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A MULTIPLICATION OF E-VARIETIES OF REGULAR -SOLID
SEMIGROUPS BY INVERSE SEMIGROUP VARIETIES

MARTIN KURIL

ABSTRACT. A multiplication of e-varieties of regular F-solid semigroups by
inverse semigroup varieties is described both semantically and syntactically.
The associativity of the multiplication is also proved.

1. INTRODUCTION

We investigate here an operator on the lattice of all e-varieties of regular semi-
groups. In [7] we defined semantically a partial multiplication on this lattice:
U OV is defined if U is an e-variety of regular semigroups and V is an e-variety
of inverse semigroups. The definition is based on a certain semidirect product of
regular semigroups by inverse semigroups. In the case that & i1s an e-variety of
orthodox semigroups we also described our multiplication syntactically in terms
of biinvariant congruences for orthodox semigroups introduced in [5] by Kadourek
and Szendrei.

In this paper we present a syntactical description of our multiplication in the
case that the first factor 1s an e-variety of regular -solid semigroups. The de-
scription is essentially based on the notion of biinvariant congruences for regular

-solid semigroups given in [6] by Kadourek and Szendrei. Moreover, we prove the
associativity: ¥ O (VO W) = (U OV)OW for any e-variety U of regular -solid
semigroups and any inverse semigroup varieties YV W.

For basic notions in the theory of semigroups the reader is referred to [4].

2. SEMANTICS

Let = ( -) be a semigroup. The set of all endomorphisms of is denoted
by End( ). Let ( ) stand for the set of all idempotents of . Denote by ()
the subsemigroup of  generated by ( ) provided that ( ) # 0. Clearly, for
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any element € | there i1s at most one element €  satisfying = =
= . If such an element really exists then we denote it by ~!.
In [7] we used the following non-standard semidirect product of semigroups:
Let = () be an inverse semigroup. For € | the unique inverse of
is denoted by ’. Let : ( ) = (End( ) o), where o is the composition
(o) )= ( (N € End( € ), be a homomorphism.

)
Put %, ={( )e x | ( )()= } and define
CC "0 00 )
for () ( )e x4
2.1 Result. ([7], 2.1 Lemma, 2.2 Lemma)

(1) ( X, -) Is a semigroup
(i) If S is regular, then x, Is also regular.

Notice that this non-standard semidirect product of semigroups is in essence
the so called -semidirect product of inverse semigroups introduced by Billhardt

in [1].

2.2 Result. ([7], 2.3 Lemma) Let ( ) € X, . Then ( ) is an idempotent
in x, Iifandonlyif € ( )and € ( ).

2.3 Lemma. Let ( )€ x, .Then( )€ ( X, )ifandonlyif € ()
and € ().

Proof.

1.Let ( )€ ( Xg ). Then ( )=(1 1) (% &) forsome (1 1)
(x k)€ ( %, ). We know that ; € ()and ; € ()
(see 2.2). Put (; o) =(1 1) (5 o) (=1 ). We will show that
;€ (J)and ;€ ()( =1 ). Clearly, 1€ () 1€ (). Let
1 < and ;_4 () ic1€ () Wehave (-1 /i) iz1) €

‘_y) € End( ). Farther, ( ;-1)( ;) € ( ). We see
_Ciz1) - (i=)(i)€ (). Finally, ; = ;-1 ; €

2. Let € ()and € (). Then = ; x for some 1 € ().
Put ; = (")) ( =1 ). Clearly, ; € () ( =1 ) and
= 3 g. Further, (; )& x, ,since ( ()= :i( =1 ).
Using 2.2 we obtain (; ) € ( x, )( =1 ). We will prove that
(1) (+ )="(1 i (=1 ). Let 1 < . Then

(1) (it ) )=

For = weget( )=(1 » )=(1) (x )€ ( % ) O
A semigroup s called regular -solid if it is regular and () is completely
regular.
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2.4 Lemma. If isregular -solid, then x, is alsoregular -solid.

Proof. We know that x, is regular (see 2.1(ii)). We have to show that
( %y )iscompletely regular. Let ( )€ ( x, ). Then € () € (),
by 2.3. Since is regular -solid, there exists € () such that = =
= . Put = (")) Then € () and = = =
Clearly, ( )& x, . Using 2.3weobtain( )& ( x, ). Further,

()CHC )= "0 00 2 )=C I )
=(C ") 00 =0 )=()

Similarly, ( )( )( )=( Jand ( )( )=( )( ). -

For any class V of regular semigroups, we will denote by (V) (V) and (V),
respectively, the classes of all homomorphic images, regular subsemigroups and
direct products of semigroups in V.

We adopt the following notations for classes of regular semigroups:

R — the class of all regular semigroups;
ES — the class of all regular  -solid semigroups;
I — the class of all inverse semigroups.

A class V C R satisfying (V) CV (V) CVand (V) CV is called an e-
variety. The classes R, ES, I are examples of e-varieties. The concept of e-variety
was introduced by Hall in [3]. Simultaneously and independently Kadourek and
Szendrei in [5] have considered e-varieties of orthodox semigroups, which they
called bivarieties of orthodox semigroups.

Denote by (V) the least e-variety of regular semigroups containing the class
YV CR.

Let #f C R and V C I be e-varieties. In [7] we defined a multiplication O in the
following way:

uav={ x, | ed €V :( -)—(End( ) o)isahomomorphism})

2.5 Result. ([7], 2.5 Lemma) Let # (. Let ; be a semigroup for € . Let
; be an inverse semigroup for € . Finally,let ;:( ; -) = (End( ;) o) be a
homomorphism for € . Then

g( i Yo i)Eg ixwg i
where the homomorphism
1(11 i) = (Eﬂd(g i) o)
is given by
((ien)((i)ier) = ( (i) 0))ier

The isomorphism is given by

((i ))ser—= ((i)ier (i)ier)
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2.6 Result. ([6], Proposition 2.3) Let V C ES. Then

i » Mc V)
i) M= - )

2.7 Lemma. Let Y C ES and V C 1 be e-varieties. Then

uav= ,{ x, | e ¢€v
:( ) — (End () o) is a homomorphism})

Proof. Put W={ x, | e €V :( -)— (End( ) o) is a homomor-
phism}. Tt follows from 2.4 that W C ES. Then 4 OV = . (W) by 2.6(ii).
It is clear that » (W) C » (W). Further, (W) C (W), by 2.5. Then
» W) C » (W). This together with 2.6(i) gives » W) C (V).

|

3. SYNTAX

Recall the notions of biidentities and biinvariant congruences in the class of
regular -solid semigroups introduced by Kadourek and Szendrei in [6].

A unary semigroup is an algebra = ( ') with an associative multiplication
and with a unary operation ’.

Let  be a non-empty set. We add new symbols ( and )’ to the set  and
obtain aset ¢= U{( )'}. Let us denote the free semigroup on the alphabet
by T. Let ( ) be the smallest one among the subsets in 0+ which satisfy

(i <

(i) € implies €
(i) € implies( ) €

The set () will be often considered as a unary semigroup with a binary
operation given by the concatenation of words and with a unary operation  :

()= ( )givenby (). The unary semigroup ( ) is the free unary
semigroup on the set

In order to reduce the number of brackets in formulas, we will omit them if it
causes no confusion. For example, we will often write ’ instead of ( ).

Consider aset ' disjoint from and a bijection’: — ’ + /. The union

U’ will be denoted by . For any & , we will identify ( ) with ’, and so
~ becomes a subset in ().

If is an inverse semigroup and €  then the unique inverse of is denoted
by ’. In this way a unary operation ' on is given and the inverse semigroup

= () can be considered as a unary semigroup = ( -'). Moreover, this
unary semigroup satisfies the identities
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Conversely, if = (') is a unary semigroup satisfying the identities (id 1)
— (id 4) then = ( ) is an inverse semigroup and the unique inverse of €
is the element ‘. Speaking about varieties of inverse semigroups we have in mind
varieties of unary semigroups satisfying the identities (id 1) — (id 4).

In fact, the e-varieties contained in I are precisely the varieties of inverse semi-
groups. We can use the terms ’variety’ and ’e-variety’ interchangeably in this
context.

Given an infinite set |, we will denote by () and ( ), respectively, the fully
invariant congruences on () corresponding to the varieties of all groups and all
inverse semigroups. 1( ) stands for the identity element of the group () ( ).

3.1 Lemma. Let € ( ). Then ( )=1( )ifandonlyif % ( )
Proof.

1. Let () =1( ). In view of the well-known solution of the word problem
for free groups it suffices to show the following facts:

@ )2 C) =C")rc) ' (e () € )
by () = "720) ' (e () € )
© *() =C")»rc)’ (e () € )

Now the proofs follow:

@ "

! ! ! !

1! ! !

)
)
) 1! ! !
)
)

(c) Tt is similar to the case (b).
2. Let 2 () . Itisclear that ( )=1( ). 0

Let  ,( ) be the smallest one among the subsets in () which satisfy
i) ¢

(i) € implies €

(i) € and ( )=1( )implies '€

The set () will be often considered as a semigroup with an operation given
by the concatenation of words. In fact, the semigroup ,( ) agrees with the
semigroup ‘() from [6]. There is only an unessential technical difference
between ,( ) and ‘*°( ). In [6], ’'( ) stands for the free unary semigroup

on the set . The unary operation is denoted by ~!'in ‘() and ’°( ) is
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the smallest subsemigroup in ‘() containing the set  and closed under the
partial operation assigning the word ( )~! to any word with ( ) =1 (see [6],
Section 2, for the definition of ( )). If we consider the unary homomorphism
" )= () extending the mapping —~ ‘— "= () ( € ) then, for
any € ‘( ), the condition ( ) =11is equivalentto () ( )= 1( ) and the
restriction of to ’*°( ) is an isomorphism between () and ,.( ).

If () is a regular semigroup, then a mapping : —  is called matched if
()- () ()= )and () () ()= (") foral €

To any matched mapping : — | where isaregular -solid semigroup, we

now define a homomorphism : ,( ) — as follows. We proceed by induction

with respect to the complexity of words from ,( ), and we put
O (= 00Ce)

i )=000C €0

i) (=N Ce () ()=1)),

where ( ())~! denotes the group inverse of ( ) in the maximal subgroup of
containing ( ). Of course, we must show that this ( ) really lies in a subgroup
of . This will be the content of the next result. We will then see that is
well defined and we will call the homomorphism the extension of the matched
mapping : — to ,( ).

3.2 Result. ([6], Lemma 2.1) The above definition is correct, that is, for any
€ »( )with ( )=1( ), the element ( ) liesin a subgroup of , provided
that is a regular -solid semigroup.

By a biidentity over  we will mean any pair = of words € () We
will say that a biidentity = 1is satisfied in a regular -solid semigroup if, for
any matched mapping : — |, wehave ()= () where : ,( )— s

the extension of to ,( ). As usual, we will say that a biidentity is satisfied in
a class V of regular -solid semigroups if it is satisfied in each member of V.
Given a class V of regular -solid semigroups, put

vV )={( )Ye .( )x ,( )| the biidentity = Iis satisfied in V}
For any set ¥ C ,( ) x ,( ) of biidentities, put

[X]={ € ES| satisfies all biidentities in X}

We will write (1 | n 1) to indicate that only elements n €

| € 'mayoccurin € (). If = (1 | n on) € o)
and 1 n n € () then (1 1 n n) 18 obtained by substi-
tuting 1 1 n ninto for 1 | n 1 respectively. Tt is clear that
(1 1 n n)€ () Ttiseasytoseethatif( ;) ( )=1( J)(1< <)
then ( 1 1 n n) € 7‘( )

A congruence on ,( ) will be called biinvariant if (ES ) C and it has
the following property: whenever 11 n n€ r( )such that
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and
iii (ES )y i (ES ) ;for =12
then also
(1 1 n n) (1 1 n n)

Observe that the second assumption implies ( ; ;) ( ) = 1( ) for =1
as the class of all groups is contained in ES| so that this definition is correct.
The set of all fully invariant congruences on the unary semigroup () will be

bl

denoted by () and the set of all biinvariant congruences on the semigroup
»( ) will be denoted by ).
Now, we can present the syntax of our multiplication.
Let  ={ 1 2 } beasetof variables. Given € (), define a new

alphabet ,= () x
Define a left action *x of ( )on ( ,) by

() =

)
( )
(*)0 *)
( /

* =
—_— * )
or e () e e (.
We will frequently use the following lemma without references.
3.3 Lemma. Let € () € (). Then
(1) implies * = =« forall € ( ,)

(i) «( x )=( )x forall € ( ,).
Proof. The assertions are clear. O
)

3.4 Lemma. Let € () € (). If € ,( 5),then x € ,( ,).
Proof. By induction with respect to . Let € ( ) € . Then «( )=

( )e (o) x( ) =( ye ()
Let € +( ,) = * € ,( p). Then * =( % )( x)e ,( ,).
Let € () (,)=10, * € +( o) Then x'=(x)e ,( ,)
since ( « ) ( ,)=1( ,)( ( ,)€ ( ,)and +— # isanendomorphism

on (). 0
Now, let € () D (). Define

by

=Y
—
~—
—
~
~
TS ~—
=Y
—
~—
~—
—
*
=Y
—
~—
~—

where € e ().
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3.5 Remark. The mapping , is defined unambiguously:

Let € (). Suppose that the values ,( ) ,() ,( ) ,( ) and
o( ) are determined unambiguously. We show that ,(( ) )= ,( ( ))
A0 ) )=(C ) C )V 0 D0 * o)
= ( (O T 00 L0 L(0)
= ( L () L ()0 ok o)
= ( T () (L] a0 x ()
= ( P L0 ( T, () 0w ()
0 N=00 )0 ) 7% )0 * ()
= ( PO )0 (0 T b0 x ()
= ( P 0 ( L) 0k ()
The following lemma will be also often used without references.
3.6 Lemma. Let € () D() € () Then '« ()= ,().
Proof. By induction with respect to . Let € . Then
()= ()
:( / / )
=" )
= p( )
Let € () ’¢ ()= o) Then
Cys ol = (e O x (O
=( 20 Tl (N0 L x ,()
— (s )
— (e (DO e O
— 0 e e ()
= o)
Let € ( ). Then
e (=)
=" I (L0)
= )y
= 0 0
3.7 Lemma. Let & () 2 () e (). If () , then
o) (p) o)

Proof. Having in mind that the variety I 1s the class of all unary semigroups
satisfying the identities (id 1) — (id 4) we prove the lemma in the following seven
steps.

L)) Cp) )0 e ()
A0 =00 C,00)
= (7,0
=(C "= ()Y
= (.0
(o) o)
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A0 (o) 700 € ()
A0 ) =C el )

= (e (N O

= (" 0N )Y

(o 00 e L0y

=7 e ) )

= (0 (O (e (0))

=YY N ()

= ()
L)) W) (e ()
V=Y e Nk (1)

= N Y N T )

= )0 ) )

= o)) o)

(o) o)

D=0 "0 T 0 N0 x ,07)
=0 7 T 00 T L0))
= ,0)0,0 )
Further,
L0 =0 7700 D) .0 N0 Tx L 00)
=70 e, 00T 0 ) L)
=" w00 T L 00)
= "l 00,0 000600,
L0 D=0 w0000 ()0 ,0)
= T 00000 000 ,0))
( p)( ! /’)* 0,0 000
() and () (,) ,()implies () ( ()
=0 w00+ ,(0)
=0 " T 00 x ,0)
Since () , we have Ty ()= Tl ()
Since () (o) p( ), wehave x () ( ,) = o()
So, () ) o)
() and () ( ,) ,()implies ,( ) ( ,) o )
A )=0 T x ,0)0 x ,(0)
A )=0 T (N0 ,(0)
Stce o() () o(hwehave e () () '
ther, from () we get " L) "Tx (). So

P0)(p) " ,(0). Finally, x ()
we see that () ( ,) »( ).

287
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T () and () () p()implies () () () € ()
=" (,0))
)= T (0))
Since () ,weget ' () “andthen ‘x( ,( )= "*( ,()). Since
P Cp) o), weget (5()) () (o) and "5 (o)) (o) "*
( () S0, () (p) o) O
3.8 Corollary. Let € () 2() € (). If ()=1( ), then

p()( p)zl( p)'

Proof. Let € (
3.7 weget (%) (

( )=1( ). We know that 2 ( ) (see 3.1). From
. Further,

~
R N N
~—
~—
—~
* ¥ =

=0 ", ()

=( " (D0 T ()

=( "x (D0 " ()

=( o))
Thus, ( ,())* ( 5) »() () C ) =1( ) .
3.9 Corollary. Let € () D() € () If € (), then
o)e ()

Proof. By induction with respect to . Let &€ . Then ,( )=( ' )€
T( /p)’ / / /
o) =" ) =

Let € () o() ,()

€ +( o)

P )=0 "7 00 * ()

We know that "o ,0)€e () x o) € ,( ,) (see 3.4). Thus,
L)€ +( p)

Let Er() ()=1) ()€ ~( ,)

)= "))
We know that p( ) ( p)=1( ,) (see 3.8). Then ( ,( )) € ,( ,). Using 34
we obtain ,( )€ ,( ,). a

Now, let € () D() € +( ,). Define

by

(€ ()

The correctness of the definition is based on 3.9.

3.10 Remark. If ¢ () D () € +( ), then O €

+( ). We will prove it in 4.10.
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4. RELATIONSHIPS BETWEEN SYNTAX AND SEMANTICS

4.1 Result. ([6], Corollary 2.11) For any infinite set , the rules
Ve (V )and — ]

define mutually inverse order—reversing bijections between all e-varieties of regular
-solid semigroups and all biinvariant congruences on ,( ).

We will denote the one—to—one correspondence from 4.1 simply by the symbol
4. Since 1t causes no confusion, we will use the symbol + also for the well-known
one—to—one correspondence between all varieties of unary semigroups and all fully
invariant congruences on the free unary semigroup ().

Now, we recall the notion of a bifree object. Let V be a class of regular semi-
groups. By a bifree object in V on a non—empty set , we mean a pair ()
where € Vand : — is a matched mapping such that the following uni-
versal property is satisfied: for any semigroup € V and any matched mapping

" — | there exists a unique homomorphism : — such that o =
In cases when the mapping is obvious, we omit it and we term simply to be a
bifree object in V on . Note that in any class of regular semigroups, there exists,
up to isomorphism, at most one bifree object on any non—empty set.

4.2 Result. ([6], Theorem 2.5) If  is an infinite set and V is a class of regular
-solid semigroups closed under taking regular subsemigroups and direct products
then () (V ) isa bifree object in V on

4.3 Lemma. Let € () € +( ). Then the mapping

() —=(End(,(,) )o)
given by
() )=0x) (e () € ()
is a correctly defined homomorphism.
Proof.

1. correctness of the definition:
It follows from 3.4 that € ( )and € ,( ,) implies * € ,( ,).
Now, let e () € () . We will show that x * .
Wehave * = =« . Since € (), weget * . S0, * * .

2. ( ): +( ,) = +( ) isanendomorphism (for any € ( )):
Let € ,( p). Then

3. is a homomorphism:
Let e () €

(DCCHC D= I+ ))=0x+Cx)) = )*)
() :
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d

4.4 Lemma. Let € () D () € +( p). Further, let
() = (End( +( ,) ) o) be the homomorphism from 4.3. Finally, let
= +( ») %o () begiven by
=) ) €e)
Then
(i)  is a matched mapping

(i) ()=C0,0) Jforal e ()

(where is the extension of the matched mapping ).

Proof. Note that ( ) €I ,.( ,) €ES ,( ,) X, () €ES (see
4.1,4.2 and 2.4).

(i) Choose € .Then () (') ()=
= ") Ty e ) )
=CC e )y et )y e o))
= xC e Cm o))y e ) )
= ) e )y )
=CC e ey coxe o))y )
= «C )0 N0 x0T ) )
= ) )C ) )
=(
= ()

Similarly, (/) () ()= ().
(i1) We proceed by induction with respect to . Let e () ()=

(o() ) ()=0,0) ) Then ()= () ()

~1,0 0

(T 0 OO )

(N0 )

—(, 1 )

et "€ () () =10) ()= (s) ) Notethat ) e
+( 5)by39and ,() ( ,)=1( ,) by 3.8. We want to prove (') =
( (") ") Inviewof (')={(( ))~"' we have to show that

(oC) D) ")) )=0,0) )

(o0 )00) 0 ")=0.0") ")

(o0) D) ")=0,07 ")) )

Wesee that ( ,( ) )( (") ") ,() )=

=(C 7 )0)) OO0 ) ")C0) )

=(C " L(NC=C"*C,0)))  ")C0) )

=(,()C,0)) ")) )

=(CC 7 7 0,000 ) C")0e0) ) 7))

=(C " L0 N0 " ,0)C " ,0)) )

=( o)D" L) )

=(,() )ysince D (ES ,)and ,()( () »() (ES ,) ,()
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Similarly, ( () ) () N () ) =(," ') Further

(o) () 7")=

=(C 7 )00 ) .0 ) )

=(C 7% L0NC=C7x(,0))) ")

=, ")

(o) )L0) )=

=7 )00 ) C)CL.0)) 7 )

We know that 2 () (see 3.1). So, ( ) '/ !

Then ( (") ")) )=

=(C (0NN =0 7% () )

=02 % (N2 () ")

= () () ")

=(,()C,0)) "),

since. 2 (ES p)and ,()( ,()) (ES ,)(,()) ,() O
4.5 Corollary. Let € () D() € +( ). Let U CES be

an e-variety and V C I be a variety such that U + V¢ . Then
g > way )

Proof. Let € () U0V ) . Wewill show that ( O ) ,ie.

and ,( ) ,(). Notethat ,( ,) €U () €V (seed.land4.2). Weuse

the homomorphism : () — (End( ,( ,) ) o) from 4.3 and the matched

mapping :  — .( ,) X, () from44. Now, ,( ,) x, () €

UOV. Thus the biidentity = issatisfiedin ,( ,) X, ( ) ,and therefore
( )= () (where isthe extension of the matched mapping ). Hence, by 4.4(ii),

(L) )=0.0) ) O

4.6 Lemma. Let €ES €I :( -)— (End( ) o) be a homomorphism,
— X, be a matched mapping such that

(i) = (i)
(D = (i) (for =12 ).
Let € () D ( ). Suppose that all identities from are satisfied in .
Let 5: —  be given by
i

Let :_p—> be given by

() = (a0 D) (or( e o)

where 5 : () — is the unary homomorphism extending .
Finally,let : ,( )— X, be the extension of the matched mapping . Then

(i) the mapping 1 is matched
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(i) 1( )= (20 )(1()) forall € () € ,( ,) (1 denotes the

extension of the matched mapping 1)

(i) ()=010,0)) »()) forall € ()

Proof.
(i) Let e () . We have to show that 2( ) = 2( ). But all identities
from are satisfied in |, which implies 5( ) = 2 ).

(i)

Now, let ( i) € ,. We have to show that

(( )= () and

. 3
(C D)) C ) (0 D))=l ) de
(2000 (20 N0 (20)0)= (20))(+)and
(20 )0 (2000 (20 D)= (=20 () ie
(20 NCi (i) )= (=20))(4)and
(20 NCCHCa) e (D))= (2000 ()
Weknow that ( 4 4)( i )( ¢ i) =(4s Jand (s (s )i ) =0 i)
Weget ( (iiigiiiiio)(a) Ciiigisalia) (ia)la) iid)=0i
and ( (iiiiiiaiq i) Ciaafiiald) il iid)=0i 4
Thus z—;z(z)(z)z:z z(;)(z)z:z
The last equality implies () 5) & ()( )= () 4)

We proceed by induction with respect to . Let ( i) € ,. Then

1+ 9) =1 )= (=20 )04
= ( 2( ))( ( 2( ))( i)) = ( 2( ))( 1(( i)))

and
Cx(3)) =1 i))= (20 )(4)
= (20)0 (20 )Ca))= C20ND0C )
Let € (o) 1 *x )= (=20 )N020)) 10 x )= (=20)10))
Then
1(Cx )= 1(C * )0 = )= 1 * )1( )
= (=200020)) Ca0NC2C))= a2l NCC) ()
= (=20 )00 )
Let € +( 5) ( p)=1,) 1 * )= (=20))(1()). Then
1 =0 )) = (20N
= (2NN = (20NC()
By induction:
(10o0a) 20)=C2Ci i ) 20))=0(204 D) o)
=( (90 d=0i )= (i),
(10 ,08) 200 =007 ) 207)
=( (205 N0 =00 D) )
=(: = (-
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=10 p0) 20N L)) 20))
=( (20 " NCCL0)) C20ND02000)) =20) 20))
It was proved in section (i) that (2 " N(1( () = 1( " "=
p()), (20020 ,0))= 10 x ,())
Now,
C)=00 " "% ,0DC* () =20 )
=10, ) 20 )
Finally, let. € () () =10 ) ()=(1(,()) o )). We have

to show that

(100D 20NCC 0D 20NC00)) 20)=(10,0)) 20))

(100 20 NCC0)) 2000 () 207))=C1( (")) 2(")

(100 20 N0 0D 200 =010,0) 20010 ,()) 2()):

We see that (11( ,( 1)) 2( D1 () 20 NCL( () 20 )=

=( (207 Nl L0)) C20NCLCLCD)) =0 )

(10 p()) 20))

= (10 ,0)) 1 (C,0))) 20 DN Cal ol ) 2())

= ((2(/ )’) N0 ) (0NN Cal N ,0))

= (100 )) (o)) 20 ,0)) =0 "))

=(1(,0)) 20))

Similarly, ( 1( (1)) 20 NC1( () 20 N0 () () =

=(1(,(") =)

Further, (1( ,( ) 2( N(1(,( ") =(7) =

= (10 ,0)) (0 ))) o0 ),

(100D 20N L)) =)=

=( (207 2NN C20NC0L0)) 20" )

= (17 C,0))) a0 ,0) o07)

= (10 00D 2l 7% () 20 7))

= (10 ))) 10,0 ) (7))

= (10 ,0)) 1 -0))) 0 )

We used the following facts:

() (see3d), ? Pa)e () 2()e () O
4.7 Corollary. Let € () D() € +( ). Let €ES €

I. Suppose that all identities from are satisfied in  and all biidentities from
are satisfied in . Finally,let :( ) — (End( ) o) be a homomorphism. Then

O c | x } )

Proof. Let e () (O = X,  be a matched mapping.
We have to show that ( ) = (), where : ,( ) — X, is the extension
. We know that () (). Consider the mappings ; and » from

4.6. The mapping 1 is matched by 4.6(i). Let 1: ,( ,) — be the extension
of ;and 52 : () — be the unary homomorphism extending 5. Then

1(p( )= 1(,()) and o( )= o). Thus ()= () (by 4.6(iii)). O
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4.8 Result. ([2], Lemma 1) Let : — be a surjective homomorphism of
regular semigroups and let € = = . Then there exist €
such that = = and ()= ()=

4.9 Corollary. Let € () D() € +( ). Let U CES be

an e-variety, V C I be a variety such thatU <+ V< . Then

g c «gy )

Proof. Let e () (0O) ceUOV and let : = be a
matched mapping. We will show that ( ) = (), where : ,( )—  is the
extension of . It follows from 2.7 that there exist €U €V, a homomorphism
() = (End( ) o), a regular subsemigroup in x, and a surjective
homomorphism : — . By 4.8, there is a matched mapping : —
such that (_( ))= ()forall € . Then (_( )= ( )forall € ()
(¢ +( )= is the extension of ). Now, we use 4.7. We have ( )= ().

Thus ()= (() ()= (). O
4.10 Theorem. Let € () D() € +( ). Let U CES be
an e-variety, V C 1 be a variety such that i + V < . Then

iy O € o)

)y OV & O
(iii) The mapping : () O — ,( ,) X, ( ) defined by

(=000 )

where  is the homomorphism from 4.3, is an embedding.

Proof.
(i) and (ii) Note that & OV C ES (see 2.4). By 4.5 and 4.9 we have O =
Oy ). Thus O € H Jand¥ OV & O by4d.l

(iii) Tt follows immediately from the definition of O that is a correctly de-
fined injective mapping.
is a homomorphism:
Let € +( ). Then

ccancca))= (0
=( o) )= 7 (N () )
=0 7)00)) ()0e0))
=(o0)  J00) )
= (o) o)) O

4.11 Remark. Theorem 4.10 together with Result 4.2 show that bifree objects
in 4/ OV are isomorphic to some subsemigroups in suitable semidirect products of
bifree objects in U by free objects in V, for any e-variety Y C ES and any variety
VCIL
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This section is concluded with a corollary of Theorem 4.10. First, the following
result ensures that if &/ and V are varieties of inverse semigroups then ¥ OV is
also a variety of inverse semigroups.

4.12 Result. ([1], Proposition 1) Let be inverse semigroups, :( ) —
(End ( ) o) be a homomorphism. Then x,, Is also an inverse semigroup.
4.13 Corollary. Let € () D() € ( ») D ( ) Let

U V C 1T be varieties such that U V & . Denote by O the fully invariant
congruence on () corresponding to the variety Y OV. Then

(0) = and () o) (forall e ().

Proof. Let g be the biinvariant congruence on ,( ,) corresponding to the e-
variety U. Tt follows from 4.10(ii) that (0O is the biinvariant congruence on ,( )
corresponding to the e-variety /O0V. Clearly, o= N( »( ,)x »( ,)) oO =

( O)n( - )yx »()). Let € (). Thereare ¢ ¢ € ,( ) such
that ¢ ( ) o () . Then o 0 o( O o( O ) . Further,
p( 0) ( p) p( ) p( 0) ( p) p( ) (by 3.7). Thus p( 0) p( ) p( 0) p( ).
Now,
(0) & o(8) o
< o( o0 ) o
< o oand ,( o) o ,(0)
< and p( 0) p( 0)
Ao and () o)
We used also the facts that ,( o) ,(0)€ »( ,) (by 3.9). |
5. ASSOCIATIVITY
We specify our notation in this section. Let  be a countable set, € (),
D ( ). Put
p= () X
and define

C ) ()= ()
in the same way as the mapping , in the section 3 (of course, we replace the set
={ 1 2 } by an arbitrary countable set ).
Throughout this section, let / C ES be an e-variety and V C I be varieties.
We will prove syntactically that

( Oy)yow=yoyow)

Note that YV O W is a variety of inverse semigroups by 4.12 and so the right side
of the equation mentioned above is meaningful.

Let

€ () 20) W,

€ (o 20, eV
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S 7‘( a\]p) Hua
s P p)e) T U

In view of 4.10 we have to prove that
('0)0 = o o)
Choose € +( ). Then (by the definition of O and by 4.13)
(o(0) = (0)
—

Define o0p = ( p)o by
(o) )=00C ) C )
(e () € )
5.1 Lemma. is a correctly defined injective mapping.
Proof.
1. Let € () (O) .Wewant toshow: C ) 0.

It follows immediately from 4.13.

2. Let € () e (C H)O) C N=CC HO) € ) We
want toshow that ( ( O ) )=(( O ) ).

( )= ( ) implies = .
( ) ) = ( () together with implies (O ) (see 4.13)0

Now, we extend the mapping

toemp = (s

to the unary homomorphism
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5.2Lemma.  (« ( O)()=( " )« (, )x( )()
for any e ().

Proof. By induction with respect to :

1. Let € . Then ( * ( Oy = (x( (g) )
o) )= )

(C 7 77 0N = | ()( )

=( " O )(xCx C )0 7 )
Now, * ( W =
= «( 7 (7 NCx(C" )
= 2 ) )
So, ((x ( O)())=
=( 7 =7 e )y )
= "7 O )0 x (o 0= C)0))
2. Let € (). We suppose that
(«C O))N=C """ )=, ) )
(«C O) =0 "7« )N« )Cx( )

ow,

~
~
~
~
~
~
*

—
~—
—
~
~

—
~—
—
~
~
~—

&
=]
R e T S T e e
~
~
~
*

wn
o
—
*
—
=~ O~
—
—
—

—
—
~—
~
*
—
*
—
~—
~—
—
*
—
—
~—
~
*
—
—
~—
—
~—
~
~
~—
~—
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= = )C ()
(o) x C ) 77
(note that ( o)) ) ( ) ") by 3.7 and the mapping
—  is an endomorphismon ( ,)).
Since D ( ,),weget ( * ( o) )=
= ( s )0)x (o
= 0 )0 (o N
3. Let € (). zNe suppose that ( * ( O )= 7" ( )())*

« (p )0 )() forall e ().
Now, choose an arbitrary € (). Then
/
*

(+C 0= (« (g0
=(C 7 )0 D 0 )0 T O )0
=7 e )0 D0 D0 T )0
=022 T 0 )N 00 )0)))
(o )0 " O )0
= D e O )0)) s
(0o 0 " O 0))
=00 T O )00 T O )())'x
(0o 0 " C 0
=00 T 0 )0+ T OO+ CC, )0 " 0 )0)))
=00 T 0 )0 Cp )0 " 0 )(0)))
=07 7 0 )0+ Cp )0+ 0 )0) O

5.3 Corollary. ( ( gy N= ( , )y ( () forany € ().
Proof. Using 5.2 we obtain

(C ) )= 0 "« D))
= 70 e )0 D, )0 T 0 )0)
=0 )00 00 0N (o 00 )0)
=0 N0 T )N = (o, )00 )0))
= )O)C =, )00 )0
= (, )00 )0)) =

5.4 Theorem. Let i C ES be an e-variety and V W C I be varieties. Then
uoyow)=wayyaw

Proof. Tt follows from 5.1 that ( O () ( O )( ) is equivalent to
(( O)() " (( O () ( € +( )). Now, we use 5.3 and the

proof is complete. O
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