has a represen-
tative which 1s harmonic for the Poisson structure.

In order to show that the first spectral sequence {E"(KT)} does not degene-
rate at the term E'(KT), we need to prove that the canonical homology groups
H*(KT) have finite dimension.

Consider the subspaces AL, (KT), A}(KT), AJ(KT) and A1,(KT) of AY(KT),
(1 < ¢ <4), defined by

AL(KT) = {MNEAURT)|ix, A =ix, A =0} = A%as, au) |

A{(KT) IAEAUKTY | ar AX=0,ix,A =0} = a3 AN (ag, a4)



52 M. FERNANDEZ, R. IBANEZ, M. DE LEON

A(KT) = {ANEAYKT)|ix,A=0,a5 AA=0} = as AA (a3, a4) ,
T
2

A({ ([X ) = {/\EAq([(T)|Oz1/\/\:a2/\A:0}:0[1/\0[2/\/\(1_2(0[3,0[4),

where A*(ag, @4) denotes the exterior algebra generated by a3 and ay.
Now, for A € AY(KT) it is easy to see that

A= (/\ — o /\in/\— a9 /\Z'XQ/\—I— ay N\ as /\iX2iX1/\) + (Ozl /\in/\ — a1 Nas
/\ngin/\) + (Ozz /\Z'XQ/\ — a1 Aas /\iX2iX1/\) + a1 A as /\iXQin/\ ,

with (A — a1 Aix, A —as Aix, A+ a1 Aas Aix,ix, A) € AL (KT), (a1 Aix, A —
a1 Aas Nix,ix, A) € AJ(KT), (a2 Nix, A\ — a1 Aas Aix,ix, A) € AL(KT) and
a1 Aas ANixyix, A € AL (KT).

Therefore, the space AY(KT) becomes:

(5) AKT) = AL (KT)® AJ(KT) & AYKT) & AL (KT) .
It follows that
§(or AX) = a1 AS(N)
(6) Iaa AX) =aa AI(N)
S(ay Aag AX) =as Aas AS(A) .

Now, from (6) we obtain that & preserves the decomposition (5), that is,
S(AL(KT)) € AL N(KT), §(AYKT)) C AS=1(KT), (s = 1,2) and §(AL(KT)) C
AL YKT).

Therefore, we have the differential complexes (A5, (KT),8), (AX(KT),d) (s =
1,2) and (A74(KT),d), each one of which is a subcomplex of the canonical complex
of KT'. Denote by H{",(KT), H{(KT) (s = 1,2) and H{g",(KT) the homology
of the complexes (A%, (KT),d), (AX(KT),d) (s = 1,2) and (AT,(KT),J), respec-
tively.

Let us now consider the homomorphisms z;(\s AYKT) — Ag;l(KT), (s =
1,2), and ix,ix, : A% (KT) — AL %(KT) given by

ix.(\) = ix.\,
ixaix, () = ix,ix,
for A € AY(KT), (s=1,2), and p € Al (KT).

Using (6) one can check that each one of the homomorphisms i;(\s, (s = 1,2),

and ix,7x, commutes with the differential §, and moreover the homomorphisms
induced in homology are isomorphisms. Now, from (5), we obtain the isomorphism:

(@) HE™ (KT) 2 HE3(KT) & Hagy o (KT)
GHSSY (KT @ H53" _o(KT) .
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Next, we study the homology ngﬂ(KT). First, we need to introduce the map
d: AL, (KT) — ALFY(KT), (¢ > 0), defined by

(8) d(A) = d\ —ay Aix,d\— ag ANix,dA+ ay Aas Adx,ix, dX,

for A € AL (KT).
A direct computation, by using (8), shows that

*=0,
dAAR) =dN) Ap+ (=1)IANdu,

for A € AL (KT).

Thus, we have the differential complex (A%, (KT), ci) Denote by f]*(KT) the
cohomology of this complex.

Proposition 17.1. The differential compler (A3, (KT), ci) is elliptic. Therefore,
the cohomology groups H1(KT) have finite dimension.

Proof. The complex is elliptic in degree ¢ if for all points # in KT and for all
1-form non-zero p € A3, (KT) at z the complex

0 D (AL (KT) 25 (AL (KT) 25 (A2 (KT) 250

is exact, where (Ad,),(KT) is the space of the g-forms A at z such that ix, A =
ixae)h = 0.

If we consider Darboux coordinates (¢*, ¢, p1, p2) defined on some contractible

neighborhood of # and such that G = 52 A ai, then (A%,).(KT) is spanned by
q P2

{dq?,dps}. This implies the exactness of the above complex. a
Now, imitating the definition of the symplectic star operator given in [7], we
define the operator 34 : AL (KT) — Ag;q(KT), (0 < ¢ < 2), by the condition
AN (k3ap) = AYG)(A, p)o, for A, p € AL, (KT), and where o is the 2-form o =
(07%:3 A Qay4.
Moreover, we consider the operator & : AL(KT) — Ag;l(KT) given by

§=[i(G),d = i(G)od —doi(G) .

Then, the same proofs given by Brylinski for the symplectic star operator (see
[7], Lemma 2.1.2, Theorem 2.2.1, pp. 100-101) show that for A € AL, (K T) hold:

*34(*34/\) =X,
(9) .

S(A) = (=1)7F! wgy d(x34)) .

Moreover, from (6) and (9), we have
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Proposition 17.2. The differential § of KT salisfies
A = [i(G),d)(N)
for A€ AL(KT) and ¢ > 0.

From A(9) and Proposition 17.2; it follows that %34 defines an isomorphism of
groups HY(KT) = Hgf  (KT) (0 < ¢ < 2). This proves, by using (8), the
following
Proposition 17.3. For the Kodaira- Thurston manifold KT, the canonical homo-

logy groups Hg*" (KT') have finite dimension. Therefore, the term EY(KT) of the
first spectral sequence has also finite dimension.

Theorem 17.2. Let KT be the Kodaira-Thurston manifold with Poisson tensor
given by (4). Then, for the first spectral sequence we have E*(KT) % E*(KT).

Proof. Consider the differential 2-form w defined by
w=azNag .

Then dw = 0 so w represents a class in Ej ,(KT) = H;*"(KT). Moreover w ¢
§(A3(KT)). In fact, suppose that

w =146,
for some differential 3-form 6 € A3(KT). It follows that
(10) w =00 =i(G)d0 — d(i(G)0) = for A as —d(i(G)0) ,

for some function f € F'(M). Taking in (10) the wedge product by o A as, we get
ar ANas AagAag =w Ao Aas = —d(i(G)0) Aag Aas = d(—i(G)0 Aay Aas) ,

which is a contradiction with (3). Therefore, w represents a non-trivial class in
Eéyz(K T).

Next, we shall prove that w does not define a class in Eg,z(KT) which 1s equi-
valent to show that dw = —ay A as A as & §(A*(KT)). Suppose that

dw = —a1 Aas Aoy =6(v) ,
for some differential 4-form v € A*(KT). We have
(11) dw = —a1 Aas Aoy = —i(G)dv + d(i{(G)v) = d(i(G)v) .
Let us now consider the differential 2-form v € A?(KT) defined by
y=w—i(Gr.

From (11) it follows that ~ is closed, so it represents a de Rham cohomology class
[v] € H3 r(KT). Now, there are two possibilities:

- CASE 1. « defines the zero class in H# (KT). In this case we have v = dy;
for some v; € AL(KT), and hence

w=1iG)v+dy .
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In this equality taking the wedge product by a; A as we conclude that

apANagAagAag=wAhay Aas =d(y1 Aag Aas),

which is a contradiction with (3).

(1

- CASE II. v defines a non-trivial class in H3 p(KT). In this case must be:

2)"}/ =W — Z(G)I/ = /\1a1 A as + /\2a1 A aq + /\30[2 A as + /\40[2 A aq + d’yz ;

for some A; € R, (1 <1 < 4), and some 1-form 2 € A} (KT). Again, taking in

(1

ze

2) the wedge product by a; A aa, we deduce that oy A as A oz A vy defines the
ro class in H},p(KT), which is a contradiction. This completes the proof. O
Now, from Theorem 17.1 and Theorem 17.2, we have

Corollary 17.1. For the Kodaira- Thurston manifold with the Poisson tensor G
given by (4), Problem A does not imply Problem B.

That Problem B does not imply Problem A follows directly from Theorem 9.2

and Theorem 13.1.
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